1 /* 2 * Software async crypto daemon. 3 * 4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 5 * 6 * Added AEAD support to cryptd. 7 * Authors: Tadeusz Struk (tadeusz.struk@intel.com) 8 * Adrian Hoban <adrian.hoban@intel.com> 9 * Gabriele Paoloni <gabriele.paoloni@intel.com> 10 * Aidan O'Mahony (aidan.o.mahony@intel.com) 11 * Copyright (c) 2010, Intel Corporation. 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of the GNU General Public License as published by the Free 15 * Software Foundation; either version 2 of the License, or (at your option) 16 * any later version. 17 * 18 */ 19 20 #include <crypto/internal/hash.h> 21 #include <crypto/internal/aead.h> 22 #include <crypto/internal/skcipher.h> 23 #include <crypto/cryptd.h> 24 #include <crypto/crypto_wq.h> 25 #include <linux/atomic.h> 26 #include <linux/err.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/scatterlist.h> 32 #include <linux/sched.h> 33 #include <linux/slab.h> 34 35 #define CRYPTD_MAX_CPU_QLEN 1000 36 37 struct cryptd_cpu_queue { 38 struct crypto_queue queue; 39 struct work_struct work; 40 }; 41 42 struct cryptd_queue { 43 struct cryptd_cpu_queue __percpu *cpu_queue; 44 }; 45 46 struct cryptd_instance_ctx { 47 struct crypto_spawn spawn; 48 struct cryptd_queue *queue; 49 }; 50 51 struct skcipherd_instance_ctx { 52 struct crypto_skcipher_spawn spawn; 53 struct cryptd_queue *queue; 54 }; 55 56 struct hashd_instance_ctx { 57 struct crypto_shash_spawn spawn; 58 struct cryptd_queue *queue; 59 }; 60 61 struct aead_instance_ctx { 62 struct crypto_aead_spawn aead_spawn; 63 struct cryptd_queue *queue; 64 }; 65 66 struct cryptd_blkcipher_ctx { 67 atomic_t refcnt; 68 struct crypto_blkcipher *child; 69 }; 70 71 struct cryptd_blkcipher_request_ctx { 72 crypto_completion_t complete; 73 }; 74 75 struct cryptd_skcipher_ctx { 76 atomic_t refcnt; 77 struct crypto_skcipher *child; 78 }; 79 80 struct cryptd_skcipher_request_ctx { 81 crypto_completion_t complete; 82 }; 83 84 struct cryptd_hash_ctx { 85 atomic_t refcnt; 86 struct crypto_shash *child; 87 }; 88 89 struct cryptd_hash_request_ctx { 90 crypto_completion_t complete; 91 struct shash_desc desc; 92 }; 93 94 struct cryptd_aead_ctx { 95 atomic_t refcnt; 96 struct crypto_aead *child; 97 }; 98 99 struct cryptd_aead_request_ctx { 100 crypto_completion_t complete; 101 }; 102 103 static void cryptd_queue_worker(struct work_struct *work); 104 105 static int cryptd_init_queue(struct cryptd_queue *queue, 106 unsigned int max_cpu_qlen) 107 { 108 int cpu; 109 struct cryptd_cpu_queue *cpu_queue; 110 111 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue); 112 if (!queue->cpu_queue) 113 return -ENOMEM; 114 for_each_possible_cpu(cpu) { 115 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 116 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); 117 INIT_WORK(&cpu_queue->work, cryptd_queue_worker); 118 } 119 return 0; 120 } 121 122 static void cryptd_fini_queue(struct cryptd_queue *queue) 123 { 124 int cpu; 125 struct cryptd_cpu_queue *cpu_queue; 126 127 for_each_possible_cpu(cpu) { 128 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 129 BUG_ON(cpu_queue->queue.qlen); 130 } 131 free_percpu(queue->cpu_queue); 132 } 133 134 static int cryptd_enqueue_request(struct cryptd_queue *queue, 135 struct crypto_async_request *request) 136 { 137 int cpu, err; 138 struct cryptd_cpu_queue *cpu_queue; 139 atomic_t *refcnt; 140 bool may_backlog; 141 142 cpu = get_cpu(); 143 cpu_queue = this_cpu_ptr(queue->cpu_queue); 144 err = crypto_enqueue_request(&cpu_queue->queue, request); 145 146 refcnt = crypto_tfm_ctx(request->tfm); 147 may_backlog = request->flags & CRYPTO_TFM_REQ_MAY_BACKLOG; 148 149 if (err == -EBUSY && !may_backlog) 150 goto out_put_cpu; 151 152 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); 153 154 if (!atomic_read(refcnt)) 155 goto out_put_cpu; 156 157 atomic_inc(refcnt); 158 159 out_put_cpu: 160 put_cpu(); 161 162 return err; 163 } 164 165 /* Called in workqueue context, do one real cryption work (via 166 * req->complete) and reschedule itself if there are more work to 167 * do. */ 168 static void cryptd_queue_worker(struct work_struct *work) 169 { 170 struct cryptd_cpu_queue *cpu_queue; 171 struct crypto_async_request *req, *backlog; 172 173 cpu_queue = container_of(work, struct cryptd_cpu_queue, work); 174 /* 175 * Only handle one request at a time to avoid hogging crypto workqueue. 176 * preempt_disable/enable is used to prevent being preempted by 177 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent 178 * cryptd_enqueue_request() being accessed from software interrupts. 