xref: /openbmc/linux/crypto/cryptd.c (revision 584eab291c67894cb17cc87544b9d086228ea70f)
1 /*
2  * Software async crypto daemon.
3  *
4  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * Added AEAD support to cryptd.
7  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
8  *             Adrian Hoban <adrian.hoban@intel.com>
9  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
10  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
11  *    Copyright (c) 2010, Intel Corporation.
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 2 of the License, or (at your option)
16  * any later version.
17  *
18  */
19 
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/cryptd.h>
24 #include <crypto/crypto_wq.h>
25 #include <linux/atomic.h>
26 #include <linux/err.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/scatterlist.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 
35 static unsigned int cryptd_max_cpu_qlen = 1000;
36 module_param(cryptd_max_cpu_qlen, uint, 0);
37 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
38 
39 struct cryptd_cpu_queue {
40 	struct crypto_queue queue;
41 	struct work_struct work;
42 };
43 
44 struct cryptd_queue {
45 	struct cryptd_cpu_queue __percpu *cpu_queue;
46 };
47 
48 struct cryptd_instance_ctx {
49 	struct crypto_spawn spawn;
50 	struct cryptd_queue *queue;
51 };
52 
53 struct skcipherd_instance_ctx {
54 	struct crypto_skcipher_spawn spawn;
55 	struct cryptd_queue *queue;
56 };
57 
58 struct hashd_instance_ctx {
59 	struct crypto_shash_spawn spawn;
60 	struct cryptd_queue *queue;
61 };
62 
63 struct aead_instance_ctx {
64 	struct crypto_aead_spawn aead_spawn;
65 	struct cryptd_queue *queue;
66 };
67 
68 struct cryptd_blkcipher_ctx {
69 	atomic_t refcnt;
70 	struct crypto_blkcipher *child;
71 };
72 
73 struct cryptd_blkcipher_request_ctx {
74 	crypto_completion_t complete;
75 };
76 
77 struct cryptd_skcipher_ctx {
78 	atomic_t refcnt;
79 	struct crypto_sync_skcipher *child;
80 };
81 
82 struct cryptd_skcipher_request_ctx {
83 	crypto_completion_t complete;
84 };
85 
86 struct cryptd_hash_ctx {
87 	atomic_t refcnt;
88 	struct crypto_shash *child;
89 };
90 
91 struct cryptd_hash_request_ctx {
92 	crypto_completion_t complete;
93 	struct shash_desc desc;
94 };
95 
96 struct cryptd_aead_ctx {
97 	atomic_t refcnt;
98 	struct crypto_aead *child;
99 };
100 
101 struct cryptd_aead_request_ctx {
102 	crypto_completion_t complete;
103 };
104 
105 static void cryptd_queue_worker(struct work_struct *work);
106 
107 static int cryptd_init_queue(struct cryptd_queue *queue,
108 			     unsigned int max_cpu_qlen)
109 {
110 	int cpu;
111 	struct cryptd_cpu_queue *cpu_queue;
112 
113 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
114 	if (!queue->cpu_queue)
115 		return -ENOMEM;
116 	for_each_possible_cpu(cpu) {
117 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
118 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
119 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
120 	}
121 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
122 	return 0;
123 }
124 
125 static void cryptd_fini_queue(struct cryptd_queue *queue)
126 {
127 	int cpu;
128 	struct cryptd_cpu_queue *cpu_queue;
129 
130 	for_each_possible_cpu(cpu) {
131 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
132 		BUG_ON(cpu_queue->queue.qlen);
133 	}
134 	free_percpu(queue->cpu_queue);
135 }
136 
137 static int cryptd_enqueue_request(struct cryptd_queue *queue,
138 				  struct crypto_async_request *request)
139 {
140 	int cpu, err;
141 	struct cryptd_cpu_queue *cpu_queue;
142 	atomic_t *refcnt;
143 
144 	cpu = get_cpu();
145 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
146 	err = crypto_enqueue_request(&cpu_queue->queue, request);
147 
148 	refcnt = crypto_tfm_ctx(request->tfm);
149 
150 	if (err == -ENOSPC)
151 		goto out_put_cpu;
152 
153 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
154 
155 	if (!atomic_read(refcnt))
156 		goto out_put_cpu;
157 
158 	atomic_inc(refcnt);
159 
160 out_put_cpu:
161 	put_cpu();
162 
163 	return err;
164 }
165 
166 /* Called in workqueue context, do one real cryption work (via
167  * req->complete) and reschedule itself if there are more work to
168  * do. */
169 static void cryptd_queue_worker(struct work_struct *work)
170 {
171 	struct cryptd_cpu_queue *cpu_queue;
172 	struct crypto_async_request *req, *backlog;
173 
174 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
175 	/*
176 	 * Only handle one request at a time to avoid hogging crypto workqueue.
