xref: /openbmc/linux/crypto/cryptd.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2  * Software async crypto daemon.
3  *
4  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * Added AEAD support to cryptd.
7  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
8  *             Adrian Hoban <adrian.hoban@intel.com>
9  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
10  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
11  *    Copyright (c) 2010, Intel Corporation.
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 2 of the License, or (at your option)
16  * any later version.
17  *
18  */
19 
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/cryptd.h>
24 #include <crypto/crypto_wq.h>
25 #include <linux/atomic.h>
26 #include <linux/err.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/scatterlist.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 
35 static unsigned int cryptd_max_cpu_qlen = 1000;
36 module_param(cryptd_max_cpu_qlen, uint, 0);
37 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
38 
39 struct cryptd_cpu_queue {
40 	struct crypto_queue queue;
41 	struct work_struct work;
42 };
43 
44 struct cryptd_queue {
45 	struct cryptd_cpu_queue __percpu *cpu_queue;
46 };
47 
48 struct cryptd_instance_ctx {
49 	struct crypto_spawn spawn;
50 	struct cryptd_queue *queue;
51 };
52 
53 struct skcipherd_instance_ctx {
54 	struct crypto_skcipher_spawn spawn;
55 	struct cryptd_queue *queue;
56 };
57 
58 struct hashd_instance_ctx {
59 	struct crypto_shash_spawn spawn;
60 	struct cryptd_queue *queue;
61 };
62 
63 struct aead_instance_ctx {
64 	struct crypto_aead_spawn aead_spawn;
65 	struct cryptd_queue *queue;
66 };
67 
68 struct cryptd_blkcipher_ctx {
69 	atomic_t refcnt;
70 	struct crypto_blkcipher *child;
71 };
72 
73 struct cryptd_blkcipher_request_ctx {
74 	crypto_completion_t complete;
75 };
76 
77 struct cryptd_skcipher_ctx {
78 	atomic_t refcnt;
79 	struct crypto_skcipher *child;
80 };
81 
82 struct cryptd_skcipher_request_ctx {
83 	crypto_completion_t complete;
84 };
85 
86 struct cryptd_hash_ctx {
87 	atomic_t refcnt;
88 	struct crypto_shash *child;
89 };
90 
91 struct cryptd_hash_request_ctx {
92 	crypto_completion_t complete;
93 	struct shash_desc desc;
94 };
95 
96 struct cryptd_aead_ctx {
97 	atomic_t refcnt;
98 	struct crypto_aead *child;
99 };
100 
101 struct cryptd_aead_request_ctx {
102 	crypto_completion_t complete;
103 };
104 
105 static void cryptd_queue_worker(struct work_struct *work);
106 
107 static int cryptd_init_queue(struct cryptd_queue *queue,
108 			     unsigned int max_cpu_qlen)
109 {
110 	int cpu;
111 	struct cryptd_cpu_queue *cpu_queue;
112 
113 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
114 	if (!queue->cpu_queue)
115 		return -ENOMEM;
116 	for_each_possible_cpu(cpu) {
117 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
118 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
119 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
120 	}
121 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
122 	return 0;
123 }
124 
125 static void cryptd_fini_queue(struct cryptd_queue *queue)
126 {
127 	int cpu;
128 	struct cryptd_cpu_queue *cpu_queue;
129 
130 	for_each_possible_cpu(cpu) {
131 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
132 		BUG_ON(cpu_queue->queue.qlen);
133 	}
134 	free_percpu(queue->cpu_queue);
135 }
136 
137 static int cryptd_enqueue_request(struct cryptd_queue *queue,
138 				  struct crypto_async_request *request)
139 {
140 	int cpu, err;
141 	struct cryptd_cpu_queue *cpu_queue;
142 	atomic_t *refcnt;
143 
144 	cpu = get_cpu();
145 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
146 	err = crypto_enqueue_request(&cpu_queue->queue, request);
147 
148 	refcnt = crypto_tfm_ctx(request->tfm);
149 
150 	if (err == -ENOSPC)
151 		goto out_put_cpu;
152 
153 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
154 
155 	if (!atomic_read(refcnt))
156 		goto out_put_cpu;
157 
158 	atomic_inc(refcnt);
159 
160 out_put_cpu:
161 	put_cpu();
162 
163 	return err;
164 }
165 
166 /* Called in workqueue context, do one real cryption work (via
167  * req->complete) and reschedule itself if there are more work to
168  * do. */
169 static void cryptd_queue_worker(struct work_struct *work)
170 {
171 	struct cryptd_cpu_queue *cpu_queue;
172 	struct crypto_async_request *req, *backlog;
173 
174 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
175 	/*
176 	 * Only handle one request at a time to avoid hogging crypto workqueue.