179 */ 180 local_bh_disable(); 181 preempt_disable(); 182 backlog = crypto_get_backlog(&cpu_queue->queue); 183 req = crypto_dequeue_request(&cpu_queue->queue); 184 preempt_enable(); 185 local_bh_enable(); 186 187 if (!req) 188 return; 189 190 if (backlog) 191 backlog->complete(backlog, -EINPROGRESS); 192 req->complete(req, 0); 193 194 if (cpu_queue->queue.qlen) 195 queue_work(kcrypto_wq, &cpu_queue->work); 196 } 197 198 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm) 199 { 200 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 201 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); 202 return ictx->queue; 203 } 204 205 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type, 206 u32 *mask) 207 { 208 struct crypto_attr_type *algt; 209 210 algt = crypto_get_attr_type(tb); 211 if (IS_ERR(algt)) 212 return; 213 214 *type |= algt->type & CRYPTO_ALG_INTERNAL; 215 *mask |= algt->mask & CRYPTO_ALG_INTERNAL; 216 } 217 218 static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent, 219 const u8 *key, unsigned int keylen) 220 { 221 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent); 222 struct crypto_blkcipher *child = ctx->child; 223 int err; 224 225 crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); 226 crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) & 227 CRYPTO_TFM_REQ_MASK); 228 err = crypto_blkcipher_setkey(child, key, keylen); 229 crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) & 230 CRYPTO_TFM_RES_MASK); 231 return err; 232 } 233 234 static void cryptd_blkcipher_crypt(struct ablkcipher_request *req, 235 struct crypto_blkcipher *child, 236 int err, 237 int (*crypt)(struct blkcipher_desc *desc, 238 struct scatterlist *dst, 239 struct scatterlist *src, 240 unsigned int len)) 241 { 242 struct cryptd_blkcipher_request_ctx *rctx; 243 struct cryptd_blkcipher_ctx *ctx; 244 struct crypto_ablkcipher *tfm; 245 struct blkcipher_desc desc; 246 int refcnt; 247 248 rctx = ablkcipher_request_ctx(req); 249 250 if (unlikely(err == -EINPROGRESS)) 251 goto out; 252 253 desc.tfm = child; 254 desc.info = req->info; 255 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; 256 257 err = crypt(&desc, req->dst, req->src, req->nbytes); 258 259 req->base.complete = rctx->complete; 260 261 out: 262 tfm = crypto_ablkcipher_reqtfm(req); 263 ctx = crypto_ablkcipher_ctx(tfm); 264 refcnt = atomic_read(&ctx->refcnt); 265 266 local_bh_disable(); 267 rctx->complete(&req->base, err); 268 local_bh_enable(); 269 270 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 271 crypto_free_ablkcipher(tfm); 272 } 273 274 static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err) 275 { 276 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm); 277 struct crypto_blkcipher *child = ctx->child; 278 279 cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err, 280 crypto_blkcipher_crt(child)->encrypt); 281 } 282 283 static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err) 284 { 285 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm); 286 struct crypto_blkcipher *child = ctx->child; 287 288 cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err, 289 crypto_blkcipher_crt(child)->decrypt); 290 } 291 292 static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req, 293 crypto_completion_t compl) 294 { 295 struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req); 296 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); 297 struct cryptd_queue *queue; 298 299 queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm)); 300 rctx->complete = req->base.complete; 301 req->base.complete = compl; 302 303 return cryptd_enqueue_request(queue, &req->base); 304 } 305 306 static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req) 307 { 308 return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt); 309 } 310 311 static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req) 312 { 313 return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt); 314 } 315 316 static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm) 317 { 318 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 319 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); 320 struct crypto_spawn *spawn = &ictx->spawn; 321 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm); 322 struct crypto_blkcipher *cipher; 323 324 cipher = crypto_spawn_blkcipher(spawn); 325 if (IS_ERR(cipher)) 326 return PTR_ERR(cipher); 327 328 ctx->child = cipher; 329 tfm->crt_ablkcipher.reqsize = 330 sizeof(struct cryptd_blkcipher_request_ctx); 331 return 0; 332 } 333 334 static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm) 335 { 336 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm); 337 338 crypto_free_blkcipher(ctx->child); 339 } 340 341 static int cryptd_init_instance(struct crypto_instance *inst, 342 struct crypto_alg *alg) 343 { 344 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, 345 "cryptd(%s)", 346 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 347 return -ENAMETOOLONG; 348 349 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); 350 351 inst->alg.cra_priority = alg->cra_priority + 50; 352 inst->alg.cra_blocksize = alg->cra_blocksize; 353 inst->alg.cra_alignmask = alg->cra_alignmask; 354 355 return 0; 356 } 357 358 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 359 unsigned int tail) 360 { 361 char *p; 362 struct crypto_instance *inst; 363 int err; 364 365 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); 366 if (!p) 367 return ERR_PTR(-ENOMEM); 368 369 inst = (void *)(p + head); 370 371 err = cryptd_init_instance(inst, alg); 