177 	 * preempt_disable/enable is used to prevent being preempted by
178 	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
179 	 * cryptd_enqueue_request() being accessed from software interrupts.
180 	 */
181 	local_bh_disable();
182 	preempt_disable();
183 	backlog = crypto_get_backlog(&cpu_queue->queue);
184 	req = crypto_dequeue_request(&cpu_queue->queue);
185 	preempt_enable();
186 	local_bh_enable();
187 
188 	if (!req)
189 		return;
190 
191 	if (backlog)
192 		backlog->complete(backlog, -EINPROGRESS);
193 	req->complete(req, 0);
194 
195 	if (cpu_queue->queue.qlen)
196 		queue_work(kcrypto_wq, &cpu_queue->work);
197 }
198 
199 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
200 {
201 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
202 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
203 	return ictx->queue;
204 }
205 
206 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
207 					 u32 *mask)
208 {
209 	struct crypto_attr_type *algt;
210 
211 	algt = crypto_get_attr_type(tb);
212 	if (IS_ERR(algt))
213 		return;
214 
215 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
216 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
217 }
218 
219 static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
220 				   const u8 *key, unsigned int keylen)
221 {
222 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
223 	struct crypto_blkcipher *child = ctx->child;
224 	int err;
225 
226 	crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
227 	crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
228 					  CRYPTO_TFM_REQ_MASK);
229 	err = crypto_blkcipher_setkey(child, key, keylen);
230 	crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
231 					    CRYPTO_TFM_RES_MASK);
232 	return err;
233 }
234 
235 static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
236 				   struct crypto_blkcipher *child,
237 				   int err,
238 				   int (*crypt)(struct blkcipher_desc *desc,
239 						struct scatterlist *dst,
240 						struct scatterlist *src,
241 						unsigned int len))
242 {
243 	struct cryptd_blkcipher_request_ctx *rctx;
244 	struct cryptd_blkcipher_ctx *ctx;
245 	struct crypto_ablkcipher *tfm;
246 	struct blkcipher_desc desc;
247 	int refcnt;
248 
249 	rctx = ablkcipher_request_ctx(req);
250 
251 	if (unlikely(err == -EINPROGRESS))
252 		goto out;
253 
254 	desc.tfm = child;
255 	desc.info = req->info;
256 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
257 
258 	err = crypt(&desc, req->dst, req->src, req->nbytes);
259 
260 	req->base.complete = rctx->complete;
261 
262 out:
263 	tfm = crypto_ablkcipher_reqtfm(req);
264 	ctx = crypto_ablkcipher_ctx(tfm);
265 	refcnt = atomic_read(&ctx->refcnt);
266 
267 	local_bh_disable();
268 	rctx->complete(&req->base, err);
269 	local_bh_enable();
270 
271 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
272 		crypto_free_ablkcipher(tfm);
273 }
274 
275 static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
276 {
277 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
278 	struct crypto_blkcipher *child = ctx->child;
279 
280 	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
281 			       crypto_blkcipher_crt(child)->encrypt);
282 }
283 
284 static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
285 {
286 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
287 	struct crypto_blkcipher *child = ctx->child;
288 
289 	cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
290 			       crypto_blkcipher_crt(child)->decrypt);
291 }
292 
293 static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
294 				    crypto_completion_t compl)
295 {
296 	struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
297 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
298 	struct cryptd_queue *queue;
299 
300 	queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
301 	rctx->complete = req->base.complete;
302 	req->base.complete = compl;
303 
304 	return cryptd_enqueue_request(queue, &req->base);
305 }
306 
307 static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
308 {
309 	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
310 }
311 
312 static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
313 {
314 	return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
315 }
316 
317 static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
318 {
319 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
320 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
321 	struct crypto_spawn *spawn = &ictx->spawn;
322 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
323 	struct crypto_blkcipher *cipher;
324 
325 	cipher = crypto_spawn_blkcipher(spawn);
326 	if (IS_ERR(cipher))
327 		return PTR_ERR(cipher);
328 
329 	ctx->child = cipher;
330 	tfm->crt_ablkcipher.reqsize =
331 		sizeof(struct cryptd_blkcipher_request_ctx);
332 	return 0;
333 }
334 
335 static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
336 {
337 	struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
338 
339 	crypto_free_blkcipher(ctx->child);
340 }
341 
342 static int cryptd_init_instance(struct crypto_instance *inst,
343 				struct crypto_alg *alg)
344 {
345 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
346 		     "cryptd(%s)",
347 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
348 		return -ENAMETOOLONG;
