xref: /openbmc/linux/crypto/cryptd.c (revision d6fd48ef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Software async crypto daemon.
4  *
5  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6  *
7  * Added AEAD support to cryptd.
8  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9  *             Adrian Hoban <adrian.hoban@intel.com>
10  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
11  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
12  *    Copyright (c) 2010, Intel Corporation.
13  */
14 
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29 
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33 
34 static struct workqueue_struct *cryptd_wq;
35 
36 struct cryptd_cpu_queue {
37 	struct crypto_queue queue;
38 	struct work_struct work;
39 };
40 
41 struct cryptd_queue {
42 	/*
43 	 * Protected by disabling BH to allow enqueueing from softinterrupt and
44 	 * dequeuing from kworker (cryptd_queue_worker()).
45 	 */
46 	struct cryptd_cpu_queue __percpu *cpu_queue;
47 };
48 
49 struct cryptd_instance_ctx {
50 	struct crypto_spawn spawn;
51 	struct cryptd_queue *queue;
52 };
53 
54 struct skcipherd_instance_ctx {
55 	struct crypto_skcipher_spawn spawn;
56 	struct cryptd_queue *queue;
57 };
58 
59 struct hashd_instance_ctx {
60 	struct crypto_shash_spawn spawn;
61 	struct cryptd_queue *queue;
62 };
63 
64 struct aead_instance_ctx {
65 	struct crypto_aead_spawn aead_spawn;
66 	struct cryptd_queue *queue;
67 };
68 
69 struct cryptd_skcipher_ctx {
70 	refcount_t refcnt;
71 	struct crypto_skcipher *child;
72 };
73 
74 struct cryptd_skcipher_request_ctx {
75 	struct skcipher_request req;
76 };
77 
78 struct cryptd_hash_ctx {
79 	refcount_t refcnt;
80 	struct crypto_shash *child;
81 };
82 
83 struct cryptd_hash_request_ctx {
84 	crypto_completion_t complete;
85 	void *data;
86 	struct shash_desc desc;
87 };
88 
89 struct cryptd_aead_ctx {
90 	refcount_t refcnt;
91 	struct crypto_aead *child;
92 };
93 
94 struct cryptd_aead_request_ctx {
95 	struct aead_request req;
96 };
97 
98 static void cryptd_queue_worker(struct work_struct *work);
99 
100 static int cryptd_init_queue(struct cryptd_queue *queue,
101 			     unsigned int max_cpu_qlen)
102 {
103 	int cpu;
104 	struct cryptd_cpu_queue *cpu_queue;
105 
106 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
107 	if (!queue->cpu_queue)
108 		return -ENOMEM;
109 	for_each_possible_cpu(cpu) {
110 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
111 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
112 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
113 	}
114 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
115 	return 0;
116 }
117 
118 static void cryptd_fini_queue(struct cryptd_queue *queue)
119 {
120 	int cpu;
121 	struct cryptd_cpu_queue *cpu_queue;
122 
123 	for_each_possible_cpu(cpu) {
124 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
125 		BUG_ON(cpu_queue->queue.qlen);
126 	}
127 	free_percpu(queue->cpu_queue);
128 }
129 
130 static int cryptd_enqueue_request(struct cryptd_queue *queue,
131 				  struct crypto_async_request *request)
132 {
133 	int err;
134 	struct cryptd_cpu_queue *cpu_queue;
135 	refcount_t *refcnt;
136 
137 	local_bh_disable();
138 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
139 	err = crypto_enqueue_request(&cpu_queue->queue, request);
140 
141 	refcnt = crypto_tfm_ctx(request->tfm);
142 
143 	if (err == -ENOSPC)
144 		goto out;
145 
146 	queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work);
147 
148 	if (!refcount_read(refcnt))
149 		goto out;
150 
151 	refcount_inc(refcnt);
152 
153 out:
154 	local_bh_enable();
155 
156 	return err;
157 }
158 
159 /* Called in workqueue context, do one real cryption work (via
160  * req->complete) and reschedule itself if there are more work to
161  * do. */
162 static void cryptd_queue_worker(struct work_struct *work)
163 {
164 	struct cryptd_cpu_queue *cpu_queue;
165 	struct crypto_async_request *req, *backlog;
166 
167 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
168 	/*
169 	 * Only handle one request at a time to avoid hogging crypto workqueue.