372 if (err) 373 goto out_free_inst; 374 375 out: 376 return p; 377 378 out_free_inst: 379 kfree(p); 380 p = ERR_PTR(err); 381 goto out; 382 } 383 384 static int cryptd_create_blkcipher(struct crypto_template *tmpl, 385 struct rtattr **tb, 386 struct cryptd_queue *queue) 387 { 388 struct cryptd_instance_ctx *ctx; 389 struct crypto_instance *inst; 390 struct crypto_alg *alg; 391 u32 type = CRYPTO_ALG_TYPE_BLKCIPHER; 392 u32 mask = CRYPTO_ALG_TYPE_MASK; 393 int err; 394 395 cryptd_check_internal(tb, &type, &mask); 396 397 alg = crypto_get_attr_alg(tb, type, mask); 398 if (IS_ERR(alg)) 399 return PTR_ERR(alg); 400 401 inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx)); 402 err = PTR_ERR(inst); 403 if (IS_ERR(inst)) 404 goto out_put_alg; 405 406 ctx = crypto_instance_ctx(inst); 407 ctx->queue = queue; 408 409 err = crypto_init_spawn(&ctx->spawn, alg, inst, 410 CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC); 411 if (err) 412 goto out_free_inst; 413 414 type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC; 415 if (alg->cra_flags & CRYPTO_ALG_INTERNAL) 416 type |= CRYPTO_ALG_INTERNAL; 417 inst->alg.cra_flags = type; 418 inst->alg.cra_type = &crypto_ablkcipher_type; 419 420 inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize; 421 inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize; 422 inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize; 423 424 inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv; 425 426 inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx); 427 428 inst->alg.cra_init = cryptd_blkcipher_init_tfm; 429 inst->alg.cra_exit = cryptd_blkcipher_exit_tfm; 430 431 inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey; 432 inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue; 433 inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue; 434 435 err = crypto_register_instance(tmpl, inst); 436 if (err) { 437 crypto_drop_spawn(&ctx->spawn); 438 out_free_inst: 439 kfree(inst); 440 } 441 442 out_put_alg: 443 crypto_mod_put(alg); 444 return err; 445 } 446 447 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent, 448 const u8 *key, unsigned int keylen) 449 { 450 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent); 451 struct crypto_skcipher *child = ctx->child; 452 int err; 453 454 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); 455 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & 456 CRYPTO_TFM_REQ_MASK); 457 err = crypto_skcipher_setkey(child, key, keylen); 458 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) & 459 CRYPTO_TFM_RES_MASK); 460 return err; 461 } 462 463 static void cryptd_skcipher_complete(struct skcipher_request *req, int err) 464 { 465 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 466 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 467 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 468 int refcnt = atomic_read(&ctx->refcnt); 469 470 local_bh_disable(); 471 rctx->complete(&req->base, err); 472 local_bh_enable(); 473 474 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 475 crypto_free_skcipher(tfm); 476 } 477 478 static void cryptd_skcipher_encrypt(struct crypto_async_request *base, 479 int err) 480 { 481 struct skcipher_request *req = skcipher_request_cast(base); 482 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 483 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 484 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 485 struct crypto_skcipher *child = ctx->child; 486 SKCIPHER_REQUEST_ON_STACK(subreq, child); 487 488 if (unlikely(err == -EINPROGRESS)) 489 goto out; 490 491 skcipher_request_set_tfm(subreq, child); 492 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, 493 NULL, NULL); 494 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 495 req->iv); 496 497 err = crypto_skcipher_encrypt(subreq); 498 skcipher_request_zero(subreq); 499 500 req->base.complete = rctx->complete; 501 502 out: 503 cryptd_skcipher_complete(req, err); 504 } 505 506 static void cryptd_skcipher_decrypt(struct crypto_async_request *base, 507 int err) 508 { 509 struct skcipher_request *req = skcipher_request_cast(base); 510 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 511 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 512 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 513 struct crypto_skcipher *child = ctx->child; 514 SKCIPHER_REQUEST_ON_STACK(subreq, child); 515 516 if (unlikely(err == -EINPROGRESS)) 517 goto out; 518 519 skcipher_request_set_tfm(subreq, child); 520 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, 521 NULL, NULL); 522 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 523 req->iv); 524 525 err = crypto_skcipher_decrypt(subreq); 526 skcipher_request_zero(subreq); 527 528 req->base.complete = rctx->complete; 529 530 out: 531 cryptd_skcipher_complete(req, err); 532 } 533 534 static int cryptd_skcipher_enqueue(struct skcipher_request *req, 535 crypto_completion_t compl) 536 { 537 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 538 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 539 struct cryptd_queue *queue; 540 541 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm)); 542 rctx->complete = req->base.complete; 543 req->base.complete = compl; 544 545 return cryptd_enqueue_request(queue, &req->base); 546 } 547 548 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req) 549 { 550 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt); 551 } 552 553 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req) 554 { 555 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt); 556 } 557 558 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm) 559 { 560 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 561 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst); 562 struct crypto_skcipher_spawn *spawn = &ictx->spawn; 563 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 564 struct crypto_skcipher *cipher; 565 566 cipher = crypto_spawn_skcipher(spawn); 567 if (IS_ERR(cipher)) 568 return PTR_ERR(cipher); 569 570 ctx->child = cipher; 571 crypto_skcipher_set_reqsize( 572 tfm, sizeof(struct cryptd_skcipher_request_ctx)); 573 return 0; 574 } 575 576 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm) 577 { 578 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 579 580 crypto_free_skcipher(ctx->child); 581 } 582 583 static void cryptd_skcipher_free(struct skcipher_instance *inst) 584 { 585 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst); 586 587 crypto_drop_skcipher(&ctx->spawn); 588 } 589 590 static int cryptd_create_skcipher(struct crypto_template *tmpl, 591 struct rtattr **tb, 592 struct cryptd_queue *queue) 593 { 594 struct skcipherd_instance_ctx *ctx; 595 struct skcipher_instance *inst; 596 struct skcipher_alg *alg; 597 const char *name; 598 u32 type; 599 u32 mask; 600 int err; 601 602 type = 0; 603 mask = CRYPTO_ALG_ASYNC; 604 605 cryptd_check_internal(tb, &type, &mask); 606 607 name = crypto_attr_alg_name(tb[1]); 608 if (IS_ERR(name)) 609 return PTR_ERR(name); 610 611 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 612 if (!inst) 613 return -ENOMEM; 614 615 ctx = skcipher_instance_ctx(inst); 616 ctx->queue = queue; 617 618 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); 619 err = crypto_grab_skcipher(&ctx->spawn, name, type, mask); 620 if (err) 621 goto out_free_inst; 622 623 alg = crypto_spawn_skcipher_alg(&ctx->spawn); 624 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base); 625 if (err) 626 goto out_drop_skcipher; 627 628 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC | 629 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); 630 631 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg); 632 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg); 633 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg); 634 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg); 635 636 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx); 637 638 inst->alg.init = cryptd_skcipher_init_tfm; 639 inst->alg.exit = cryptd_skcipher_exit_tfm; 640 641 inst->alg.setkey = cryptd_skcipher_setkey; 642 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue; 643 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue; 644 645 inst->free = cryptd_skcipher_free; 646 647 err = skcipher_register_instance(tmpl, inst); 648 if (err) { 649 out_drop_skcipher: 650 crypto_drop_skcipher(&ctx->spawn); 651 out_free_inst: 652 kfree(inst); 653 } 654 return err; 655 } 656 657 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm) 658 { 659 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 660 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); 661 struct crypto_shash_spawn *spawn = &ictx->spawn; 662 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 663 struct crypto_shash *hash; 664 665 hash = crypto_spawn_shash(spawn); 666 if (IS_ERR(hash)) 667 return PTR_ERR(hash); 668 669 ctx->child = hash; 670 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 671 sizeof(struct cryptd_hash_request_ctx) + 672 crypto_shash_descsize(hash)); 673 return 0; 674 } 675 676 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm) 677 { 678 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 679 680 crypto_free_shash(ctx->child); 681 } 682 683 static int cryptd_hash_setkey(struct crypto_ahash *parent, 684 const u8 *key, unsigned int keylen) 685 { 686 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); 687 struct crypto_shash *child = ctx->child; 688 int err; 689 690 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK); 691 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) & 692 CRYPTO_TFM_REQ_MASK); 693 err = crypto_shash_setkey(child, key, keylen); 694 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) & 695 CRYPTO_TFM_RES_MASK); 696 return err; 697 } 698 699 static int cryptd_hash_enqueue(struct ahash_request *req, 700 crypto_completion_t compl) 701 { 702 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 703 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 704 struct cryptd_queue *queue = 705 cryptd_get_queue(crypto_ahash_tfm(tfm)); 706 707 rctx->complete = req->base.complete; 708 req->base.complete = compl; 709 710 return