349 
350 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
351 
352 	inst->alg.cra_priority = alg->cra_priority + 50;
353 	inst->alg.cra_blocksize = alg->cra_blocksize;
354 	inst->alg.cra_alignmask = alg->cra_alignmask;
355 
356 	return 0;
357 }
358 
359 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
360 				   unsigned int tail)
361 {
362 	char *p;
363 	struct crypto_instance *inst;
364 	int err;
365 
366 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
367 	if (!p)
368 		return ERR_PTR(-ENOMEM);
369 
370 	inst = (void *)(p + head);
371 
372 	err = cryptd_init_instance(inst, alg);
373 	if (err)
374 		goto out_free_inst;
375 
376 out:
377 	return p;
378 
379 out_free_inst:
380 	kfree(p);
381 	p = ERR_PTR(err);
382 	goto out;
383 }
384 
385 static int cryptd_create_blkcipher(struct crypto_template *tmpl,
386 				   struct rtattr **tb,
387 				   struct cryptd_queue *queue)
388 {
389 	struct cryptd_instance_ctx *ctx;
390 	struct crypto_instance *inst;
391 	struct crypto_alg *alg;
392 	u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
393 	u32 mask = CRYPTO_ALG_TYPE_MASK;
394 	int err;
395 
396 	cryptd_check_internal(tb, &type, &mask);
397 
398 	alg = crypto_get_attr_alg(tb, type, mask);
399 	if (IS_ERR(alg))
400 		return PTR_ERR(alg);
401 
402 	inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
403 	err = PTR_ERR(inst);
404 	if (IS_ERR(inst))
405 		goto out_put_alg;
406 
407 	ctx = crypto_instance_ctx(inst);
408 	ctx->queue = queue;
409 
410 	err = crypto_init_spawn(&ctx->spawn, alg, inst,
411 				CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
412 	if (err)
413 		goto out_free_inst;
414 
415 	type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
416 	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
417 		type |= CRYPTO_ALG_INTERNAL;
418 	inst->alg.cra_flags = type;
419 	inst->alg.cra_type = &crypto_ablkcipher_type;
420 
421 	inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
422 	inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
423 	inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
424 
425 	inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;
426 
427 	inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);
428 
429 	inst->alg.cra_init = cryptd_blkcipher_init_tfm;
430 	inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;
431 
432 	inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
433 	inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
434 	inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;
435 
436 	err = crypto_register_instance(tmpl, inst);
437 	if (err) {
438 		crypto_drop_spawn(&ctx->spawn);
439 out_free_inst:
440 		kfree(inst);
441 	}
442 
443 out_put_alg:
444 	crypto_mod_put(alg);
445 	return err;
446 }
447 
448 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
449 				  const u8 *key, unsigned int keylen)
450 {
451 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
452 	struct crypto_sync_skcipher *child = ctx->child;
453 	int err;
454 
455 	crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
456 	crypto_sync_skcipher_set_flags(child,
457 				       crypto_skcipher_get_flags(parent) &
458 					 CRYPTO_TFM_REQ_MASK);
459 	err = crypto_sync_skcipher_setkey(child, key, keylen);
460 	crypto_skcipher_set_flags(parent,
461 				  crypto_sync_skcipher_get_flags(child) &
462 					  CRYPTO_TFM_RES_MASK);
463 	return err;
464 }
465 
466 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
467 {
468 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
469 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
470 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
471 	int refcnt = atomic_read(&ctx->refcnt);
472 
473 	local_bh_disable();
474 	rctx->complete(&req->base, err);
475 	local_bh_enable();
476 
477 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
478 		crypto_free_skcipher(tfm);
479 }
480 
481 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
482 				    int err)
483 {
484 	struct skcipher_request *req = skcipher_request_cast(base);
485 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
486 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
487 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
488 	struct crypto_sync_skcipher *child = ctx->child;
489 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
490 
491 	if (unlikely(err == -EINPROGRESS))
492 		goto out;
493 
494 	skcipher_request_set_sync_tfm(subreq, child);
495 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
496 				      NULL, NULL);
497 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
498 				   req->iv);
499 
500 	err = crypto_skcipher_encrypt(subreq);
501 	skcipher_request_zero(subreq);
502 
503 	req->base.complete = rctx->complete;
504 
505 out:
506 	cryptd_skcipher_complete(req, err);
507 }
508 
509 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
510 				    int err)
511 {
512 	struct skcipher_request *req = skcipher_request_cast(base);
513 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
514 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
515 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
516 	struct crypto_sync_skcipher *child = ctx->child;
517 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
518 
519 	if (unlikely(err == -EINPROGRESS))
520 		goto out;
521 