170 	 */
171 	local_bh_disable();
172 	backlog = crypto_get_backlog(&cpu_queue->queue);
173 	req = crypto_dequeue_request(&cpu_queue->queue);
174 	local_bh_enable();
175 
176 	if (!req)
177 		return;
178 
179 	if (backlog)
180 		crypto_request_complete(backlog, -EINPROGRESS);
181 	crypto_request_complete(req, 0);
182 
183 	if (cpu_queue->queue.qlen)
184 		queue_work(cryptd_wq, &cpu_queue->work);
185 }
186 
187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 	return ictx->queue;
192 }
193 
194 static void cryptd_type_and_mask(struct crypto_attr_type *algt,
195 				 u32 *type, u32 *mask)
196 {
197 	/*
198 	 * cryptd is allowed to wrap internal algorithms, but in that case the
199 	 * resulting cryptd instance will be marked as internal as well.
200 	 */
201 	*type = algt->type & CRYPTO_ALG_INTERNAL;
202 	*mask = algt->mask & CRYPTO_ALG_INTERNAL;
203 
204 	/* No point in cryptd wrapping an algorithm that's already async. */
205 	*mask |= CRYPTO_ALG_ASYNC;
206 
207 	*mask |= crypto_algt_inherited_mask(algt);
208 }
209 
210 static int cryptd_init_instance(struct crypto_instance *inst,
211 				struct crypto_alg *alg)
212 {
213 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
214 		     "cryptd(%s)",
215 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
216 		return -ENAMETOOLONG;
217 
218 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
219 
220 	inst->alg.cra_priority = alg->cra_priority + 50;
221 	inst->alg.cra_blocksize = alg->cra_blocksize;
222 	inst->alg.cra_alignmask = alg->cra_alignmask;
223 
224 	return 0;
225 }
226 
227 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
228 				  const u8 *key, unsigned int keylen)
229 {
230 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
231 	struct crypto_skcipher *child = ctx->child;
232 
233 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
234 	crypto_skcipher_set_flags(child,
235 				  crypto_skcipher_get_flags(parent) &
236 				  CRYPTO_TFM_REQ_MASK);
237 	return crypto_skcipher_setkey(child, key, keylen);
238 }
239 
240 static struct skcipher_request *cryptd_skcipher_prepare(
241 	struct skcipher_request *req, int err)
242 {
243 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
244 	struct skcipher_request *subreq = &rctx->req;
245 	struct cryptd_skcipher_ctx *ctx;
246 	struct crypto_skcipher *child;
247 
248 	req->base.complete = subreq->base.complete;
249 	req->base.data = subreq->base.data;
250 
251 	if (unlikely(err == -EINPROGRESS))
252 		return NULL;
253 
254 	ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
255 	child = ctx->child;
256 
257 	skcipher_request_set_tfm(subreq, child);
258 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
259 				      NULL, NULL);
260 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
261 				   req->iv);
262 
263 	return subreq;
264 }
265 
266 static void cryptd_skcipher_complete(struct skcipher_request *req, int err,
267 				     crypto_completion_t complete)
268 {
269 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
270 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
271 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
272 	struct skcipher_request *subreq = &rctx->req;
273 	int refcnt = refcount_read(&ctx->refcnt);
274 
275 	local_bh_disable();
276 	skcipher_request_complete(req, err);
277 	local_bh_enable();
278 
279 	if (unlikely(err == -EINPROGRESS)) {
280 		subreq->base.complete = req->base.complete;
281 		subreq->base.data = req->base.data;
282 		req->base.complete = complete;
283 		req->base.data = req;
284 	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
285 		crypto_free_skcipher(tfm);
286 }
287 
288 static void cryptd_skcipher_encrypt(void *data, int err)
289 {
290 	struct skcipher_request *req = data;
291 	struct skcipher_request *subreq;
292 
293 	subreq = cryptd_skcipher_prepare(req, err);
294 	if (likely(subreq))
295 		err = crypto_skcipher_encrypt(subreq);
296 
297 	cryptd_skcipher_complete(req, err, cryptd_skcipher_encrypt);
298 }
299 
300 static void cryptd_skcipher_decrypt(void *data, int err)
301 {
302 	struct skcipher_request *req = data;
303 	struct skcipher_request *subreq;