177 	 * preempt_disable/enable is used to prevent being preempted by
178 	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
179 	 * cryptd_enqueue_request() being accessed from software interrupts.
180 	 */
181 	local_bh_disable();
182 	preempt_disable();
183 	backlog = crypto_get_backlog(&cpu_queue->queue);
184 	req = crypto_dequeue_request(&cpu_queue->queue);
185 	preempt_enable();
186 	local_bh_enable();
187 
188 	if (!req)
189 		return;
190 
191 	if (backlog)
192 		backlog->complete(backlog, -EINPROGRESS);
193 	req->complete(req, 0);
194 
195 	if (cpu_queue->queue.qlen)
196 		queue_work(kcrypto_wq, &cpu_queue->work);
197 }
198 
199 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
200 {
201 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
202 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
203 	return ictx->queue;
204 }
205 
206 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
207 					 u32 *mask)
208 {
209 	struct crypto_attr_type *algt;
210 
211 	algt = crypto_get_attr_type(tb);
212 	if (IS_ERR(algt))
213 		return;
214 
215 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
216 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
217 }
218 
219 static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
220 				   const u8 *key, unsigned int keylen)
221 {
222 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
223 	struct crypto_blkcipher *child = ctx->child;
224 	int err;
225 
226 	crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
227 	crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
228 					  CRYPTO_TFM_REQ_MASK);
229 	err = crypto_blkcipher_setkey(child, key, keylen);
230 	crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
231 					    CRYPTO_TFM_RES_MASK);
232 	return err;
233 }
234 
235 static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
236 				   struct crypto_blkcipher *child,
237 				   int err,
238 				   int (*crypt)(struct blkcipher_desc *desc,
239 						struct scatterlist *dst,
240 						struct scatterlist *src,
241 						unsigned int len))
242 {
243 	struct cryptd_blkcipher_request_ctx *rctx;
244 	struct cryptd_blkcipher_ctx *ctx;
245 	struct crypto_ablkcipher *tfm;
246 	struct blkcipher_desc desc;
247 	int refcnt;
248 
249 	rctx = ablkcipher_request_ctx(req);
250 
251 	if (unlikely(err == -EINPROGRESS))
252 		goto out;
253 
254 	desc.tfm = child;
255 	desc.info = req->info;
256 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
257 
258 	err = crypt(&desc, req->dst, req->src, req->nbytes);
259 
260 	req->base.complete = rctx->complete;
261 
262 out:
263 	tfm = crypto_ablkcipher_reqtfm(req);
264 	ctx = crypto_ablkcipher_ctx(tfm);
265 	refcnt = atomic_read(&ctx->refcnt);
266 
267 	local_bh_disable();
268 	rctx->complete(&req->base, err);
269 	local_bh_enable();
270 
271 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
272 		crypto_free_ablkcipher(tfm);
273 }
274 
275 static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
276 {
277 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
278 	struct crypto_blkcipher *child = ctx->child;
279 
280 	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
281 			       crypto_blkcipher_crt(child)->encrypt);
282 }
283 
284 static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
285 {
286 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
287 	struct crypto_blkcipher *child = ctx->child;
288 
289 	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
290 			       crypto_blkcipher_crt(child)->decrypt);
291 }
292 
293 static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
294 				    crypto_completion_t compl)
295 {
296 	struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
297 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
298 	struct cryptd_queue *queue;
299 
300 	queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
301 	rctx->complete = req->base.complete;
302 	req->base.complete = compl;
303 
304 	return cryptd_enqueue_request(queue, &req->base);
305 }
306 
307 static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
308 {
309 	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
310 }
311 
312 static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
313 {
314 	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
315 }
316 
317 static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
318 {
319 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
320 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
321 	struct crypto_spawn *spawn = &ictx->spawn;
322 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
323 	struct crypto_blkcipher *cipher;
324 
325 	cipher = crypto_spawn_blkcipher(spawn);
326 	if (IS_ERR(cipher))
327 		return PTR_ERR(cipher);
328 
329 	ctx->child = cipher;
330 	tfm->crt_ablkcipher.reqsize =
331 		sizeof(struct cryptd_blkcipher_request_ctx);
332 	return 0;
333 }
334 
335 static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
336 {
337 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
338 
339 	crypto_free_blkcipher(ctx->child);
340 }
341 
342 static int cryptd_init_instance(struct crypto_instance *inst,
343 				struct crypto_alg *alg)
344 {
345 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
346 		     "cryptd(%s)",
347 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