cryptd_enqueue_request(queue, &req->base); 711 } 712 713 static void cryptd_hash_complete(struct ahash_request *req, int err) 714 { 715 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 716 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); 717 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 718 int refcnt = atomic_read(&ctx->refcnt); 719 720 local_bh_disable(); 721 rctx->complete(&req->base, err); 722 local_bh_enable(); 723 724 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 725 crypto_free_ahash(tfm); 726 } 727 728 static void cryptd_hash_init(struct crypto_async_request *req_async, int err) 729 { 730 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 731 struct crypto_shash *child = ctx->child; 732 struct ahash_request *req = ahash_request_cast(req_async); 733 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 734 struct shash_desc *desc = &rctx->desc; 735 736 if (unlikely(err == -EINPROGRESS)) 737 goto out; 738 739 desc->tfm = child; 740 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 741 742 err = crypto_shash_init(desc); 743 744 req->base.complete = rctx->complete; 745 746 out: 747 cryptd_hash_complete(req, err); 748 } 749 750 static int cryptd_hash_init_enqueue(struct ahash_request *req) 751 { 752 return cryptd_hash_enqueue(req, cryptd_hash_init); 753 } 754 755 static void cryptd_hash_update(struct crypto_async_request *req_async, int err) 756 { 757 struct ahash_request *req = ahash_request_cast(req_async); 758 struct cryptd_hash_request_ctx *rctx; 759 760 rctx = ahash_request_ctx(req); 761 762 if (unlikely(err == -EINPROGRESS)) 763 goto out; 764 765 err = shash_ahash_update(req, &rctx->desc); 766 767 req->base.complete = rctx->complete; 768 769 out: 770 cryptd_hash_complete(req, err); 771 } 772 773 static int cryptd_hash_update_enqueue(struct ahash_request *req) 774 { 775 return cryptd_hash_enqueue(req, cryptd_hash_update); 776 } 777 778 static void cryptd_hash_final(struct crypto_async_request *req_async, int err) 779 { 780 struct ahash_request *req = ahash_request_cast(req_async); 781 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 782 783 if (unlikely(err == -EINPROGRESS)) 784 goto out; 785 786 err = crypto_shash_final(&rctx->desc, req->result); 787 788 req->base.complete = rctx->complete; 789 790 out: 791 cryptd_hash_complete(req, err); 792 } 793 794 static int cryptd_hash_final_enqueue(struct ahash_request *req) 795 { 796 return cryptd_hash_enqueue(req, cryptd_hash_final); 797 } 798 799 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err) 800 { 801 struct ahash_request *req = ahash_request_cast(req_async); 802 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 803 804 if (unlikely(err == -EINPROGRESS)) 805 goto out; 806 807 err = shash_ahash_finup(req, &rctx->desc); 808 809 req->base.complete = rctx->complete; 810 811 out: 812 cryptd_hash_complete(req, err); 813 } 814 815 static int cryptd_hash_finup_enqueue(struct ahash_request *req) 816 { 817 return cryptd_hash_enqueue(req, cryptd_hash_finup); 818 } 819 820 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err) 821 { 822 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 823 struct crypto_shash *child = ctx->child; 824 struct ahash_request *req = ahash_request_cast(req_async); 825 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 826 struct shash_desc *desc = &rctx->desc; 827 828 if (unlikely(err == -EINPROGRESS)) 829 goto out; 830 831 desc->tfm = child; 832 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 833 834 err = shash_ahash_digest(req, desc); 835 836 req->base.complete = rctx->complete; 837 838 out: 839 cryptd_hash_complete(req, err); 840 } 841 842 static int cryptd_hash_digest_enqueue(struct ahash_request *req) 843 { 844 return cryptd_hash_enqueue(req, cryptd_hash_digest); 845 } 846 847 static int cryptd_hash_export(struct ahash_request *req, void *out) 848 { 849 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 850 851 return crypto_shash_export(&rctx->desc, out); 852 } 853 854 static int cryptd_hash_import(struct ahash_request *req, const void *in) 855 { 856 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 857 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); 858 struct shash_desc *desc = cryptd_shash_desc(req); 859 860 desc->tfm = ctx->child; 861 desc->flags = req->base.flags; 862 863 return crypto_shash_import(desc, in); 864 } 865 866 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, 867 struct cryptd_queue *queue) 868 { 869 struct hashd_instance_ctx *ctx; 870 struct ahash_instance *inst; 871 struct shash_alg *salg; 872 struct crypto_alg *alg; 873 u32 type = 0; 874 u32 mask = 0; 875 int err; 876 877 cryptd_check_internal(tb, &type, &mask); 878 879 salg = shash_attr_alg(tb[1], type, mask); 880 if (IS_ERR(salg)) 881 return PTR_ERR(salg); 882 883 alg = &salg->base; 884 inst = cryptd_alloc_instance(alg, ahash_instance_headroom(), 885 sizeof(*ctx)); 886 err = PTR_ERR(inst); 887 if (IS_ERR(inst)) 888 goto out_put_alg; 889 890 ctx = ahash_instance_ctx(inst); 891 ctx->queue = queue; 892 893 err = crypto_init_shash_spawn(&ctx->spawn, salg, 