304 
305 	subreq = cryptd_skcipher_prepare(req, err);
306 	if (likely(subreq))
307 		err = crypto_skcipher_decrypt(subreq);
308 
309 	cryptd_skcipher_complete(req, err, cryptd_skcipher_decrypt);
310 }
311 
312 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
313 				   crypto_completion_t compl)
314 {
315 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
316 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
317 	struct skcipher_request *subreq = &rctx->req;
318 	struct cryptd_queue *queue;
319 
320 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
321 	subreq->base.complete = req->base.complete;
322 	subreq->base.data = req->base.data;
323 	req->base.complete = compl;
324 	req->base.data = req;
325 
326 	return cryptd_enqueue_request(queue, &req->base);
327 }
328 
329 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
330 {
331 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
332 }
333 
334 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
335 {
336 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
337 }
338 
339 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
340 {
341 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
342 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
343 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
344 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
345 	struct crypto_skcipher *cipher;
346 
347 	cipher = crypto_spawn_skcipher(spawn);
348 	if (IS_ERR(cipher))
349 		return PTR_ERR(cipher);
350 
351 	ctx->child = cipher;
352 	crypto_skcipher_set_reqsize(
353 		tfm, sizeof(struct cryptd_skcipher_request_ctx) +
354 		     crypto_skcipher_reqsize(cipher));
355 	return 0;
356 }
357 
358 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
359 {
360 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
361 
362 	crypto_free_skcipher(ctx->child);
363 }
364 
365 static void cryptd_skcipher_free(struct skcipher_instance *inst)
366 {
367 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
368 
369 	crypto_drop_skcipher(&ctx->spawn);
370 	kfree(inst);
371 }
372 
373 static int cryptd_create_skcipher(struct crypto_template *tmpl,
374 				  struct rtattr **tb,
375 				  struct crypto_attr_type *algt,
376 				  struct cryptd_queue *queue)
377 {
378 	struct skcipherd_instance_ctx *ctx;
379 	struct skcipher_instance *inst;
380 	struct skcipher_alg *alg;
381 	u32 type;
382 	u32 mask;
383 	int err;
384 
385 	cryptd_type_and_mask(algt, &type, &mask);
386 
387 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
388 	if (!inst)
389 		return -ENOMEM;
390 
391 	ctx = skcipher_instance_ctx(inst);
392 	ctx->queue = queue;
393 
394 	err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
395 				   crypto_attr_alg_name(tb[1]), type, mask);
396 	if (err)
397 		goto err_free_inst;
398 
399 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
400 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
401 	if (err)
402 		goto err_free_inst;
403 
404 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
405 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
406 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
407 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
408 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
409 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
410 
411 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
412 
413 	inst->alg.init = cryptd_skcipher_init_tfm;
414 	inst->alg.exit = cryptd_skcipher_exit_tfm;
415 
416 	inst->alg.setkey = cryptd_skcipher_setkey;
417 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
418 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
419 
420 	inst->free = cryptd_skcipher_free;
421 
422 	err = skcipher_register_instance(tmpl, inst);
423 	if (err) {
424 err_free_inst:
425 		cryptd_skcipher_free(inst);
426 	}
427 	return err;
428 }
429 
430 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
431 {
432 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
433 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
434 	struct crypto_shash_spawn *spawn = &ictx->spawn;
