1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Software async crypto daemon. 4 * 5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 6 * 7 * Added AEAD support to cryptd. 8 * Authors: Tadeusz Struk (tadeusz.struk@intel.com) 9 * Adrian Hoban <adrian.hoban@intel.com> 10 * Gabriele Paoloni <gabriele.paoloni@intel.com> 11 * Aidan O'Mahony (aidan.o.mahony@intel.com) 12 * Copyright (c) 2010, Intel Corporation. 13 */ 14 15 #include <crypto/internal/hash.h> 16 #include <crypto/internal/aead.h> 17 #include <crypto/internal/skcipher.h> 18 #include <crypto/cryptd.h> 19 #include <crypto/crypto_wq.h> 20 #include <linux/atomic.h> 21 #include <linux/err.h> 22 #include <linux/init.h> 23 #include <linux/kernel.h> 24 #include <linux/list.h> 25 #include <linux/module.h> 26 #include <linux/scatterlist.h> 27 #include <linux/sched.h> 28 #include <linux/slab.h> 29 30 static unsigned int cryptd_max_cpu_qlen = 1000; 31 module_param(cryptd_max_cpu_qlen, uint, 0); 32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth"); 33 34 struct cryptd_cpu_queue { 35 struct crypto_queue queue; 36 struct work_struct work; 37 }; 38 39 struct cryptd_queue { 40 struct cryptd_cpu_queue __percpu *cpu_queue; 41 }; 42 43 struct cryptd_instance_ctx { 44 struct crypto_spawn spawn; 45 struct cryptd_queue *queue; 46 }; 47 48 struct skcipherd_instance_ctx { 49 struct crypto_skcipher_spawn spawn; 50 struct cryptd_queue *queue; 51 }; 52 53 struct hashd_instance_ctx { 54 struct crypto_shash_spawn spawn; 55 struct cryptd_queue *queue; 56 }; 57 58 struct aead_instance_ctx { 59 struct crypto_aead_spawn aead_spawn; 60 struct cryptd_queue *queue; 61 }; 62 63 struct cryptd_skcipher_ctx { 64 atomic_t refcnt; 65 struct crypto_sync_skcipher *child; 66 }; 67 68 struct cryptd_skcipher_request_ctx { 69 crypto_completion_t complete; 70 }; 71 72 struct cryptd_hash_ctx { 73 atomic_t refcnt; 74 struct crypto_shash *child; 75 }; 76 77 struct cryptd_hash_request_ctx { 78 crypto_completion_t complete; 79 struct shash_desc desc; 80 }; 81 82 struct cryptd_aead_ctx { 83 atomic_t refcnt; 84 struct crypto_aead *child; 85 }; 86 87 struct cryptd_aead_request_ctx { 88 crypto_completion_t complete; 89 }; 90 91 static void cryptd_queue_worker(struct work_struct *work); 92 93 static int cryptd_init_queue(struct cryptd_queue *queue, 94 unsigned int max_cpu_qlen) 95 { 96 int cpu; 97 struct cryptd_cpu_queue *cpu_queue; 98 99 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue); 100 if (!queue->cpu_queue) 101 return -ENOMEM; 102 for_each_possible_cpu(cpu) { 103 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 104 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); 105 INIT_WORK(&cpu_queue->work, cryptd_queue_worker); 106 } 107 pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen); 108 return 0; 109 } 110 111 static void cryptd_fini_queue(struct cryptd_queue *queue) 112 { 113 int cpu; 114 struct cryptd_cpu_queue *cpu_queue; 115 116 for_each_possible_cpu(cpu) { 117 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 118 BUG_ON(cpu_queue->queue.qlen); 119 } 120 free_percpu(queue->cpu_queue); 121 } 122 123 static int cryptd_enqueue_request(struct cryptd_queue *queue, 124 struct crypto_async_request *request) 125 { 126 int cpu, err; 127 struct cryptd_cpu_queue *cpu_queue; 128 atomic_t *refcnt; 129 130 cpu = get_cpu(); 131 cpu_queue = this_cpu_ptr(queue->cpu_queue); 132 err = crypto_enqueue_request(&cpu_queue->queue, request); 133 134 refcnt = crypto_tfm_ctx(request->tfm); 135 136 if (err == -ENOSPC) 137 goto out_put_cpu; 138 139 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); 140 141 if (!atomic_read(refcnt)) 142 goto out_put_cpu; 143 144 atomic_inc(refcnt); 145 146 out_put_cpu: 147 put_cpu(); 148 149 return err; 150 } 151 152 /* Called in workqueue context, do one real cryption work (via 153 * req->complete) and reschedule itself if there are more work to 154 * do. */ 155 static void cryptd_queue_worker(struct work_struct *work) 156 { 157 struct cryptd_cpu_queue *cpu_queue; 158 struct crypto_async_request *req, *backlog; 159 160 cpu_queue = container_of(work, struct cryptd_cpu_queue, work); 161 /* 162 * Only handle one request at a time to avoid hogging crypto workqueue. 