348 		return -ENAMETOOLONG;
349 
350 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
351 
352 	inst->alg.cra_priority = alg->cra_priority + 50;
353 	inst->alg.cra_blocksize = alg->cra_blocksize;
354 	inst->alg.cra_alignmask = alg->cra_alignmask;
355 
356 	return 0;
357 }
358 
359 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
360 				   unsigned int tail)
361 {
362 	char *p;
363 	struct crypto_instance *inst;
364 	int err;
365 
366 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
367 	if (!p)
368 		return ERR_PTR(-ENOMEM);
369 
370 	inst = (void *)(p + head);
371 
372 	err = cryptd_init_instance(inst, alg);
373 	if (err)
374 		goto out_free_inst;
375 
376 out:
377 	return p;
378 
379 out_free_inst:
380 	kfree(p);
381 	p = ERR_PTR(err);
382 	goto out;
383 }
384 
385 static int cryptd_create_blkcipher(struct crypto_template *tmpl,
386 				   struct rtattr **tb,
387 				   struct cryptd_queue *queue)
388 {
389 	struct cryptd_instance_ctx *ctx;
390 	struct crypto_instance *inst;
391 	struct crypto_alg *alg;
392 	u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
393 	u32 mask = CRYPTO_ALG_TYPE_MASK;
394 	int err;
395 
396 	cryptd_check_internal(tb, &type, &mask);
397 
398 	alg = crypto_get_attr_alg(tb, type, mask);
399 	if (IS_ERR(alg))
400 		return PTR_ERR(alg);
401 
402 	inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
403 	err = PTR_ERR(inst);
404 	if (IS_ERR(inst))
405 		goto out_put_alg;
406 
407 	ctx = crypto_instance_ctx(inst);
408 	ctx->queue = queue;
409 
410 	err = crypto_init_spawn(&ctx->spawn, alg, inst,
411 				CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
412 	if (err)
413 		goto out_free_inst;
414 
415 	type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
416 	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
417 		type |= CRYPTO_ALG_INTERNAL;
418 	inst->alg.cra_flags = type;
419 	inst->alg.cra_type = &crypto_ablkcipher_type;
420 
421 	inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
422 	inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
423 	inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
424 
425 	inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;
426 
427 	inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);
428 
429 	inst->alg.cra_init = cryptd_blkcipher_init_tfm;
430 	inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;
431 
432 	inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
433 	inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
434 	inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;
435 
436 	err = crypto_register_instance(tmpl, inst);
437 	if (err) {
438 		crypto_drop_spawn(&ctx->spawn);
439 out_free_inst:
440 		kfree(inst);
441 	}
442 
443 out_put_alg:
444 	crypto_mod_put(alg);
445 	return err;
446 }
447 
448 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
449 				  const u8 *key, unsigned int keylen)
450 {
451 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
452 	struct crypto_skcipher *child = ctx->child;
453 	int err;
454 
455 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
456 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
457 					 CRYPTO_TFM_REQ_MASK);
458 	err = crypto_skcipher_setkey(child, key, keylen);
459 	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
460 					  CRYPTO_TFM_RES_MASK);
461 	return err;
462 }
463 
464 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
465 {
466 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
467 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
468 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
469 	int refcnt = atomic_read(&ctx->refcnt);
470 
471 	local_bh_disable();
472 	rctx->complete(&req->base, err);
473 	local_bh_enable();
474 
475 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
476 		crypto_free_skcipher(tfm);
477 }
478 
479 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
480 				    int err)
481 {
482 	struct skcipher_request *req = skcipher_request_cast(base);
483 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
484 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
485 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
486 	struct crypto_skcipher *child = ctx->child;
487 	SKCIPHER_REQUEST_ON_STACK(subreq, child);
488 
489 	if (unlikely(err == -EINPROGRESS))
490 		goto out;
491 
492 	skcipher_request_set_tfm(subreq, child);
493 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
494 				      NULL, NULL);
495 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
496 				   req->iv);
497 
498 	err = crypto_skcipher_encrypt(subreq);
499 	skcipher_request_zero(subreq);
500 
501 	req->base.complete = rctx->complete;
502 
503 out:
504 	cryptd_skcipher_complete(req, err);
505 }
506 
507 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
508 				    int err)
509 {
510 	struct skcipher_request *req = skcipher_request_cast(base);
511 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
512 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
513 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
514 	struct crypto_skcipher *child = ctx->child;
515 	SKCIPHER_REQUEST_ON_STACK(subreq, child);
516 
517 	if (unlikely(err == -EINPROGRESS))
518 		goto out;
519 
520 	skcipher_request_set_tfm(subreq, child);
521 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