435 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
436 	struct crypto_shash *hash;
437 
438 	hash = crypto_spawn_shash(spawn);
439 	if (IS_ERR(hash))
440 		return PTR_ERR(hash);
441 
442 	ctx->child = hash;
443 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
444 				 sizeof(struct cryptd_hash_request_ctx) +
445 				 crypto_shash_descsize(hash));
446 	return 0;
447 }
448 
449 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
450 {
451 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
452 
453 	crypto_free_shash(ctx->child);
454 }
455 
456 static int cryptd_hash_setkey(struct crypto_ahash *parent,
457 				   const u8 *key, unsigned int keylen)
458 {
459 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
460 	struct crypto_shash *child = ctx->child;
461 
462 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
463 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
464 				      CRYPTO_TFM_REQ_MASK);
465 	return crypto_shash_setkey(child, key, keylen);
466 }
467 
468 static int cryptd_hash_enqueue(struct ahash_request *req,
469 				crypto_completion_t compl)
470 {
471 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
472 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
473 	struct cryptd_queue *queue =
474 		cryptd_get_queue(crypto_ahash_tfm(tfm));
475 
476 	rctx->complete = req->base.complete;
477 	rctx->data = req->base.data;
478 	req->base.complete = compl;
479 	req->base.data = req;
480 
481 	return cryptd_enqueue_request(queue, &req->base);
482 }
483 
484 static struct shash_desc *cryptd_hash_prepare(struct ahash_request *req,
485 					      int err)
486 {
487 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
488 
489 	req->base.complete = rctx->complete;
490 	req->base.data = rctx->data;
491 
492 	if (unlikely(err == -EINPROGRESS))
493 		return NULL;
494 
495 	return &rctx->desc;
496 }
497 
498 static void cryptd_hash_complete(struct ahash_request *req, int err,
499 				 crypto_completion_t complete)
500 {
501 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
502 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
503 	int refcnt = refcount_read(&ctx->refcnt);
504 
505 	local_bh_disable();
506 	ahash_request_complete(req, err);
507 	local_bh_enable();
508 
509 	if (err == -EINPROGRESS) {
510 		req->base.complete = complete;
511 		req->base.data = req;
512 	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
513 		crypto_free_ahash(tfm);
514 }
515 
516 static void cryptd_hash_init(void *data, int err)
517 {
518 	struct ahash_request *req = data;
519 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
520 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
521 	struct crypto_shash *child = ctx->child;
522 	struct shash_desc *desc;
523 
524 	desc = cryptd_hash_prepare(req, err);
525 	if (unlikely(!desc))
526 		goto out;
527 
528 	desc->tfm = child;
529 
530 	err = crypto_shash_init(desc);
531 
532 out:
533 	cryptd_hash_complete(req, err, cryptd_hash_init);
534 }
535 
536 static int cryptd_hash_init_enqueue(struct ahash_request *req)
537 {
538 	return cryptd_hash_enqueue(req, cryptd_hash_init);
539 }
540 
541 static void cryptd_hash_update(void *data, int err)
542 {
543 	struct ahash_request *req = data;
544 	struct shash_desc *desc;
545 
546 	desc = cryptd_hash_prepare(req, err);
547 	if (likely(desc))
548 		err = shash_ahash_update(req, desc);
549 
550 	cryptd_hash_complete(req, err, cryptd_hash_update);
551 }
552 
553 static int cryptd_hash_update_enqueue(struct ahash_request *req)
554 {
555 	return cryptd_hash_enqueue(req, cryptd_hash_update);
556 }
557 
558 static void cryptd_hash_final(void *data, int err)
559 {
560 	struct ahash_request *req = data;
561 	struct shash_desc *desc;
562 
563 	desc = cryptd_hash_prepare(req, err);
564 	if (likely(desc))
565 		err = crypto_shash_final(desc, req->result);
566 
567 	cryptd_hash_complete(req, err, cryptd_hash_final);
568 }
569 
570 static int cryptd_hash_final_enqueue(struct ahash_request *req)
571 {
572 	return cryptd_hash_enqueue(req, cryptd_hash_final);
573 }
574 
575 static void cryptd_hash_finup(void *data, int err)
576 {
577 	struct ahash_request *req = data;