163 * preempt_disable/enable is used to prevent being preempted by 164 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent 165 * cryptd_enqueue_request() being accessed from software interrupts. 166 */ 167 local_bh_disable(); 168 preempt_disable(); 169 backlog = crypto_get_backlog(&cpu_queue->queue); 170 req = crypto_dequeue_request(&cpu_queue->queue); 171 preempt_enable(); 172 local_bh_enable(); 173 174 if (!req) 175 return; 176 177 if (backlog) 178 backlog->complete(backlog, -EINPROGRESS); 179 req->complete(req, 0); 180 181 if (cpu_queue->queue.qlen) 182 queue_work(kcrypto_wq, &cpu_queue->work); 183 } 184 185 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm) 186 { 187 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 188 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); 189 return ictx->queue; 190 } 191 192 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type, 193 u32 *mask) 194 { 195 struct crypto_attr_type *algt; 196 197 algt = crypto_get_attr_type(tb); 198 if (IS_ERR(algt)) 199 return; 200 201 *type |= algt->type & CRYPTO_ALG_INTERNAL; 202 *mask |= algt->mask & CRYPTO_ALG_INTERNAL; 203 } 204 205 static int cryptd_init_instance(struct crypto_instance *inst, 206 struct crypto_alg *alg) 207 { 208 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, 209 "cryptd(%s)", 210 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 211 return -ENAMETOOLONG; 212 213 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); 214 215 inst->alg.cra_priority = alg->cra_priority + 50; 216 inst->alg.cra_blocksize = alg->cra_blocksize; 217 inst->alg.cra_alignmask = alg->cra_alignmask; 218 219 return 0; 220 } 221 222 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 223 unsigned int tail) 224 { 225 char *p; 226 struct crypto_instance *inst; 227 int err; 228 229 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); 230 if (!p) 231 return ERR_PTR(-ENOMEM); 232 233 inst = (void *)(p + head); 234 235 err = cryptd_init_instance(inst, alg); 236 if (err) 237 goto out_free_inst; 238 239 out: 240 return p; 241 242 out_free_inst: 243 kfree(p); 244 p = ERR_PTR(err); 245 goto out; 246 } 247 248 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent, 249 const u8 *key, unsigned int keylen) 250 { 251 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent); 252 struct crypto_sync_skcipher *child = ctx->child; 253 int err; 254 255 crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); 256 crypto_sync_skcipher_set_flags(child, 257 crypto_skcipher_get_flags(parent) & 258 CRYPTO_TFM_REQ_MASK); 259 err = crypto_sync_skcipher_setkey(child, key, keylen); 260 crypto_skcipher_set_flags(parent, 261 crypto_sync_skcipher_get_flags(child) & 262 CRYPTO_TFM_RES_MASK); 263 return err; 264 } 265 266 static void cryptd_skcipher_complete(struct skcipher_request *req, int err) 267 { 268 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 269 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 270 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 271 int refcnt = atomic_read(&ctx->refcnt); 272 273 local_bh_disable(); 274 rctx->complete(&req->base, err); 275 local_bh_enable(); 276 277 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 278 crypto_free_skcipher(tfm); 279 } 280 281 static void cryptd_skcipher_encrypt(struct crypto_async_request *base, 282 int err) 283 { 284 struct skcipher_request *req = skcipher_request_cast(base); 285 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 286 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 287 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 288 struct crypto_sync_skcipher *child = ctx->child; 289 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child); 290 291 if (unlikely(err == -EINPROGRESS)) 292 goto out; 293 294 skcipher_request_set_sync_tfm(subreq, child); 295 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, 296 NULL, NULL); 297 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 298 req->iv); 299 300 err = crypto_skcipher_encrypt(subreq); 301 skcipher_request_zero(subreq); 302 303 req->base.complete = rctx->complete; 304 305 out: 306 cryptd_skcipher_complete(req, err); 307 } 308 309 static void cryptd_skcipher_decrypt(struct crypto_async_request *base, 310 int err) 311 { 312 struct skcipher_request *req = skcipher_request_cast(base); 313 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 314 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 315 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 316 struct crypto_sync_skcipher *child = ctx->child; 317 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child); 318 319 if (unlikely(err == -EINPROGRESS)) 320 goto out; 321 322 skcipher_request_set_sync_tfm(subreq, child); 323 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, 324 NULL, NULL); 325 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 326 req->iv); 327 328 err = crypto_skcipher_decrypt(subreq); 329 skcipher_request_zero(subreq); 330 331 req->base.complete = rctx->complete; 332 333 out: 334 cryptd_skcipher_complete(req, err); 335 } 336 337 static int cryptd_skcipher_enqueue(struct skcipher_request *req, 338 crypto_completion_t compl) 339 { 340 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 341 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 342 struct cryptd_queue *queue; 343 344 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm)); 345 rctx->complete = req->base.complete; 346 req->base.complete = compl; 347 348 return cryptd_enqueue_request(queue, &req->base); 349 } 350 351 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req) 352 { 353 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt); 354 } 355 356 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req) 357 { 358 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt); 359 } 360 361 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm) 362 { 363 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 364 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst); 365 struct crypto_skcipher_spawn *spawn = &ictx->spawn; 366 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 367 struct crypto_skcipher *cipher; 368 369 cipher = crypto_spawn_skcipher(spawn); 370 if (IS_ERR(cipher)) 371 return PTR_ERR(cipher); 372 373 ctx->child = (struct crypto_sync_skcipher *)cipher; 374 crypto_skcipher_set_reqsize( 375 tfm, sizeof(struct cryptd_skcipher_request_ctx)); 376 return 0; 377 } 378 379 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm) 380 { 381 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 382 383 crypto_free_sync_skcipher(ctx->child); 384 } 385 386 static void cryptd_skcipher_free(struct skcipher_instance *inst) 387 { 388 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst); 389 390 crypto_drop_skcipher(&ctx->spawn); 391 } 392 393 static int cryptd_create_skcipher(struct crypto_template *tmpl, 394 struct rtattr **tb, 395 struct cryptd_queue *queue) 396 { 397 struct skcipherd_instance_ctx *ctx; 398 struct skcipher_instance *inst; 399 struct skcipher_alg *alg; 400 const char *name; 401 u32 type; 402 u32 mask; 403 int err; 404 405 type = 0; 406 mask = CRYPTO_ALG_ASYNC; 407 408 cryptd_check_internal(tb, &type, &mask); 409 410 name = crypto_attr_alg_name(tb[1]); 411 if (IS_ERR(name)) 412 return PTR_ERR(name); 413 414 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 415 if (!inst) 416 return -ENOMEM; 417 418 ctx = skcipher_instance_ctx(inst); 419 ctx->queue = queue; 420 421 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); 422 err = crypto_grab_skcipher(&ctx->spawn, name, type, mask); 423 if (err) 424 goto out_free_inst; 425 426 alg = crypto_spawn_skcipher_alg(&ctx->spawn); 427 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base); 428 if (err) 429 goto out_drop_skcipher; 430 431 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC | 432 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); 433 434 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg); 435 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg); 436 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg); 437 