522 	skcipher_request_set_sync_tfm(subreq, child);
523 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
524 				      NULL, NULL);
525 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
526 				   req->iv);
527 
528 	err = crypto_skcipher_decrypt(subreq);
529 	skcipher_request_zero(subreq);
530 
531 	req->base.complete = rctx->complete;
532 
533 out:
534 	cryptd_skcipher_complete(req, err);
535 }
536 
537 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
538 				   crypto_completion_t compl)
539 {
540 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
541 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
542 	struct cryptd_queue *queue;
543 
544 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
545 	rctx->complete = req->base.complete;
546 	req->base.complete = compl;
547 
548 	return cryptd_enqueue_request(queue, &req->base);
549 }
550 
551 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
552 {
553 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
554 }
555 
556 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
557 {
558 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
559 }
560 
561 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
562 {
563 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
564 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
565 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
566 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
567 	struct crypto_skcipher *cipher;
568 
569 	cipher = crypto_spawn_skcipher(spawn);
570 	if (IS_ERR(cipher))
571 		return PTR_ERR(cipher);
572 
573 	ctx->child = (struct crypto_sync_skcipher *)cipher;
574 	crypto_skcipher_set_reqsize(
575 		tfm, sizeof(struct cryptd_skcipher_request_ctx));
576 	return 0;
577 }
578 
579 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
580 {
581 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
582 
583 	crypto_free_sync_skcipher(ctx->child);
584 }
585 
586 static void cryptd_skcipher_free(struct skcipher_instance *inst)
587 {
588 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
589 
590 	crypto_drop_skcipher(&ctx->spawn);
591 }
592 
593 static int cryptd_create_skcipher(struct crypto_template *tmpl,
594 				  struct rtattr **tb,
595 				  struct cryptd_queue *queue)
596 {
597 	struct skcipherd_instance_ctx *ctx;
598 	struct skcipher_instance *inst;
599 	struct skcipher_alg *alg;
600 	const char *name;
601 	u32 type;
602 	u32 mask;
603 	int err;
604 
605 	type = 0;
606 	mask = CRYPTO_ALG_ASYNC;
607 
608 	cryptd_check_internal(tb, &type, &mask);
609 
610 	name = crypto_attr_alg_name(tb[1]);
611 	if (IS_ERR(name))
612 		return PTR_ERR(name);
613 
614 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
615 	if (!inst)
616 		return -ENOMEM;
617 
618 	ctx = skcipher_instance_ctx(inst);
619 	ctx->queue = queue;
620 
621 	crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
622 	err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
623 	if (err)
624 		goto out_free_inst;
625 
626 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
627 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
628 	if (err)
629 		goto out_drop_skcipher;
630 
631 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
632 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
633 
634 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
635 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
636 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
637 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
638 
639 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
640 
641 	inst->alg.init = cryptd_skcipher_init_tfm;
642 	inst->alg.exit = cryptd_skcipher_exit_tfm;
643 
644 	inst->alg.setkey = cryptd_skcipher_setkey;
645 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
646 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
647 
648 	inst->free = cryptd_skcipher_free;
649 
650 	err = skcipher_register_instance(tmpl, inst);
651 	if (err) {
652 out_drop_skcipher:
653 		crypto_drop_skcipher(&ctx->spawn);
654 out_free_inst:
655 		kfree(inst);
656 	}
657 	return err;
658 }
659 
660 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
661 {
662 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
663 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
664 	struct crypto_shash_spawn *spawn = &ictx->spawn;
665 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
666 	struct crypto_shash *hash;
667 
668 	hash = crypto_spawn_shash(spawn);
669 	if (IS_ERR(hash))
670 		return PTR_ERR(hash);
671 
672 	ctx->child = hash;
673 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
674 				 sizeof(struct cryptd_hash_request_ctx) +
675 				 crypto_shash_descsize(hash));
676 	return 0;
677 }
678 
679 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
680 {
681 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
682 
683 	crypto_free_shash(ctx->child);
684 }
685 
686 static int cryptd_hash_setkey(struct crypto_ahash *parent,
687 				   const u8 *key, unsigned int keylen)
688 {
689 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
690 	struct crypto_shash *child = ctx->child;
691 	int err;
692 
693 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
694 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
695 				      CRYPTO_TFM_REQ_MASK);
696 	err = crypto_shash_setkey(child, key, keylen);