522 				      NULL, NULL);
523 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
524 				   req->iv);
525 
526 	err = crypto_skcipher_decrypt(subreq);
527 	skcipher_request_zero(subreq);
528 
529 	req->base.complete = rctx->complete;
530 
531 out:
532 	cryptd_skcipher_complete(req, err);
533 }
534 
535 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
536 				   crypto_completion_t compl)
537 {
538 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
539 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
540 	struct cryptd_queue *queue;
541 
542 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
543 	rctx->complete = req->base.complete;
544 	req->base.complete = compl;
545 
546 	return cryptd_enqueue_request(queue, &req->base);
547 }
548 
549 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
550 {
551 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
552 }
553 
554 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
555 {
556 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
557 }
558 
559 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
560 {
561 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
562 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
563 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
564 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
565 	struct crypto_skcipher *cipher;
566 
567 	cipher = crypto_spawn_skcipher(spawn);
568 	if (IS_ERR(cipher))
569 		return PTR_ERR(cipher);
570 
571 	ctx->child = cipher;
572 	crypto_skcipher_set_reqsize(
573 		tfm, sizeof(struct cryptd_skcipher_request_ctx));
574 	return 0;
575 }
576 
577 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
578 {
579 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
580 
581 	crypto_free_skcipher(ctx->child);
582 }
583 
584 static void cryptd_skcipher_free(struct skcipher_instance *inst)
585 {
586 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
587 
588 	crypto_drop_skcipher(&ctx->spawn);
589 }
590 
591 static int cryptd_create_skcipher(struct crypto_template *tmpl,
592 				  struct rtattr **tb,
593 				  struct cryptd_queue *queue)
594 {
595 	struct skcipherd_instance_ctx *ctx;
596 	struct skcipher_instance *inst;
597 	struct skcipher_alg *alg;
598 	const char *name;
599 	u32 type;
600 	u32 mask;
601 	int err;
602 
603 	type = 0;
604 	mask = CRYPTO_ALG_ASYNC;
605 
606 	cryptd_check_internal(tb, &type, &mask);
607 
608 	name = crypto_attr_alg_name(tb[1]);
609 	if (IS_ERR(name))
610 		return PTR_ERR(name);
611 
612 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
613 	if (!inst)
614 		return -ENOMEM;
615 
616 	ctx = skcipher_instance_ctx(inst);
617 	ctx->queue = queue;
618 
619 	crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
620 	err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
621 	if (err)
622 		goto out_free_inst;
623 
624 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
625 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
626 	if (err)
627 		goto out_drop_skcipher;
628 
629 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
630 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
631 
632 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
633 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
634 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
635 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
636 
637 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
638 
639 	inst->alg.init = cryptd_skcipher_init_tfm;
640 	inst->alg.exit = cryptd_skcipher_exit_tfm;
641 
642 	inst->alg.setkey = cryptd_skcipher_setkey;
643 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
644 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
645 
646 	inst->free = cryptd_skcipher_free;
647 
648 	err = skcipher_register_instance(tmpl, inst);
649 	if (err) {
650 out_drop_skcipher:
651 		crypto_drop_skcipher(&ctx->spawn);
652 out_free_inst:
653 		kfree(inst);
654 	}
655 	return err;
656 }
657 
658 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
659 {
660 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
661 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
662 	struct crypto_shash_spawn *spawn = &ictx->spawn;
663 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
664 	struct crypto_shash *hash;
665 
666 	hash = crypto_spawn_shash(spawn);
667 	if (IS_ERR(hash))
668 		return PTR_ERR(hash);
669 
670 	ctx->child = hash;
671 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
672 				 sizeof(struct cryptd_hash_request_ctx) +
673 				 crypto_shash_descsize(hash));
674 	return 0;
675 }
676 
677 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
678 {
679 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
680 
681 	crypto_free_shash(ctx->child);
682 }
683 
684 static int cryptd_hash_setkey(struct crypto_ahash *parent,
685 				   const u8 *key, unsigned int keylen)
686 {
687 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
688 	struct crypto_shash *child = ctx->child;
689 	int err;
690 
691 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
692 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
693 				      CRYPTO_TFM_REQ_MASK);
694 	err = crypto_shash_setkey(child, key, keylen);
695 	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
696 				       CRYPTO_TFM_RES_MASK);