578 	struct shash_desc *desc;
579 
580 	desc = cryptd_hash_prepare(req, err);
581 	if (likely(desc))
582 		err = shash_ahash_finup(req, desc);
583 
584 	cryptd_hash_complete(req, err, cryptd_hash_finup);
585 }
586 
587 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
588 {
589 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
590 }
591 
592 static void cryptd_hash_digest(void *data, int err)
593 {
594 	struct ahash_request *req = data;
595 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
596 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
597 	struct crypto_shash *child = ctx->child;
598 	struct shash_desc *desc;
599 
600 	desc = cryptd_hash_prepare(req, err);
601 	if (unlikely(!desc))
602 		goto out;
603 
604 	desc->tfm = child;
605 
606 	err = shash_ahash_digest(req, desc);
607 
608 out:
609 	cryptd_hash_complete(req, err, cryptd_hash_digest);
610 }
611 
612 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
613 {
614 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
615 }
616 
617 static int cryptd_hash_export(struct ahash_request *req, void *out)
618 {
619 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
620 
621 	return crypto_shash_export(&rctx->desc, out);
622 }
623 
624 static int cryptd_hash_import(struct ahash_request *req, const void *in)
625 {
626 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
627 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
628 	struct shash_desc *desc = cryptd_shash_desc(req);
629 
630 	desc->tfm = ctx->child;
631 
632 	return crypto_shash_import(desc, in);
633 }
634 
635 static void cryptd_hash_free(struct ahash_instance *inst)
636 {
637 	struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
638 
639 	crypto_drop_shash(&ctx->spawn);
640 	kfree(inst);
641 }
642 
643 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
644 			      struct crypto_attr_type *algt,
645 			      struct cryptd_queue *queue)
646 {
647 	struct hashd_instance_ctx *ctx;
648 	struct ahash_instance *inst;
649 	struct shash_alg *alg;
650 	u32 type;
651 	u32 mask;
652 	int err;
653 
654 	cryptd_type_and_mask(algt, &type, &mask);
655 
656 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
657 	if (!inst)
658 		return -ENOMEM;
659 
660 	ctx = ahash_instance_ctx(inst);
661 	ctx->queue = queue;
662 
663 	err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
664 				crypto_attr_alg_name(tb[1]), type, mask);
665 	if (err)
666 		goto err_free_inst;
667 	alg = crypto_spawn_shash_alg(&ctx->spawn);
668 
669 	err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
670 	if (err)
671 		goto err_free_inst;
672 
673 	inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC |
674 		(alg->base.cra_flags & (CRYPTO_ALG_INTERNAL|
675 					CRYPTO_ALG_OPTIONAL_KEY));
676 	inst->alg.halg.digestsize = alg->digestsize;
677 	inst->alg.halg.statesize = alg->statesize;
678 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
679 
680 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
681 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
682 
683 	inst->alg.init   = cryptd_hash_init_enqueue;
684 	inst->alg.update = cryptd_hash_update_enqueue;
685 	inst->alg.final  = cryptd_hash_final_enqueue;
686 	inst->alg.finup  = cryptd_hash_finup_enqueue;
687 	inst->alg.export = cryptd_hash_export;
688 	inst->alg.import = cryptd_hash_import;
689 	if (crypto_shash_alg_has_setkey(alg))
690 		inst->alg.setkey = cryptd_hash_setkey;
691 	inst->alg.digest = cryptd_hash_digest_enqueue;
692 
693 	inst->free = cryptd_hash_free;
694 
695 	err = ahash_register_instance(tmpl, inst);
696 	if (err) {
697 err_free_inst:
698 		cryptd_hash_free(inst);
699 	}
700 	return err;
701 }
702 
703 static int cryptd_aead_setkey(struct crypto_aead *parent,
704 			      const u8 *key, unsigned int keylen)
705 {
706 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
707 	struct crypto_aead *child = ctx->child;
708 
709 	return crypto_aead_setkey(child, key, keylen);
710 }
711 
712 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
713 				   unsigned int authsize)
714 {
715 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