697 	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
698 				       CRYPTO_TFM_RES_MASK);
699 	return err;
700 }
701 
702 static int cryptd_hash_enqueue(struct ahash_request *req,
703 				crypto_completion_t compl)
704 {
705 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
706 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
707 	struct cryptd_queue *queue =
708 		cryptd_get_queue(crypto_ahash_tfm(tfm));
709 
710 	rctx->complete = req->base.complete;
711 	req->base.complete = compl;
712 
713 	return cryptd_enqueue_request(queue, &req->base);
714 }
715 
716 static void cryptd_hash_complete(struct ahash_request *req, int err)
717 {
718 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
719 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
720 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
721 	int refcnt = atomic_read(&ctx->refcnt);
722 
723 	local_bh_disable();
724 	rctx->complete(&req->base, err);
725 	local_bh_enable();
726 
727 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
728 		crypto_free_ahash(tfm);
729 }
730 
731 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
732 {
733 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
734 	struct crypto_shash *child = ctx->child;
735 	struct ahash_request *req = ahash_request_cast(req_async);
736 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
737 	struct shash_desc *desc = &rctx->desc;
738 
739 	if (unlikely(err == -EINPROGRESS))
740 		goto out;
741 
742 	desc->tfm = child;
743 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
744 
745 	err = crypto_shash_init(desc);
746 
747 	req->base.complete = rctx->complete;
748 
749 out:
750 	cryptd_hash_complete(req, err);
751 }
752 
753 static int cryptd_hash_init_enqueue(struct ahash_request *req)
754 {
755 	return cryptd_hash_enqueue(req, cryptd_hash_init);
756 }
757 
758 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
759 {
760 	struct ahash_request *req = ahash_request_cast(req_async);
761 	struct cryptd_hash_request_ctx *rctx;
762 
763 	rctx = ahash_request_ctx(req);
764 
765 	if (unlikely(err == -EINPROGRESS))
766 		goto out;
767 
768 	err = shash_ahash_update(req, &rctx->desc);
769 
770 	req->base.complete = rctx->complete;
771 
772 out:
773 	cryptd_hash_complete(req, err);
774 }
775 
776 static int cryptd_hash_update_enqueue(struct ahash_request *req)
777 {
778 	return cryptd_hash_enqueue(req, cryptd_hash_update);
779 }
780 
781 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
782 {
783 	struct ahash_request *req = ahash_request_cast(req_async);
784 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
785 
786 	if (unlikely(err == -EINPROGRESS))
787 		goto out;
788 
789 	err = crypto_shash_final(&rctx->desc, req->result);
790 
791 	req->base.complete = rctx->complete;
792 
793 out:
794 	cryptd_hash_complete(req, err);
795 }
796 
797 static int cryptd_hash_final_enqueue(struct ahash_request *req)
798 {
799 	return cryptd_hash_enqueue(req, cryptd_hash_final);
800 }
801 
802 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
803 {
804 	struct ahash_request *req = ahash_request_cast(req_async);
805 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
806 
807 	if (unlikely(err == -EINPROGRESS))
808 		goto out;
809 
810 	err = shash_ahash_finup(req, &rctx->desc);
811 
812 	req->base.complete = rctx->complete;
813 
814 out:
815 	cryptd_hash_complete(req, err);
816 }
817 
818 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
819 {
820 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
821 }
822 
823 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
824 {
825 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
826 	struct crypto_shash *child = ctx->child;
827 	struct ahash_request *req = ahash_request_cast(req_async);
828 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
829 	struct shash_desc *desc = &rctx->desc;
830 
831 	if (unlikely(err == -EINPROGRESS))
832 		goto out;
833 
834 	desc->tfm = child;
835 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
836 
837 	err = shash_ahash_digest(req, desc);
838 
839 	req->base.complete = rctx->complete;
840 
841 out:
842 	cryptd_hash_complete(req, err);
843 }
844 
845 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
846 {
847 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
848 }
849 
850 static int cryptd_hash_export(struct ahash_request *req, void *out)
851 {
852 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
853 
854 	return crypto_shash_export(&rctx->desc, out);
855 }
856 
857 static int cryptd_hash_import(struct ahash_request *req, const void *in)
858 {
859 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
860 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
861 	struct shash_desc *desc = cryptd_shash_desc(req);
862 
863 	desc->tfm = ctx->child;
864 	desc->flags = req->base.flags;
865 
866 	return crypto_shash_import(desc, in);
867 }
868 
869 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
870 			      struct cryptd_queue *queue)
871 {
872 	struct hashd_instance_ctx *ctx;
873 	struct ahash_instance *inst;
874 	struct shash_alg *salg;
875 	struct crypto_alg *alg;
876 	u32 type = 0;
877 	u32 mask = 0;
878 	int err;
879 
880 	cryptd_check_internal(tb, &type, &mask);
881 
882 	salg = shash_attr_alg(tb[1], type, mask);
883 	if (IS_ERR(salg))