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg); 438 439 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx); 440 441 inst->alg.init = cryptd_skcipher_init_tfm; 442 inst->alg.exit = cryptd_skcipher_exit_tfm; 443 444 inst->alg.setkey = cryptd_skcipher_setkey; 445 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue; 446 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue; 447 448 inst->free = cryptd_skcipher_free; 449 450 err = skcipher_register_instance(tmpl, inst); 451 if (err) { 452 out_drop_skcipher: 453 crypto_drop_skcipher(&ctx->spawn); 454 out_free_inst: 455 kfree(inst); 456 } 457 return err; 458 } 459 460 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm) 461 { 462 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 463 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); 464 struct crypto_shash_spawn *spawn = &ictx->spawn; 465 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 466 struct crypto_shash *hash; 467 468 hash = crypto_spawn_shash(spawn); 469 if (IS_ERR(hash)) 470 return PTR_ERR(hash); 471 472 ctx->child = hash; 473 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 474 sizeof(struct cryptd_hash_request_ctx) + 475 crypto_shash_descsize(hash)); 476 return 0; 477 } 478 479 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm) 480 { 481 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 482 483 crypto_free_shash(ctx->child); 484 } 485 486 static int cryptd_hash_setkey(struct crypto_ahash *parent, 487 const u8 *key, unsigned int keylen) 488 { 489 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); 490 struct crypto_shash *child = ctx->child; 491 int err; 492 493 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK); 494 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) & 495 CRYPTO_TFM_REQ_MASK); 496 err = crypto_shash_setkey(child, key, keylen); 497 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) & 498 CRYPTO_TFM_RES_MASK); 499 return err; 500 } 501 502 static int cryptd_hash_enqueue(struct ahash_request *req, 503 crypto_completion_t compl) 504 { 505 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 506 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 507 struct cryptd_queue *queue = 508 cryptd_get_queue(crypto_ahash_tfm(tfm)); 509 510 rctx->complete = req->base.complete; 511 req->base.complete = compl; 512 513 return cryptd_enqueue_request(queue, &req->base); 514 } 515 516 static void cryptd_hash_complete(struct ahash_request *req, int err) 517 { 518 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 519 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); 520 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 521 int refcnt = atomic_read(&ctx->refcnt); 522 523 local_bh_disable(); 524 rctx->complete(&req->base, err); 525 local_bh_enable(); 526 527 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 528 crypto_free_ahash(tfm); 529 } 530 531 static void cryptd_hash_init(struct crypto_async_request *req_async, int err) 532 { 533 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 534 struct crypto_shash *child = ctx->child; 535 struct ahash_request *req = ahash_request_cast(req_async); 536 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 537 struct shash_desc *desc = &rctx->desc; 538 539 if (unlikely(err == -EINPROGRESS)) 540 goto out; 541 542 desc->tfm = child; 543 544 err = crypto_shash_init(desc); 545 546 req->base.complete = rctx->complete; 547 548 out: 549 cryptd_hash_complete(req, err); 550 } 551 552 static int cryptd_hash_init_enqueue(struct ahash_request *req) 553 { 554 return cryptd_hash_enqueue(req, cryptd_hash_init); 555 } 556 557 static void cryptd_hash_update(struct crypto_async_request *req_async, int err) 558 { 559 struct ahash_request *req = ahash_request_cast(req_async); 560 struct cryptd_hash_request_ctx *rctx; 561 562 rctx = ahash_request_ctx(req); 563 564 if (unlikely(err == -EINPROGRESS)) 565 goto out; 566 567 err = shash_ahash_update(req, &rctx->desc); 568 569 req->base.complete = rctx->complete; 570 571 out: 572 cryptd_hash_complete(req, err); 573 } 574 575 static int cryptd_hash_update_enqueue(struct