716 	struct crypto_aead *child = ctx->child;
717 
718 	return crypto_aead_setauthsize(child, authsize);
719 }
720 
721 static void cryptd_aead_crypt(struct aead_request *req,
722 			      struct crypto_aead *child, int err,
723 			      int (*crypt)(struct aead_request *req),
724 			      crypto_completion_t compl)
725 {
726 	struct cryptd_aead_request_ctx *rctx;
727 	struct aead_request *subreq;
728 	struct cryptd_aead_ctx *ctx;
729 	struct crypto_aead *tfm;
730 	int refcnt;
731 
732 	rctx = aead_request_ctx(req);
733 	subreq = &rctx->req;
734 	req->base.complete = subreq->base.complete;
735 	req->base.data = subreq->base.data;
736 
737 	tfm = crypto_aead_reqtfm(req);
738 
739 	if (unlikely(err == -EINPROGRESS))
740 		goto out;
741 
742 	aead_request_set_tfm(subreq, child);
743 	aead_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
744 				  NULL, NULL);
745 	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
746 			       req->iv);
747 	aead_request_set_ad(subreq, req->assoclen);
748 
749 	err = crypt(subreq);
750 
751 out:
752 	ctx = crypto_aead_ctx(tfm);
753 	refcnt = refcount_read(&ctx->refcnt);
754 
755 	local_bh_disable();
756 	aead_request_complete(req, err);
757 	local_bh_enable();
758 
759 	if (err == -EINPROGRESS) {
760 		subreq->base.complete = req->base.complete;
761 		subreq->base.data = req->base.data;
762 		req->base.complete = compl;
763 		req->base.data = req;
764 	} else if (refcnt && refcount_dec_and_test(&ctx->refcnt))
765 		crypto_free_aead(tfm);
766 }
767 
768 static void cryptd_aead_encrypt(void *data, int err)
769 {
770 	struct aead_request *req = data;
771 	struct cryptd_aead_ctx *ctx;
772 	struct crypto_aead *child;
773 
774 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
775 	child = ctx->child;
776 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt,
777 			  cryptd_aead_encrypt);
778 }
779 
780 static void cryptd_aead_decrypt(void *data, int err)
781 {
782 	struct aead_request *req = data;
783 	struct cryptd_aead_ctx *ctx;
784 	struct crypto_aead *child;
785 
786 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
787 	child = ctx->child;
788 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt,
789 			  cryptd_aead_decrypt);
790 }
791 
792 static int cryptd_aead_enqueue(struct aead_request *req,
793 				    crypto_completion_t compl)
794 {
795 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
796 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
797 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
798 	struct aead_request *subreq = &rctx->req;
799 
800 	subreq->base.complete = req->base.complete;
801 	subreq->base.data = req->base.data;
802 	req->base.complete = compl;
803 	req->base.data = req;
804 	return cryptd_enqueue_request(queue, &req->base);
805 }
806 
807 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
808 {
809 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
810 }
811 
812 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
813 {
814 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
815 }
816 
817 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
818 {
819 	struct aead_instance *inst = aead_alg_instance(tfm);
820 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
821 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
822 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
823 	struct crypto_aead *cipher;
824 
825 	cipher = crypto_spawn_aead(spawn);
826 	if (IS_ERR(cipher))
827 		return PTR_ERR(cipher);
828 
829 	ctx->child = cipher;
830 	crypto_aead_set_reqsize(
831 		tfm, sizeof(struct cryptd_aead_request_ctx) +
832 		     crypto_aead_reqsize(cipher));
833 	return 0;
834 }
835 
836 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
837 {
838 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
839 	crypto_free_aead(ctx->child);
840 }
841 
842 static void cryptd_aead_free(struct aead_instance *inst)
843 {
844 	struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
845 
846 	crypto_drop_aead(&ctx->aead_spawn);
847 	kfree(inst);
848 }
849 
850 static int cryptd_create_aead(struct crypto_template *tmpl,
851 		              struct rtattr **tb,