884 		return PTR_ERR(salg);
885 
886 	alg = &salg->base;
887 	inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
888 				     sizeof(*ctx));
889 	err = PTR_ERR(inst);
890 	if (IS_ERR(inst))
891 		goto out_put_alg;
892 
893 	ctx = ahash_instance_ctx(inst);
894 	ctx->queue = queue;
895 
896 	err = crypto_init_shash_spawn(&ctx->spawn, salg,
897 				      ahash_crypto_instance(inst));
898 	if (err)
899 		goto out_free_inst;
900 
901 	inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
902 		(alg->cra_flags & (CRYPTO_ALG_INTERNAL |
903 				   CRYPTO_ALG_OPTIONAL_KEY));
904 
905 	inst->alg.halg.digestsize = salg->digestsize;
906 	inst->alg.halg.statesize = salg->statesize;
907 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
908 
909 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
910 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
911 
912 	inst->alg.init   = cryptd_hash_init_enqueue;
913 	inst->alg.update = cryptd_hash_update_enqueue;
914 	inst->alg.final  = cryptd_hash_final_enqueue;
915 	inst->alg.finup  = cryptd_hash_finup_enqueue;
916 	inst->alg.export = cryptd_hash_export;
917 	inst->alg.import = cryptd_hash_import;
918 	if (crypto_shash_alg_has_setkey(salg))
919 		inst->alg.setkey = cryptd_hash_setkey;
920 	inst->alg.digest = cryptd_hash_digest_enqueue;
921 
922 	err = ahash_register_instance(tmpl, inst);
923 	if (err) {
924 		crypto_drop_shash(&ctx->spawn);
925 out_free_inst:
926 		kfree(inst);
927 	}
928 
929 out_put_alg:
930 	crypto_mod_put(alg);
931 	return err;
932 }
933 
934 static int cryptd_aead_setkey(struct crypto_aead *parent,
935 			      const u8 *key, unsigned int keylen)
936 {
937 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
938 	struct crypto_aead *child = ctx->child;
939 
940 	return crypto_aead_setkey(child, key, keylen);
941 }
942 
943 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
944 				   unsigned int authsize)
945 {
946 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
947 	struct crypto_aead *child = ctx->child;
948 
949 	return crypto_aead_setauthsize(child, authsize);
950 }
951 
952 static void cryptd_aead_crypt(struct aead_request *req,
953 			struct crypto_aead *child,
954 			int err,
955 			int (*crypt)(struct aead_request *req))
956 {
957 	struct cryptd_aead_request_ctx *rctx;
958 	struct cryptd_aead_ctx *ctx;
959 	crypto_completion_t compl;
960 	struct crypto_aead *tfm;
961 	int refcnt;
962 
963 	rctx = aead_request_ctx(req);
964 	compl = rctx->complete;
965 
966 	tfm = crypto_aead_reqtfm(req);
967 
968 	if (unlikely(err == -EINPROGRESS))
969 		goto out;
970 	aead_request_set_tfm(req, child);
971 	err = crypt( req );
972 
973 out:
974 	ctx = crypto_aead_ctx(tfm);
975 	refcnt = atomic_read(&ctx->refcnt);
976 
977 	local_bh_disable();
978 	compl(&req->base, err);
979 	local_bh_enable();
980 
981 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
982 		crypto_free_aead(tfm);
983 }
984 
985 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
986 {
987 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
988 	struct crypto_aead *child = ctx->child;
989 	struct aead_request *req;
990 
991 	req = container_of(areq, struct aead_request, base);
992 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
993 }
994 
995 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
996 {
997 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
998 	struct crypto_aead *child = ctx->child;
999 	struct aead_request *req;
1000 
1001 	req = container_of(areq, struct aead_request, base);
1002 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
1003 }
1004 
1005 static int cryptd_aead_enqueue(struct aead_request *req,
1006 				    crypto_completion_t compl)
1007 {
1008 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
1009 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1010 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
1011 
1012 	rctx->complete = req->base.complete;
1013 	req->base.complete = compl;
1014 	return cryptd_enqueue_request(queue, &req->base);
1015 }
1016 
1017 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
1018 {
1019 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
1020 }
1021 
1022 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
1023 {
1024 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
1025 }
1026 
1027 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
1028 {
1029 	struct aead_instance *inst = aead_alg_instance(tfm);
1030 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
1031 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
1032 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1033 	struct crypto_aead *cipher;
1034 
1035 	cipher = crypto_spawn_aead(spawn);
1036 	if (IS_ERR(cipher))
1037 		return PTR_ERR(cipher);
1038 
1039 	ctx->child = cipher;
1040 	crypto_aead_set_reqsize(
1041 		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
1042 			 crypto_aead_reqsize(cipher)));
1043 	return 0;
1044 }
1045 
1046 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
1047 {
1048 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1049 	crypto_free_aead(ctx->child);
1050 }
1051 
1052 static int cryptd_create_aead(struct crypto_template *tmpl,
1053 		              struct rtattr **tb,
1054 			      struct cryptd_queue *queue)
1055 {
1056 	struct aead_instance_ctx *ctx;
1057 	struct aead_instance *inst;