ahash_request *req) 576 { 577 return cryptd_hash_enqueue(req, cryptd_hash_update); 578 } 579 580 static void cryptd_hash_final(struct crypto_async_request *req_async, int err) 581 { 582 struct ahash_request *req = ahash_request_cast(req_async); 583 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 584 585 if (unlikely(err == -EINPROGRESS)) 586 goto out; 587 588 err = crypto_shash_final(&rctx->desc, req->result); 589 590 req->base.complete = rctx->complete; 591 592 out: 593 cryptd_hash_complete(req, err); 594 } 595 596 static int cryptd_hash_final_enqueue(struct ahash_request *req) 597 { 598 return cryptd_hash_enqueue(req, cryptd_hash_final); 599 } 600 601 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err) 602 { 603 struct ahash_request *req = ahash_request_cast(req_async); 604 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 605 606 if (unlikely(err == -EINPROGRESS)) 607 goto out; 608 609 err = shash_ahash_finup(req, &rctx->desc); 610 611 req->base.complete = rctx->complete; 612 613 out: 614 cryptd_hash_complete(req, err); 615 } 616 617 static int cryptd_hash_finup_enqueue(struct ahash_request *req) 618 { 619 return cryptd_hash_enqueue(req, cryptd_hash_finup); 620 } 621 622 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err) 623 { 624 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 625 struct crypto_shash *child = ctx->child; 626 struct ahash_request *req = ahash_request_cast(req_async); 627 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 628 struct shash_desc *desc = &rctx->desc; 629 630 if (unlikely(err == -EINPROGRESS)) 631 goto out; 632 633 desc->tfm = child; 634 635 err = shash_ahash_digest(req, desc); 636 637 req->base.complete = rctx->complete; 638 639 out: 640 cryptd_hash_complete(req, err); 641 } 642 643 static int cryptd_hash_digest_enqueue(struct ahash_request *req) 644 { 645 return cryptd_hash_enqueue(req, cryptd_hash_digest); 646 } 647 648 static int cryptd_hash_export(struct ahash_request *req, void *out) 649 { 650 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 651 652 return crypto_shash_export(&rctx->desc, out); 653 } 654 655 static int cryptd_hash_import(struct ahash_request *req, const void *in) 656 { 657 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 658 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); 659 struct shash_desc *desc = cryptd_shash_desc(req); 660 661 desc->tfm = ctx->child; 662 663 return crypto_shash_import(desc, in); 664 } 665 666 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, 667 struct cryptd_queue *queue) 668 { 669 struct hashd_instance_ctx *ctx; 670 struct ahash_instance *inst; 671 struct shash_alg *salg; 672 struct crypto_alg *alg; 673 u32 type = 0; 674 u32 mask = 0; 675 int err; 676 677 cryptd_check_internal(tb, &type, &mask); 678 679 salg = shash_attr_alg(tb[1], type, mask); 680 if (IS_ERR(salg)) 681 return PTR_ERR(salg); 682 683 alg = &salg->base; 684 inst = cryptd_alloc_instance(alg, ahash_instance_headroom(), 685 sizeof(*ctx)); 686 err = PTR_ERR(inst); 687 if (IS_ERR(inst)) 688 goto out_put_alg; 689 690 ctx = ahash_instance_ctx(inst); 691 ctx->queue = queue; 692 693 err = crypto_init_shash_spawn(&ctx->spawn, salg, 694 ahash_crypto_instance(inst)); 695 if (err) 696 goto out_free_inst; 697 698 inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC | 699 (alg->cra_flags & (CRYPTO_ALG_INTERNAL | 700 CRYPTO_ALG_OPTIONAL_KEY)); 701 702 inst->alg.halg.digestsize = salg->digestsize; 703 inst->alg.halg.statesize = salg->statesize; 704 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx); 705 706 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm; 707 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm; 708 709 inst->alg.init = cryptd_hash_init_enqueue; 710 inst->alg.update = cryptd_hash_update_enqueue; 711 inst->alg.final = cryptd_hash_final_enqueue; 712 inst->alg.finup = cryptd_hash_finup_enqueue; 713 inst->alg.export = cryptd_hash_export; 714 inst->alg.import = cryptd_hash_import; 715 if (crypto_shash_alg_has_setkey(salg)) 716 inst->alg.setkey = cryptd_hash_setkey; 717 inst->alg.digest = cryptd_hash_digest_enqueue; 718 719 err = ahash_register_instance(tmpl, inst); 720 if (err) { 721 crypto_drop_shash(&ctx->spawn); 722 out_free_inst: 723 kfree(inst); 724 } 725 726 out_put_alg: 727 crypto_mod_put(alg); 728 return err; 729 } 730 731 static int cryptd_aead_setkey(struct crypto_aead *parent, 732 const u8 *key, unsigned int keylen) 733 { 734 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); 735 struct crypto_aead *child = ctx->child; 736 737 return crypto_aead_setkey(child, key, keylen); 738 } 739 740 static int cryptd_aead_setauthsize(struct crypto_aead *parent, 741 unsigned int authsize) 742 { 743 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); 744 struct crypto_aead *child = ctx->child; 745 746 return crypto_aead_setauthsize(child, authsize); 747 } 748 749 static void cryptd_aead_crypt(struct aead_request *req, 750 struct crypto_aead *child, 751 int err, 752 int (*crypt)(struct aead_request *req)) 753 { 754 struct cryptd_aead_request_ctx *rctx; 755 struct cryptd_aead_ctx *ctx; 756 crypto_completion_t compl; 757 struct crypto_aead *tfm; 758 int refcnt; 759 760 rctx = aead_request_ctx(req); 761 compl = rctx->complete; 762 763 tfm = crypto_aead_reqtfm(req); 764 765 if (unlikely(err == -EINPROGRESS)) 766 goto out; 767 aead_request_set_tfm(req, child); 768 err = crypt( req ); 769 770 out: 771 ctx = crypto_aead_ctx(tfm); 772 refcnt = atomic_read(&ctx->refcnt); 773 774 local_bh_disable(); 775 compl(&req->base, err); 776 local_bh_enable(); 777 778 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 779 crypto_free_aead(tfm); 780 } 781 782 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err) 783 { 784 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm); 785 struct crypto_aead *child = ctx->child; 786 struct aead_request *req; 787 788 req = container_of(areq, struct aead_request, base); 789 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt); 790 } 791 792 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err) 793 { 794 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm); 795 struct crypto_aead *child = ctx->child; 796 struct aead_request *req; 797 798 req = container_of(areq, struct aead_request, base); 799 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt); 800 } 801 802 static int cryptd_aead_enqueue(struct aead_request *req, 803 crypto_completion_t compl) 804 { 805 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req); 806 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 807 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm)); 808 809 rctx->complete = req->base.complete; 810 req->base.complete = compl; 811 return cryptd_enqueue_request(queue, &req->base); 812 } 813 814 static int cryptd_aead_encrypt_enqueue(struct aead_request *req) 815 { 816 return cryptd_aead_enqueue(req, cryptd_aead_encrypt ); 817 } 818 819 static int cryptd_aead_decrypt_enqueue(struct aead_request *req) 820 { 821 return cryptd_aead_enqueue(req, cryptd_aead_decrypt ); 822 } 823 824 static int cryptd_aead_init_tfm(struct crypto_aead *tfm) 825 { 826 struct aead_instance *inst = aead_alg_instance(tfm); 827 struct aead_instance_ctx *ictx = aead_instance_ctx(inst); 828 struct crypto_aead_spawn *spawn = &ictx->aead_spawn; 829 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); 830 struct crypto_aead *cipher; 831 832 cipher = crypto_spawn_aead(spawn); 833 if (IS_ERR(cipher)) 834 return PTR_ERR(cipher); 835 836 ctx->child = cipher; 837 crypto_aead_set_reqsize( 838 tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx), 839 crypto_aead_reqsize(cipher))); 840 return 0; 841 } 842 843 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm) 844 { 845 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); 846 crypto_free_aead(ctx->child); 847 } 848 849 static int cryptd_create_aead(struct crypto_template *tmpl, 850 struct rtattr **tb, 851 struct cryptd_queue *queue) 852 { 853 struct aead_instance_ctx *ctx; 854 struct aead_instance *inst; 855 struct aead_alg *alg; 856 const char *name; 857 u32 type = 0; 858 u32 mask = CRYPTO_ALG_ASYNC; 859 int err; 860 861 cryptd_check_internal(tb, &type, &mask); 