852 			      struct crypto_attr_type *algt,
853 			      struct cryptd_queue *queue)
854 {
855 	struct aead_instance_ctx *ctx;
856 	struct aead_instance *inst;
857 	struct aead_alg *alg;
858 	u32 type;
859 	u32 mask;
860 	int err;
861 
862 	cryptd_type_and_mask(algt, &type, &mask);
863 
864 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
865 	if (!inst)
866 		return -ENOMEM;
867 
868 	ctx = aead_instance_ctx(inst);
869 	ctx->queue = queue;
870 
871 	err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
872 			       crypto_attr_alg_name(tb[1]), type, mask);
873 	if (err)
874 		goto err_free_inst;
875 
876 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
877 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
878 	if (err)
879 		goto err_free_inst;
880 
881 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
882 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
883 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
884 
885 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
886 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
887 
888 	inst->alg.init = cryptd_aead_init_tfm;
889 	inst->alg.exit = cryptd_aead_exit_tfm;
890 	inst->alg.setkey = cryptd_aead_setkey;
891 	inst->alg.setauthsize = cryptd_aead_setauthsize;
892 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
893 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
894 
895 	inst->free = cryptd_aead_free;
896 
897 	err = aead_register_instance(tmpl, inst);
898 	if (err) {
899 err_free_inst:
900 		cryptd_aead_free(inst);
901 	}
902 	return err;
903 }
904 
905 static struct cryptd_queue queue;
906 
907 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
908 {
909 	struct crypto_attr_type *algt;
910 
911 	algt = crypto_get_attr_type(tb);
912 	if (IS_ERR(algt))
913 		return PTR_ERR(algt);
914 
915 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
916 	case CRYPTO_ALG_TYPE_SKCIPHER:
917 		return cryptd_create_skcipher(tmpl, tb, algt, &queue);
918 	case CRYPTO_ALG_TYPE_HASH:
919 		return cryptd_create_hash(tmpl, tb, algt, &queue);
920 	case CRYPTO_ALG_TYPE_AEAD:
921 		return cryptd_create_aead(tmpl, tb, algt, &queue);
922 	}
923 
924 	return -EINVAL;
925 }
926 
927 static struct crypto_template cryptd_tmpl = {
928 	.name = "cryptd",
929 	.create = cryptd_create,
930 	.module = THIS_MODULE,
931 };
932 
933 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
934 					      u32 type, u32 mask)
935 {
936 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
937 	struct cryptd_skcipher_ctx *ctx;
938 	struct crypto_skcipher *tfm;
939 
940 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
941 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
942 		return ERR_PTR(-EINVAL);
943 
944 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
945 	if (IS_ERR(tfm))
946 		return ERR_CAST(tfm);
947 
948 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
949 		crypto_free_skcipher(tfm);
950 		return ERR_PTR(-EINVAL);
951 	}
952 
953 	ctx = crypto_skcipher_ctx(tfm);
954 	refcount_set(&ctx->refcnt, 1);
955 
956 	return container_of(tfm, struct cryptd_skcipher, base);
957 }
958 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
959 
960 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
961 {
962 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
963 
964 	return ctx->child;
965 }
966 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
967 
968 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
969 {
970 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
971 
972 	return refcount_read(&ctx->refcnt) - 1;
973 }
974 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
975 
976 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
977 {
978 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
979 
980 	if (refcount_dec_and_test(&ctx->refcnt))
981 		crypto_free_skcipher(&tfm->base);
982 }
983 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
984 
985 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
986 					u32 type, u32 mask)
987 {
988 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
989 	struct cryptd_hash_ctx *ctx;