697 	return err;
698 }
699 
700 static int cryptd_hash_enqueue(struct ahash_request *req,
701 				crypto_completion_t compl)
702 {
703 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
704 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
705 	struct cryptd_queue *queue =
706 		cryptd_get_queue(crypto_ahash_tfm(tfm));
707 
708 	rctx->complete = req->base.complete;
709 	req->base.complete = compl;
710 
711 	return cryptd_enqueue_request(queue, &req->base);
712 }
713 
714 static void cryptd_hash_complete(struct ahash_request *req, int err)
715 {
716 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
717 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
718 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
719 	int refcnt = atomic_read(&ctx->refcnt);
720 
721 	local_bh_disable();
722 	rctx->complete(&req->base, err);
723 	local_bh_enable();
724 
725 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
726 		crypto_free_ahash(tfm);
727 }
728 
729 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
730 {
731 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
732 	struct crypto_shash *child = ctx->child;
733 	struct ahash_request *req = ahash_request_cast(req_async);
734 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
735 	struct shash_desc *desc = &rctx->desc;
736 
737 	if (unlikely(err == -EINPROGRESS))
738 		goto out;
739 
740 	desc->tfm = child;
741 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
742 
743 	err = crypto_shash_init(desc);
744 
745 	req->base.complete = rctx->complete;
746 
747 out:
748 	cryptd_hash_complete(req, err);
749 }
750 
751 static int cryptd_hash_init_enqueue(struct ahash_request *req)
752 {
753 	return cryptd_hash_enqueue(req, cryptd_hash_init);
754 }
755 
756 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
757 {
758 	struct ahash_request *req = ahash_request_cast(req_async);
759 	struct cryptd_hash_request_ctx *rctx;
760 
761 	rctx = ahash_request_ctx(req);
762 
763 	if (unlikely(err == -EINPROGRESS))
764 		goto out;
765 
766 	err = shash_ahash_update(req, &rctx->desc);
767 
768 	req->base.complete = rctx->complete;
769 
770 out:
771 	cryptd_hash_complete(req, err);
772 }
773 
774 static int cryptd_hash_update_enqueue(struct ahash_request *req)
775 {
776 	return cryptd_hash_enqueue(req, cryptd_hash_update);
777 }
778 
779 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
780 {
781 	struct ahash_request *req = ahash_request_cast(req_async);
782 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
783 
784 	if (unlikely(err == -EINPROGRESS))
785 		goto out;
786 
787 	err = crypto_shash_final(&rctx->desc, req->result);
788 
789 	req->base.complete = rctx->complete;
790 
791 out:
792 	cryptd_hash_complete(req, err);
793 }
794 
795 static int cryptd_hash_final_enqueue(struct ahash_request *req)
796 {
797 	return cryptd_hash_enqueue(req, cryptd_hash_final);
798 }
799 
800 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
801 {
802 	struct ahash_request *req = ahash_request_cast(req_async);
803 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
804 
805 	if (unlikely(err == -EINPROGRESS))
806 		goto out;
807 
808 	err = shash_ahash_finup(req, &rctx->desc);
809 
810 	req->base.complete = rctx->complete;
811 
812 out:
813 	cryptd_hash_complete(req, err);
814 }
815 
816 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
817 {
818 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
819 }
820 
821 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
822 {
823 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
824 	struct crypto_shash *child = ctx->child;
825 	struct ahash_request *req = ahash_request_cast(req_async);
826 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
827 	struct shash_desc *desc = &rctx->desc;
828 
829 	if (unlikely(err == -EINPROGRESS))
830 		goto out;
831 
832 	desc->tfm = child;
833 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
834 
835 	err = shash_ahash_digest(req, desc);
836 
837 	req->base.complete = rctx->complete;
838 
839 out:
840 	cryptd_hash_complete(req, err);
841 }
842 
843 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
844 {
845 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
846 }
847 
848 static int cryptd_hash_export(struct ahash_request *req, void *out)
849 {
850 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
851 
852 	return crypto_shash_export(&rctx->desc, out);
853 }
854 
855 static int cryptd_hash_import(struct ahash_request *req, const void *in)
856 {
857 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
858 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
859 	struct shash_desc *desc = cryptd_shash_desc(req);
860 
861 	desc->tfm = ctx->child;
862 	desc->flags = req->base.flags;
863 
864 	return crypto_shash_import(desc, in);
865 }
866 
867 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
868 			      struct cryptd_queue *queue)
869 {
870 	struct hashd_instance_ctx *ctx;
871 	struct ahash_instance *inst;
872 	struct shash_alg *salg;
873 	struct crypto_alg *alg;
874 	u32 type = 0;
875 	u32 mask = 0;
876 	int err;
877 
878 	cryptd_check_internal(tb, &type, &mask);
879 
880 	salg = shash_attr_alg(tb[1], type, mask);
881 	if (IS_ERR(salg))
882 		return PTR_ERR(salg);
883 
884 	alg = &salg->base;