894 ahash_crypto_instance(inst)); 895 if (err) 896 goto out_free_inst; 897 898 type = CRYPTO_ALG_ASYNC; 899 if (alg->cra_flags & CRYPTO_ALG_INTERNAL) 900 type |= CRYPTO_ALG_INTERNAL; 901 inst->alg.halg.base.cra_flags = type; 902 903 inst->alg.halg.digestsize = salg->digestsize; 904 inst->alg.halg.statesize = salg->statesize; 905 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx); 906 907 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm; 908 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm; 909 910 inst->alg.init = cryptd_hash_init_enqueue; 911 inst->alg.update = cryptd_hash_update_enqueue; 912 inst->alg.final = cryptd_hash_final_enqueue; 913 inst->alg.finup = cryptd_hash_finup_enqueue; 914 inst->alg.export = cryptd_hash_export; 915 inst->alg.import = cryptd_hash_import; 916 inst->alg.setkey = cryptd_hash_setkey; 917 inst->alg.digest = cryptd_hash_digest_enqueue; 918 919 err = ahash_register_instance(tmpl, inst); 920 if (err) { 921 crypto_drop_shash(&ctx->spawn); 922 out_free_inst: 923 kfree(inst); 924 } 925 926 out_put_alg: 927 crypto_mod_put(alg); 928 return err; 929 } 930 931 static int cryptd_aead_setkey(struct crypto_aead *parent, 932 const u8 *key, unsigned int keylen) 933 { 934 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); 935 struct crypto_aead *child = ctx->child; 936 937 return crypto_aead_setkey(child, key, keylen); 938 } 939 940 static int cryptd_aead_setauthsize(struct crypto_aead *parent, 941 unsigned int authsize) 942 { 943 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); 944 struct crypto_aead *child = ctx->child; 945 946 return crypto_aead_setauthsize(child, authsize); 947 } 948 949 static void cryptd_aead_crypt(struct aead_request *req, 950 struct crypto_aead *child, 951 int err, 952 int (*crypt)(struct aead_request *req)) 953 { 954 struct cryptd_aead_request_ctx *rctx; 955 struct cryptd_aead_ctx *ctx; 956 crypto_completion_t compl; 957 struct crypto_aead *tfm; 958 int refcnt; 959 960 rctx = aead_request_ctx(req); 961 compl = rctx->complete; 962 963 tfm = crypto_aead_reqtfm(req); 964 965 if (unlikely(err == -EINPROGRESS)) 966 goto out; 967 aead_request_set_tfm(req, child); 968 err = crypt( req ); 969 970 out: 971 ctx = crypto_aead_ctx(tfm); 972 refcnt = atomic_read(&ctx->refcnt); 973 974 local_bh_disable(); 975 compl(&req->base, err); 976 local_bh_enable(); 977 978 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 979 crypto_free_aead(tfm); 980 } 981 982 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err) 983 { 984 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm); 985 struct crypto_aead *child = ctx->child; 986 struct aead_request *req; 987 988 req = container_of(areq, struct aead_request, base); 989 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt); 990 } 991 992 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err) 993 { 994 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm); 995 struct crypto_aead *child = ctx->child; 996 struct aead_request *req; 997 998 req = container_of(areq, struct aead_request, base); 999 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt); 1000 } 1001 1002 static int cryptd_aead_enqueue(struct aead_request *req, 1003 crypto_completion_t compl) 1004 { 1005 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req); 1006 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 1007 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm)); 1008 1009 rctx->complete = req->base.complete; 1010 req->base.complete = compl; 1011 return cryptd_enqueue_request(queue, &req->base); 1012 } 1013 1014 static int cryptd_aead_encrypt_enqueue(struct aead_request *req) 1015 { 1016 return cryptd_aead_enqueue(req, cryptd_aead_encrypt ); 1017 } 1018 1019 static int cryptd_aead_decrypt_enqueue(struct aead_request *req) 1020 { 1021 return cryptd_aead_enqueue(req, cryptd_aead_decrypt ); 1022 } 1023 1024 static int cryptd_aead_init_tfm(struct crypto_aead *tfm) 1025 { 1026 struct aead_instance *inst = aead_alg_instance(tfm); 1027 struct aead_instance_ctx *ictx = aead_instance_ctx(inst); 1028 struct crypto_aead_spawn *spawn = &ictx->aead_spawn; 1029 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); 1030 struct crypto_aead *cipher; 1031 1032 cipher = crypto_spawn_aead(spawn); 1033 if (IS_ERR(cipher)) 1034 return PTR_ERR(cipher); 1035 1036 ctx->child = cipher; 1037 crypto_aead_set_reqsize( 1038 tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx), 1039 crypto_aead_reqsize(cipher))); 1040 return 0; 1041 } 1042 1043 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm) 1044 { 1045 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); 1046 crypto_free_aead(ctx->child); 1047 } 1048 1049 static int cryptd_create_aead(struct crypto_template *tmpl, 1050 struct rtattr **tb, 1051 struct cryptd_queue *queue) 1052 { 1053 struct aead_instance_ctx *ctx; 1054 struct aead_instance *inst; 1055 struct aead_alg *alg; 1056 const char *name; 1057 u32 type = 0; 1058 u32 mask = CRYPTO_ALG_ASYNC; 1059 int err; 1060 1061 cryptd_check_internal(tb, &type, &mask); 1062 1063 name = crypto_attr_alg_name(tb[1]); 