1058 	struct aead_alg *alg;
1059 	const char *name;
1060 	u32 type = 0;
1061 	u32 mask = CRYPTO_ALG_ASYNC;
1062 	int err;
1063 
1064 	cryptd_check_internal(tb, &type, &mask);
1065 
1066 	name = crypto_attr_alg_name(tb[1]);
1067 	if (IS_ERR(name))
1068 		return PTR_ERR(name);
1069 
1070 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
1071 	if (!inst)
1072 		return -ENOMEM;
1073 
1074 	ctx = aead_instance_ctx(inst);
1075 	ctx->queue = queue;
1076 
1077 	crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
1078 	err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
1079 	if (err)
1080 		goto out_free_inst;
1081 
1082 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
1083 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
1084 	if (err)
1085 		goto out_drop_aead;
1086 
1087 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
1088 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
1089 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
1090 
1091 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
1092 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
1093 
1094 	inst->alg.init = cryptd_aead_init_tfm;
1095 	inst->alg.exit = cryptd_aead_exit_tfm;
1096 	inst->alg.setkey = cryptd_aead_setkey;
1097 	inst->alg.setauthsize = cryptd_aead_setauthsize;
1098 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
1099 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
1100 
1101 	err = aead_register_instance(tmpl, inst);
1102 	if (err) {
1103 out_drop_aead:
1104 		crypto_drop_aead(&ctx->aead_spawn);
1105 out_free_inst:
1106 		kfree(inst);
1107 	}
1108 	return err;
1109 }
1110 
1111 static struct cryptd_queue queue;
1112 
1113 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
1114 {
1115 	struct crypto_attr_type *algt;
1116 
1117 	algt = crypto_get_attr_type(tb);
1118 	if (IS_ERR(algt))
1119 		return PTR_ERR(algt);
1120 
1121 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
1122 	case CRYPTO_ALG_TYPE_BLKCIPHER:
1123 		if ((algt->type & CRYPTO_ALG_TYPE_MASK) ==
1124 		    CRYPTO_ALG_TYPE_BLKCIPHER)
1125 			return cryptd_create_blkcipher(tmpl, tb, &queue);
1126 
1127 		return cryptd_create_skcipher(tmpl, tb, &queue);
1128 	case CRYPTO_ALG_TYPE_DIGEST:
1129 		return cryptd_create_hash(tmpl, tb, &queue);
1130 	case CRYPTO_ALG_TYPE_AEAD:
1131 		return cryptd_create_aead(tmpl, tb, &queue);
1132 	}
1133 
1134 	return -EINVAL;
1135 }
1136 
1137 static void cryptd_free(struct crypto_instance *inst)
1138 {
1139 	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
1140 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
1141 	struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
1142 
1143 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
1144 	case CRYPTO_ALG_TYPE_AHASH:
1145 		crypto_drop_shash(&hctx->spawn);
1146 		kfree(ahash_instance(inst));
1147 		return;
1148 	case CRYPTO_ALG_TYPE_AEAD:
1149 		crypto_drop_aead(&aead_ctx->aead_spawn);
1150 		kfree(aead_instance(inst));
1151 		return;
1152 	default:
1153 		crypto_drop_spawn(&ctx->spawn);
1154 		kfree(inst);
1155 	}
1156 }
1157 
1158 static struct crypto_template cryptd_tmpl = {
1159 	.name = "cryptd",
1160 	.create = cryptd_create,
1161 	.free = cryptd_free,
1162 	.module = THIS_MODULE,
1163 };
1164 
1165 struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
1166 						  u32 type, u32 mask)
1167 {
1168 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1169 	struct cryptd_blkcipher_ctx *ctx;
1170 	struct crypto_tfm *tfm;
1171 
1172 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1173 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1174 		return ERR_PTR(-EINVAL);
1175 	type = crypto_skcipher_type(type);
1176 	mask &= ~CRYPTO_ALG_TYPE_MASK;
1177 	mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
1178 	tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
1179 	if (IS_ERR(tfm))
1180 		return ERR_CAST(tfm);
1181 	if (tfm->__crt_alg->cra_module != THIS_MODULE) {
1182 		crypto_free_tfm(tfm);
1183 		return ERR_PTR(-EINVAL);
1184 	}
1185 
1186 	ctx = crypto_tfm_ctx(tfm);
1187 	atomic_set(&ctx->refcnt, 1);
1188 
1189 	return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
1190 }
1191 EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);
1192 
1193 struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
1194 {
1195 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1196 	return ctx->child;
1197 }
1198 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);
1199 
1200 bool cryptd_ablkcipher_queued(struct cryptd_ablkcipher *tfm)
1201 {
1202 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1203 
1204 	return atomic_read(&ctx->refcnt) - 1;
1205 }
1206 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_queued);
1207 
1208 void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
1209 {
1210 	struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1211 
1212 	if (atomic_dec_and_test(&ctx->refcnt))
1213 		crypto_free_ablkcipher(&tfm->base);
1214 }
1215 EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);
1216 
1217 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
1218 					      u32 type, u32 mask)
1219 {
1220 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1221 	struct cryptd_skcipher_ctx *ctx;
1222 	struct crypto_skcipher *tfm;
1223 