885 	inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
886 				     sizeof(*ctx));
887 	err = PTR_ERR(inst);
888 	if (IS_ERR(inst))
889 		goto out_put_alg;
890 
891 	ctx = ahash_instance_ctx(inst);
892 	ctx->queue = queue;
893 
894 	err = crypto_init_shash_spawn(&ctx->spawn, salg,
895 				      ahash_crypto_instance(inst));
896 	if (err)
897 		goto out_free_inst;
898 
899 	inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
900 		(alg->cra_flags & (CRYPTO_ALG_INTERNAL |
901 				   CRYPTO_ALG_OPTIONAL_KEY));
902 
903 	inst->alg.halg.digestsize = salg->digestsize;
904 	inst->alg.halg.statesize = salg->statesize;
905 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
906 
907 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
908 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
909 
910 	inst->alg.init   = cryptd_hash_init_enqueue;
911 	inst->alg.update = cryptd_hash_update_enqueue;
912 	inst->alg.final  = cryptd_hash_final_enqueue;
913 	inst->alg.finup  = cryptd_hash_finup_enqueue;
914 	inst->alg.export = cryptd_hash_export;
915 	inst->alg.import = cryptd_hash_import;
916 	if (crypto_shash_alg_has_setkey(salg))
917 		inst->alg.setkey = cryptd_hash_setkey;
918 	inst->alg.digest = cryptd_hash_digest_enqueue;
919 
920 	err = ahash_register_instance(tmpl, inst);
921 	if (err) {
922 		crypto_drop_shash(&ctx->spawn);
923 out_free_inst:
924 		kfree(inst);
925 	}
926 
927 out_put_alg:
928 	crypto_mod_put(alg);
929 	return err;
930 }
931 
932 static int cryptd_aead_setkey(struct crypto_aead *parent,
933 			      const u8 *key, unsigned int keylen)
934 {
935 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
936 	struct crypto_aead *child = ctx->child;
937 
938 	return crypto_aead_setkey(child, key, keylen);
939 }
940 
941 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
942 				   unsigned int authsize)
943 {
944 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
945 	struct crypto_aead *child = ctx->child;
946 
947 	return crypto_aead_setauthsize(child, authsize);
948 }
949 
950 static void cryptd_aead_crypt(struct aead_request *req,
951 			struct crypto_aead *child,
952 			int err,
953 			int (*crypt)(struct aead_request *req))
954 {
955 	struct cryptd_aead_request_ctx *rctx;
956 	struct cryptd_aead_ctx *ctx;
957 	crypto_completion_t compl;
958 	struct crypto_aead *tfm;
959 	int refcnt;
960 
961 	rctx = aead_request_ctx(req);
962 	compl = rctx->complete;
963 
964 	tfm = crypto_aead_reqtfm(req);
965 
966 	if (unlikely(err == -EINPROGRESS))
967 		goto out;
968 	aead_request_set_tfm(req, child);
969 	err = crypt( req );
970 
971 out:
972 	ctx = crypto_aead_ctx(tfm);
973 	refcnt = atomic_read(&ctx->refcnt);
974 
975 	local_bh_disable();
976 	compl(&req->base, err);
977 	local_bh_enable();
978 
979 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
980 		crypto_free_aead(tfm);
981 }
982 
983 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
984 {
985 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
986 	struct crypto_aead *child = ctx->child;
987 	struct aead_request *req;
988 
989 	req = container_of(areq, struct aead_request, base);
990 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
991 }
992 
993 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
994 {
995 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
996 	struct crypto_aead *child = ctx->child;
997 	struct aead_request *req;
998 
999 	req = container_of(areq, struct aead_request, base);
1000 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
1001 }
1002 
1003 static int cryptd_aead_enqueue(struct aead_request *req,
1004 				    crypto_completion_t compl)
1005 {
1006 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
1007 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1008 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
1009 
1010 	rctx->complete = req->base.complete;
1011 	req->base.complete = compl;
1012 	return cryptd_enqueue_request(queue, &req->base);
1013 }
1014 
1015 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
1016 {
1017 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
1018 }
1019 
1020 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
1021 {
1022 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
1023 }
1024 
1025 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
1026 {
1027 	struct aead_instance *inst = aead_alg_instance(tfm);
1028 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
1029 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
1030 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1031 	struct crypto_aead *cipher;
1032 
1033 	cipher = crypto_spawn_aead(spawn);
1034 	if (IS_ERR(cipher))
1035 		return PTR_ERR(cipher);
1036 
1037 	ctx->child = cipher;
1038 	crypto_aead_set_reqsize(
1039 		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
1040 			 crypto_aead_reqsize(cipher)));
1041 	return 0;
1042 }
1043 
1044 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
1045 {
1046 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1047 	crypto_free_aead(ctx->child);
1048 }
1049 
1050 static int cryptd_create_aead(struct crypto_template *tmpl,
1051 		              struct rtattr **tb,
1052 			      struct cryptd_queue *queue)
1053 {
1054 	struct aead_instance_ctx *ctx;
1055 	struct aead_instance *inst;
1056 	struct aead_alg *alg;
1057 	const char *name;