862 863 name = crypto_attr_alg_name(tb[1]); 864 if (IS_ERR(name)) 865 return PTR_ERR(name); 866 867 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 868 if (!inst) 869 return -ENOMEM; 870 871 ctx = aead_instance_ctx(inst); 872 ctx->queue = queue; 873 874 crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst)); 875 err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask); 876 if (err) 877 goto out_free_inst; 878 879 alg = crypto_spawn_aead_alg(&ctx->aead_spawn); 880 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base); 881 if (err) 882 goto out_drop_aead; 883 884 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC | 885 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); 886 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx); 887 888 inst->alg.ivsize = crypto_aead_alg_ivsize(alg); 889 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg); 890 891 inst->alg.init = cryptd_aead_init_tfm; 892 inst->alg.exit = cryptd_aead_exit_tfm; 893 inst->alg.setkey = cryptd_aead_setkey; 894 inst->alg.setauthsize = cryptd_aead_setauthsize; 895 inst->alg.encrypt = cryptd_aead_encrypt_enqueue; 896 inst->alg.decrypt = cryptd_aead_decrypt_enqueue; 897 898 err = aead_register_instance(tmpl, inst); 899 if (err) { 900 out_drop_aead: 901 crypto_drop_aead(&ctx->aead_spawn); 902 out_free_inst: 903 kfree(inst); 904 } 905 return err; 906 } 907 908 static struct cryptd_queue queue; 909 910 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb) 911 { 912 struct crypto_attr_type *algt; 913 914 algt = crypto_get_attr_type(tb); 915 if (IS_ERR(algt)) 916 return PTR_ERR(algt); 917 918 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { 919 case CRYPTO_ALG_TYPE_BLKCIPHER: 920 return cryptd_create_skcipher(tmpl, tb, &queue); 921 case CRYPTO_ALG_TYPE_DIGEST: 922 return cryptd_create_hash(tmpl, tb, &queue); 923 case CRYPTO_ALG_TYPE_AEAD: 924 return cryptd_create_aead(tmpl, tb, &queue); 925 } 926 927 return -EINVAL; 928 } 929 930 static void cryptd_free(struct crypto_instance *inst) 931 { 932 struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst); 933 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); 934 struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst); 935 936 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { 937 case CRYPTO_ALG_TYPE_AHASH: 938 crypto_drop_shash(&hctx->spawn); 939 kfree(ahash_instance(inst)); 940 return; 941 case CRYPTO_ALG_TYPE_AEAD: 942 crypto_drop_aead(&aead_ctx->aead_spawn); 943 kfree(aead_instance(inst)); 944 return; 945 default: 946 crypto_drop_spawn(&ctx->spawn); 947 kfree(inst); 948 } 949 } 950 951 static struct crypto_template cryptd_tmpl = { 952 .name = "cryptd", 953 .create = cryptd_create, 954 .free = cryptd_free, 955 .module = THIS_MODULE, 956 }; 957 958 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name, 959 u32 type, u32 mask) 960 { 961 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 962 struct cryptd_skcipher_ctx *ctx; 963 struct crypto_skcipher *tfm; 964 965 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 966 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 967 return ERR_PTR(-EINVAL); 968 969 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask); 970 if (IS_ERR(tfm)) 971 return ERR_CAST(tfm); 972 973 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 974 crypto_free_skcipher(tfm); 975 return ERR_PTR(-EINVAL); 976 } 977 978 ctx = crypto_skcipher_ctx(tfm); 979 atomic_set(&ctx->refcnt, 1); 980 981 return container_of(tfm, struct cryptd_skcipher, base); 982 } 983 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher); 984 985 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm) 986 { 987 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); 988 989 return &ctx->child->base; 990 } 991 EXPORT_SYMBOL_GPL(cryptd_skcipher_child); 992 993 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm) 994 { 995 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); 996 997 return atomic_read(&ctx->refcnt) - 1; 998 } 999 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued); 1000 1001 void cryptd_free_skcipher(struct