1064 if (IS_ERR(name)) 1065 return PTR_ERR(name); 1066 1067 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 1068 if (!inst) 1069 return -ENOMEM; 1070 1071 ctx = aead_instance_ctx(inst); 1072 ctx->queue = queue; 1073 1074 crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst)); 1075 err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask); 1076 if (err) 1077 goto out_free_inst; 1078 1079 alg = crypto_spawn_aead_alg(&ctx->aead_spawn); 1080 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base); 1081 if (err) 1082 goto out_drop_aead; 1083 1084 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC | 1085 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); 1086 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx); 1087 1088 inst->alg.ivsize = crypto_aead_alg_ivsize(alg); 1089 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg); 1090 1091 inst->alg.init = cryptd_aead_init_tfm; 1092 inst->alg.exit = cryptd_aead_exit_tfm; 1093 inst->alg.setkey = cryptd_aead_setkey; 1094 inst->alg.setauthsize = cryptd_aead_setauthsize; 1095 inst->alg.encrypt = cryptd_aead_encrypt_enqueue; 1096 inst->alg.decrypt = cryptd_aead_decrypt_enqueue; 1097 1098 err = aead_register_instance(tmpl, inst); 1099 if (err) { 1100 out_drop_aead: 1101 crypto_drop_aead(&ctx->aead_spawn); 1102 out_free_inst: 1103 kfree(inst); 1104 } 1105 return err; 1106 } 1107 1108 static struct cryptd_queue queue; 1109 1110 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb) 1111 { 1112 struct crypto_attr_type *algt; 1113 1114 algt = crypto_get_attr_type(tb); 1115 if (IS_ERR(algt)) 1116 return PTR_ERR(algt); 1117 1118 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { 1119 case CRYPTO_ALG_TYPE_BLKCIPHER: 1120 if ((algt->type & CRYPTO_ALG_TYPE_MASK) == 1121 CRYPTO_ALG_TYPE_BLKCIPHER) 1122 return cryptd_create_blkcipher(tmpl, tb, &queue); 1123 1124 return cryptd_create_skcipher(tmpl, tb, &queue); 1125 case CRYPTO_ALG_TYPE_DIGEST: 1126 return cryptd_create_hash(tmpl, tb, &queue); 1127 case CRYPTO_ALG_TYPE_AEAD: 1128 return cryptd_create_aead(tmpl, tb, &queue); 1129 } 1130 1131 return -EINVAL; 1132 } 1133 1134 static void cryptd_free(struct crypto_instance *inst) 1135 { 1136 struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst); 1137 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); 1138 struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst); 1139 1140 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { 1141 case CRYPTO_ALG_TYPE_AHASH: 1142 crypto_drop_shash(&hctx->spawn); 1143 kfree(ahash_instance(inst)); 1144 return; 1145 case CRYPTO_ALG_TYPE_AEAD: 1146 crypto_drop_aead(&aead_ctx->aead_spawn); 1147 kfree(aead_instance(inst)); 1148 return; 1149 default: 1150 crypto_drop_spawn(&ctx->spawn); 1151 kfree(inst); 1152 } 1153 } 1154 1155 static struct crypto_template cryptd_tmpl = { 1156 .name = "cryptd", 1157 .create = cryptd_create, 1158 .free = cryptd_free, 1159 .module = THIS_MODULE, 1160 }; 1161 1162 struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name, 1163 u32 type, u32 mask) 1164 { 1165 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 1166 struct cryptd_blkcipher_ctx *ctx; 1167 struct crypto_tfm *tfm; 1168 1169 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 1170 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 1171 return ERR_PTR(-EINVAL); 1172 type = crypto_skcipher_type(type); 1173 mask &= ~CRYPTO_ALG_TYPE_MASK; 1174 mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK); 1175 tfm = crypto_alloc_base(cryptd_alg_name, type, mask); 1176 if (IS_ERR(tfm)) 1177 return ERR_CAST(tfm); 1178 if (tfm->__crt_alg->cra_module != THIS_MODULE) { 1179 crypto_free_tfm(tfm); 1180 return ERR_PTR(-EINVAL); 1181 } 1182 1183 ctx = crypto_tfm_ctx(tfm); 1184 atomic_set(&ctx->refcnt, 1); 1185 1186 return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm)); 1187 } 1188 EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher); 1189 1190 struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm) 1191 { 1192 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base); 1193 return ctx->child; 1194 } 1195 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child); 1196 1197 bool cryptd_ablkcipher_queued(struct cryptd_ablkcipher *tfm) 1198 { 1199 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base); 1200 1201 return atomic_read(&ctx->refcnt) - 1; 1202 } 1203 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_queued); 1204 1205 void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm) 1206 { 1207 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base); 1208 1209 if (atomic_dec_and_test(&ctx->refcnt)) 1210 crypto_free_ablkcipher(&tfm->base); 1211 } 1212 EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher); 1213 1214 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name, 1215 u32 type, u32 mask) 1216 { 1217 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 1218 struct cryptd_skcipher_ctx *ctx; 1219 struct crypto_skcipher *tfm; 1220 1221 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 1222 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 1223 