1058 	u32 type = 0;
1059 	u32 mask = CRYPTO_ALG_ASYNC;
1060 	int err;
1061 
1062 	cryptd_check_internal(tb, &type, &mask);
1063 
1064 	name = crypto_attr_alg_name(tb[1]);
1065 	if (IS_ERR(name))
1066 		return PTR_ERR(name);
1067 
1068 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
1069 	if (!inst)
1070 		return -ENOMEM;
1071 
1072 	ctx = aead_instance_ctx(inst);
1073 	ctx->queue = queue;
1074 
1075 	crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
1076 	err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
1077 	if (err)
1078 		goto out_free_inst;
1079 
1080 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
1081 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
1082 	if (err)
1083 		goto out_drop_aead;
1084 
1085 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
1086 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
1087 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
1088 
1089 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
1090 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
1091 
1092 	inst->alg.init = cryptd_aead_init_tfm;
1093 	inst->alg.exit = cryptd_aead_exit_tfm;
1094 	inst->alg.setkey = cryptd_aead_setkey;
1095 	inst->alg.setauthsize = cryptd_aead_setauthsize;
1096 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
1097 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
1098 
1099 	err = aead_register_instance(tmpl, inst);
1100 	if (err) {
1101 out_drop_aead:
1102 		crypto_drop_aead(&ctx->aead_spawn);
1103 out_free_inst:
1104 		kfree(inst);
1105 	}
1106 	return err;
1107 }
1108 
1109 static struct cryptd_queue queue;
1110 
1111 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
1112 {
1113 	struct crypto_attr_type *algt;
1114 
1115 	algt = crypto_get_attr_type(tb);
1116 	if (IS_ERR(algt))
1117 		return PTR_ERR(algt);
1118 
1119 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
1120 	case CRYPTO_ALG_TYPE_BLKCIPHER:
1121 		if ((algt->type & CRYPTO_ALG_TYPE_MASK) ==
1122 		    CRYPTO_ALG_TYPE_BLKCIPHER)
1123 			return cryptd_create_blkcipher(tmpl, tb, &queue);
1124 
1125 		return cryptd_create_skcipher(tmpl, tb, &queue);
1126 	case CRYPTO_ALG_TYPE_DIGEST:
1127 		return cryptd_create_hash(tmpl, tb, &queue);
1128 	case CRYPTO_ALG_TYPE_AEAD:
1129 		return cryptd_create_aead(tmpl, tb, &queue);
1130 	}
1131 
1132 	return -EINVAL;
1133 }
1134 
1135 static void cryptd_free(struct crypto_instance *inst)
1136 {
1137 	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
1138 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
1139 	struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
1140 
1141 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
1142 	case CRYPTO_ALG_TYPE_AHASH:
1143 		crypto_drop_shash(&hctx->spawn);
1144 		kfree(ahash_instance(inst));
1145 		return;
1146 	case CRYPTO_ALG_TYPE_AEAD:
1147 		crypto_drop_aead(&aead_ctx->aead_spawn);
1148 		kfree(aead_instance(inst));
1149 		return;
1150 	default:
1151 		crypto_drop_spawn(&ctx->spawn);
1152 		kfree(inst);
1153 	}
1154 }
1155 
1156 static struct crypto_template cryptd_tmpl = {
1157 	.name = "cryptd",
1158 	.create = cryptd_create,
1159 	.free = cryptd_free,
1160 	.module = THIS_MODULE,
1161 };
1162 
1163 struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
1164 						  u32 type, u32 mask)
1165 {
1166 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1167 	struct cryptd_blkcipher_ctx *ctx;
1168 	struct crypto_tfm *tfm;
1169 
1170 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1171 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1172 		return ERR_PTR(-EINVAL);
1173 	type = crypto_skcipher_type(type);
1174 	mask &= ~CRYPTO_ALG_TYPE_MASK;
1175 	mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
1176 	tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
1177 	if (IS_ERR(tfm))
1178 		return ERR_CAST(tfm);
1179 	if (tfm->__crt_alg->cra_module != THIS_MODULE) {
1180 		crypto_free_tfm(tfm);
1181 		return ERR_PTR(-EINVAL);
1182 	}
1183 
1184 	ctx = crypto_tfm_ctx(tfm);
1185 	atomic_set(&ctx->refcnt, 1);
1186 
1187 	return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
1188 }
1189 EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);
1190 
1191 struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
1192 {
1193 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1194 	return ctx->child;
1195 }
1196 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);
1197 
1198 bool cryptd_ablkcipher_queued(struct cryptd_ablkcipher *tfm)
1199 {
1200 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1201 
1202 	return atomic_read(&ctx->refcnt) - 1;
1203 }
1204 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_queued);
1205 
1206 void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
1207 {
1208 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1209 
1210 	if (atomic_dec_and_test(&ctx->refcnt))
1211 		crypto_free_ablkcipher(&tfm->base);
1212 }
1213 EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);
1214 
1215 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
1216 					      u32 type, u32 mask)
1217 {
1218 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1219 	struct cryptd_skcipher_ctx *ctx;
1220 	struct crypto_skcipher *tfm;
1221 
1222 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1223 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1224 		return ERR_PTR(-EINVAL);