cryptd_skcipher *tfm) 1002 { 1003 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); 1004 1005 if (atomic_dec_and_test(&ctx->refcnt)) 1006 crypto_free_skcipher(&tfm->base); 1007 } 1008 EXPORT_SYMBOL_GPL(cryptd_free_skcipher); 1009 1010 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name, 1011 u32 type, u32 mask) 1012 { 1013 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 1014 struct cryptd_hash_ctx *ctx; 1015 struct crypto_ahash *tfm; 1016 1017 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 1018 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 1019 return ERR_PTR(-EINVAL); 1020 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask); 1021 if (IS_ERR(tfm)) 1022 return ERR_CAST(tfm); 1023 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 1024 crypto_free_ahash(tfm); 1025 return ERR_PTR(-EINVAL); 1026 } 1027 1028 ctx = crypto_ahash_ctx(tfm); 1029 atomic_set(&ctx->refcnt, 1); 1030 1031 return __cryptd_ahash_cast(tfm); 1032 } 1033 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash); 1034 1035 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm) 1036 { 1037 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 1038 1039 return ctx->child; 1040 } 1041 EXPORT_SYMBOL_GPL(cryptd_ahash_child); 1042 1043 struct shash_desc *cryptd_shash_desc(struct ahash_request *req) 1044 { 1045 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 1046 return &rctx->desc; 1047 } 1048 EXPORT_SYMBOL_GPL(cryptd_shash_desc); 1049 1050 bool cryptd_ahash_queued(struct cryptd_ahash *tfm) 1051 { 1052 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 1053 1054 return atomic_read(&ctx->refcnt) - 1; 1055 } 1056 EXPORT_SYMBOL_GPL(cryptd_ahash_queued); 1057 1058 void cryptd_free_ahash(struct cryptd_ahash *tfm) 1059 { 1060 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 1061 1062 if (atomic_dec_and_test(&ctx->refcnt)) 1063 crypto_free_ahash(&tfm->base); 1064 } 1065 EXPORT_SYMBOL_GPL(cryptd_free_ahash); 1066 1067 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name, 1068 u32 type, u32 mask) 1069 { 1070 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 1071 struct cryptd_aead_ctx *ctx; 1072 struct crypto_aead *tfm; 1073 1074 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 1075 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 1076 return ERR_PTR(-EINVAL); 1077 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask); 1078 if (IS_ERR(tfm)) 1079 return ERR_CAST(tfm); 1080 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 1081 crypto_free_aead(tfm); 1082 return ERR_PTR(-EINVAL); 1083 } 1084 1085 ctx = crypto_aead_ctx(tfm); 1086 atomic_set(&ctx->refcnt, 1); 1087 1088 return __cryptd_aead_cast(tfm); 1089 } 1090 EXPORT_SYMBOL_GPL(cryptd_alloc_aead); 1091 1092 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm) 1093 { 1094 struct cryptd_aead_ctx *ctx; 1095 ctx = crypto_aead_ctx(&tfm->base); 1096 return ctx->child; 1097 } 1098 EXPORT_SYMBOL_GPL(cryptd_aead_child); 1099 1100 bool cryptd_aead_queued(struct cryptd_aead *tfm) 1101 { 1102 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); 1103 1104 return atomic_read(&ctx->refcnt) - 1; 1105 } 1106 EXPORT_SYMBOL_GPL(cryptd_aead_queued); 1107 1108 void cryptd_free_aead(struct cryptd_aead *tfm) 1109 { 1110 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); 1111 1112 if (atomic_dec_and_test(&ctx->refcnt)) 1113 crypto_free_aead(&tfm->base); 1114 } 1115 EXPORT_SYMBOL_GPL(cryptd_free_aead); 1116 1117 static int __init cryptd_init(void) 1118 { 1119 int err; 1120 1121 err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen); 1122 if (err) 1123 return err; 1124 1125 err = crypto_register_template(&cryptd_tmpl); 1126 if (err) 1127 cryptd_fini_queue(&queue); 1128 1129 return err; 1130 } 1131 1132 static void __exit cryptd_exit(void) 1133 { 1134 cryptd_fini_queue(&queue); 1135 crypto_unregister_template(&cryptd_tmpl); 1136 } 1137 1138 subsys_initcall(cryptd_init); 1139 module_exit(cryptd_exit); 1140 1141 MODULE_LICENSE("GPL"); 1142 MODULE_DESCRIPTION("Software async crypto daemon"); 1143 MODULE_ALIAS_CRYPTO("cryptd"); 1144