return ERR_PTR(-EINVAL); 1224 1225 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask); 1226 if (IS_ERR(tfm)) 1227 return ERR_CAST(tfm); 1228 1229 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 1230 crypto_free_skcipher(tfm); 1231 return ERR_PTR(-EINVAL); 1232 } 1233 1234 ctx = crypto_skcipher_ctx(tfm); 1235 atomic_set(&ctx->refcnt, 1); 1236 1237 return container_of(tfm, struct cryptd_skcipher, base); 1238 } 1239 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher); 1240 1241 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm) 1242 { 1243 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); 1244 1245 return ctx->child; 1246 } 1247 EXPORT_SYMBOL_GPL(cryptd_skcipher_child); 1248 1249 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm) 1250 { 1251 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); 1252 1253 return atomic_read(&ctx->refcnt) - 1; 1254 } 1255 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued); 1256 1257 void cryptd_free_skcipher(struct cryptd_skcipher *tfm) 1258 { 1259 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); 1260 1261 if (atomic_dec_and_test(&ctx->refcnt)) 1262 crypto_free_skcipher(&tfm->base); 1263 } 1264 EXPORT_SYMBOL_GPL(cryptd_free_skcipher); 1265 1266 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name, 1267 u32 type, u32 mask) 1268 { 1269 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 1270 struct cryptd_hash_ctx *ctx; 1271 struct crypto_ahash *tfm; 1272 1273 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 1274 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 1275 return ERR_PTR(-EINVAL); 1276 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask); 1277 if (IS_ERR(tfm)) 1278 return ERR_CAST(tfm); 1279 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 1280 crypto_free_ahash(tfm); 1281 return ERR_PTR(-EINVAL); 1282 } 1283 1284 ctx = crypto_ahash_ctx(tfm); 1285 atomic_set(&ctx->refcnt, 1); 1286 1287 return __cryptd_ahash_cast(tfm); 1288 } 1289 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash); 1290 1291 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm) 1292 { 1293 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 1294 1295 return ctx->child; 1296 } 1297 EXPORT_SYMBOL_GPL(cryptd_ahash_child); 1298 1299 struct shash_desc *cryptd_shash_desc(struct ahash_request *req) 1300 { 1301 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 1302 return &rctx->desc; 1303 } 1304 EXPORT_SYMBOL_GPL(cryptd_shash_desc); 1305 1306 bool cryptd_ahash_queued(struct cryptd_ahash *tfm) 1307 { 1308 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 1309 1310 return atomic_read(&ctx->refcnt) - 1; 1311 } 1312 EXPORT_SYMBOL_GPL(cryptd_ahash_queued); 1313 1314 void cryptd_free_ahash(struct cryptd_ahash *tfm) 1315 { 1316 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 1317 1318 if (atomic_dec_and_test(&ctx->refcnt)) 1319 crypto_free_ahash(&tfm->base); 1320 } 1321 EXPORT_SYMBOL_GPL(cryptd_free_ahash); 1322 1323 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name, 1324 u32 type, u32 mask) 1325 { 1326 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 1327 struct cryptd_aead_ctx *ctx; 1328 struct crypto_aead *tfm; 1329 1330 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 1331 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 1332 return ERR_PTR(-EINVAL); 1333 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask); 1334 if (IS_ERR(tfm)) 1335 return ERR_CAST(tfm); 1336 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 1337 crypto_free_aead(tfm); 1338 return ERR_PTR(-EINVAL); 1339 } 1340 1341 ctx = crypto_aead_ctx(tfm); 1342 atomic_set(&ctx->refcnt, 1); 1343 1344 return __cryptd_aead_cast(tfm); 1345 } 1346 EXPORT_SYMBOL_GPL(cryptd_alloc_aead); 1347 1348 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm) 1349 { 1350 struct cryptd_aead_ctx *ctx; 1351 ctx = crypto_aead_ctx(&tfm->base); 1352 return ctx->child; 1353 } 1354 EXPORT_SYMBOL_GPL(cryptd_aead_child); 1355 1356 bool cryptd_aead_queued(struct cryptd_aead *tfm) 1357 { 1358 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); 1359 1360 return atomic_read(&ctx->refcnt) - 1; 1361 } 1362 EXPORT_SYMBOL_GPL(cryptd_aead_queued); 1363 1364 void cryptd_free_aead(struct cryptd_aead *tfm) 1365 { 1366 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); 1367 1368 if (atomic_dec_and_test(&ctx->refcnt)) 1369 crypto_free_aead(&tfm->base); 1370 } 1371 EXPORT_SYMBOL_GPL(cryptd_free_aead); 1372 1373 static int __init cryptd_init(void) 1374 { 1375 int err; 1376 1377 err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN); 1378 if (err) 1379 return err; 1380 1381 err = crypto_register_template(&cryptd_tmpl); 1382 if (err) 1383 cryptd_fini_queue(&queue); 1384 1385 return err; 1386 } 1387 1388 static void __exit cryptd_exit(void) 1389 { 1390 cryptd_fini_queue(&queue); 1391 crypto_unregister_template(&cryptd_tmpl); 1392 } 1393 1394 subsys_initcall(cryptd_init); 1395 module_exit(cryptd_exit); 1396 1397 MODULE_LICENSE("GPL"); 1398 MODULE_DESCRIPTION("Software async crypto daemon"); 1399 MODULE_ALIAS_CRYPTO("cryptd"); 1400