1225 
1226 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
1227 	if (IS_ERR(tfm))
1228 		return ERR_CAST(tfm);
1229 
1230 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1231 		crypto_free_skcipher(tfm);
1232 		return ERR_PTR(-EINVAL);
1233 	}
1234 
1235 	ctx = crypto_skcipher_ctx(tfm);
1236 	atomic_set(&ctx->refcnt, 1);
1237 
1238 	return container_of(tfm, struct cryptd_skcipher, base);
1239 }
1240 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
1241 
1242 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
1243 {
1244 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1245 
1246 	return ctx->child;
1247 }
1248 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
1249 
1250 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
1251 {
1252 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1253 
1254 	return atomic_read(&ctx->refcnt) - 1;
1255 }
1256 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
1257 
1258 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
1259 {
1260 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1261 
1262 	if (atomic_dec_and_test(&ctx->refcnt))
1263 		crypto_free_skcipher(&tfm->base);
1264 }
1265 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1266 
1267 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1268 					u32 type, u32 mask)
1269 {
1270 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1271 	struct cryptd_hash_ctx *ctx;
1272 	struct crypto_ahash *tfm;
1273 
1274 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1275 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1276 		return ERR_PTR(-EINVAL);
1277 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1278 	if (IS_ERR(tfm))
1279 		return ERR_CAST(tfm);
1280 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1281 		crypto_free_ahash(tfm);
1282 		return ERR_PTR(-EINVAL);
1283 	}
1284 
1285 	ctx = crypto_ahash_ctx(tfm);
1286 	atomic_set(&ctx->refcnt, 1);
1287 
1288 	return __cryptd_ahash_cast(tfm);
1289 }
1290 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1291 
1292 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1293 {
1294 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1295 
1296 	return ctx->child;
1297 }
1298 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1299 
1300 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1301 {
1302 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1303 	return &rctx->desc;
1304 }
1305 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1306 
1307 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1308 {
1309 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1310 
1311 	return atomic_read(&ctx->refcnt) - 1;
1312 }
1313 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1314 
1315 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1316 {
1317 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1318 
1319 	if (atomic_dec_and_test(&ctx->refcnt))
1320 		crypto_free_ahash(&tfm->base);
1321 }
1322 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1323 
1324 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1325 						  u32 type, u32 mask)
1326 {
1327 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1328 	struct cryptd_aead_ctx *ctx;
1329 	struct crypto_aead *tfm;
1330 
1331 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1332 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1333 		return ERR_PTR(-EINVAL);
1334 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1335 	if (IS_ERR(tfm))
1336 		return ERR_CAST(tfm);
1337 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1338 		crypto_free_aead(tfm);
1339 		return ERR_PTR(-EINVAL);
1340 	}
1341 
1342 	ctx = crypto_aead_ctx(tfm);
1343 	atomic_set(&ctx->refcnt, 1);
1344 
1345 	return __cryptd_aead_cast(tfm);
1346 }
1347 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1348 
1349 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1350 {
1351 	struct cryptd_aead_ctx *ctx;
1352 	ctx = crypto_aead_ctx(&tfm->base);
1353 	return ctx->child;
1354 }
1355 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1356 
1357 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1358 {
1359 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1360 
1361 	return atomic_read(&ctx->refcnt) - 1;
1362 }
1363 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1364 
1365 void cryptd_free_aead(struct cryptd_aead *tfm)
1366 {
1367 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1368 
1369 	if (atomic_dec_and_test(&ctx->refcnt))
1370 		crypto_free_aead(&tfm->base);
1371 }
1372 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1373 
1374 static int __init cryptd_init(void)
1375 {
1376 	int err;
1377 
1378 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1379 	if (err)
1380 		return err;
1381 
1382 	err = crypto_register_template(&cryptd_tmpl);
1383 	if (err)
1384 		cryptd_fini_queue(&queue);
1385 
1386 	return err;
1387 }
1388 
1389 static void __exit cryptd_exit(void)
1390 {
1391 	cryptd_fini_queue(&queue);
1392 	crypto_unregister_template(&cryptd_tmpl);
1393 }
1394 
1395 subsys_initcall(cryptd_init);
1396 module_exit(cryptd_exit);
1397 
1398 MODULE_LICENSE("GPL");
1399 MODULE_DESCRIPTION("Software async crypto daemon");
1400 MODULE_ALIAS_CRYPTO("cryptd");
1401