990 	struct crypto_ahash *tfm;
991 
992 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
993 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
994 		return ERR_PTR(-EINVAL);
995 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
996 	if (IS_ERR(tfm))
997 		return ERR_CAST(tfm);
998 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
999 		crypto_free_ahash(tfm);
1000 		return ERR_PTR(-EINVAL);
1001 	}
1002 
1003 	ctx = crypto_ahash_ctx(tfm);
1004 	refcount_set(&ctx->refcnt, 1);
1005 
1006 	return __cryptd_ahash_cast(tfm);
1007 }
1008 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1009 
1010 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1011 {
1012 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1013 
1014 	return ctx->child;
1015 }
1016 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1017 
1018 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1019 {
1020 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1021 	return &rctx->desc;
1022 }
1023 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1024 
1025 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1026 {
1027 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1028 
1029 	return refcount_read(&ctx->refcnt) - 1;
1030 }
1031 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1032 
1033 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1034 {
1035 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1036 
1037 	if (refcount_dec_and_test(&ctx->refcnt))
1038 		crypto_free_ahash(&tfm->base);
1039 }
1040 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1041 
1042 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1043 						  u32 type, u32 mask)
1044 {
1045 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1046 	struct cryptd_aead_ctx *ctx;
1047 	struct crypto_aead *tfm;
1048 
1049 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1050 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1051 		return ERR_PTR(-EINVAL);
1052 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1053 	if (IS_ERR(tfm))
1054 		return ERR_CAST(tfm);
1055 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1056 		crypto_free_aead(tfm);
1057 		return ERR_PTR(-EINVAL);
1058 	}
1059 
1060 	ctx = crypto_aead_ctx(tfm);
1061 	refcount_set(&ctx->refcnt, 1);
1062 
1063 	return __cryptd_aead_cast(tfm);
1064 }
1065 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1066 
1067 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1068 {
1069 	struct cryptd_aead_ctx *ctx;
1070 	ctx = crypto_aead_ctx(&tfm->base);
1071 	return ctx->child;
1072 }
1073 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1074 
1075 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1076 {
1077 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1078 
1079 	return refcount_read(&ctx->refcnt) - 1;
1080 }
1081 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1082 
1083 void cryptd_free_aead(struct cryptd_aead *tfm)
1084 {
1085 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1086 
1087 	if (refcount_dec_and_test(&ctx->refcnt))
1088 		crypto_free_aead(&tfm->base);
1089 }
1090 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1091 
1092 static int __init cryptd_init(void)
1093 {
1094 	int err;
1095 
1096 	cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1097 				    1);
1098 	if (!cryptd_wq)
1099 		return -ENOMEM;
1100 
1101 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1102 	if (err)
1103 		goto err_destroy_wq;
1104 
1105 	err = crypto_register_template(&cryptd_tmpl);
1106 	if (err)
1107 		goto err_fini_queue;
1108 
1109 	return 0;
1110 
1111 err_fini_queue:
1112 	cryptd_fini_queue(&queue);
1113 err_destroy_wq:
1114 	destroy_workqueue(cryptd_wq);
1115 	return err;
1116 }
1117 
1118 static void __exit cryptd_exit(void)
1119 {
1120 	destroy_workqueue(cryptd_wq);
1121 	cryptd_fini_queue(&queue);
1122 	crypto_unregister_template(&cryptd_tmpl);
1123 }
1124 
1125 subsys_initcall(cryptd_init);
1126 module_exit(cryptd_exit);
1127 
1128 MODULE_LICENSE("GPL");
1129 MODULE_DESCRIPTION("Software async crypto daemon");
1130 MODULE_ALIAS_CRYPTO("cryptd");
1131