1224 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1225 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1226 		return ERR_PTR(-EINVAL);
1227 
1228 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
1229 	if (IS_ERR(tfm))
1230 		return ERR_CAST(tfm);
1231 
1232 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1233 		crypto_free_skcipher(tfm);
1234 		return ERR_PTR(-EINVAL);
1235 	}
1236 
1237 	ctx = crypto_skcipher_ctx(tfm);
1238 	atomic_set(&ctx->refcnt, 1);
1239 
1240 	return container_of(tfm, struct cryptd_skcipher, base);
1241 }
1242 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
1243 
1244 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
1245 {
1246 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1247 
1248 	return &ctx->child->base;
1249 }
1250 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
1251 
1252 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
1253 {
1254 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1255 
1256 	return atomic_read(&ctx->refcnt) - 1;
1257 }
1258 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
1259 
1260 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
1261 {
1262 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1263 
1264 	if (atomic_dec_and_test(&ctx->refcnt))
1265 		crypto_free_skcipher(&tfm->base);
1266 }
1267 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1268 
1269 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1270 					u32 type, u32 mask)
1271 {
1272 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1273 	struct cryptd_hash_ctx *ctx;
1274 	struct crypto_ahash *tfm;
1275 
1276 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1277 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1278 		return ERR_PTR(-EINVAL);
1279 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1280 	if (IS_ERR(tfm))
1281 		return ERR_CAST(tfm);
1282 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1283 		crypto_free_ahash(tfm);
1284 		return ERR_PTR(-EINVAL);
1285 	}
1286 
1287 	ctx = crypto_ahash_ctx(tfm);
1288 	atomic_set(&ctx->refcnt, 1);
1289 
1290 	return __cryptd_ahash_cast(tfm);
1291 }
1292 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1293 
1294 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1295 {
1296 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1297 
1298 	return ctx->child;
1299 }
1300 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1301 
1302 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1303 {
1304 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1305 	return &rctx->desc;
1306 }
1307 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1308 
1309 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1310 {
1311 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1312 
1313 	return atomic_read(&ctx->refcnt) - 1;
1314 }
1315 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1316 
1317 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1318 {
1319 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1320 
1321 	if (atomic_dec_and_test(&ctx->refcnt))
1322 		crypto_free_ahash(&tfm->base);
1323 }
1324 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1325 
1326 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1327 						  u32 type, u32 mask)
1328 {
1329 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1330 	struct cryptd_aead_ctx *ctx;
1331 	struct crypto_aead *tfm;
1332 
1333 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1334 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1335 		return ERR_PTR(-EINVAL);
1336 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1337 	if (IS_ERR(tfm))
1338 		return ERR_CAST(tfm);
1339 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1340 		crypto_free_aead(tfm);
1341 		return ERR_PTR(-EINVAL);
1342 	}
1343 
1344 	ctx = crypto_aead_ctx(tfm);
1345 	atomic_set(&ctx->refcnt, 1);
1346 
1347 	return __cryptd_aead_cast(tfm);
1348 }
1349 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1350 
1351 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1352 {
1353 	struct cryptd_aead_ctx *ctx;
1354 	ctx = crypto_aead_ctx(&tfm->base);
1355 	return ctx->child;
1356 }
1357 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1358 
1359 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1360 {
1361 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1362 
1363 	return atomic_read(&ctx->refcnt) - 1;
1364 }
1365 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1366 
1367 void cryptd_free_aead(struct cryptd_aead *tfm)
1368 {
1369 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1370 
1371 	if (atomic_dec_and_test(&ctx->refcnt))
1372 		crypto_free_aead(&tfm->base);
1373 }
1374 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1375 
1376 static int __init cryptd_init(void)
1377 {
1378 	int err;
1379 
1380 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1381 	if (err)
1382 		return err;
1383 
1384 	err = crypto_register_template(&cryptd_tmpl);
1385 	if (err)
1386 		cryptd_fini_queue(&queue);
1387 
1388 	return err;
1389 }
1390 
1391 static void __exit cryptd_exit(void)
1392 {
1393 	cryptd_fini_queue(&queue);
1394 	crypto_unregister_template(&cryptd_tmpl);
1395 }
1396 
1397 subsys_initcall(cryptd_init);
1398 module_exit(cryptd_exit);
1399 
1400 MODULE_LICENSE("GPL");
1401 MODULE_DESCRIPTION("Software async crypto daemon");
1402 MODULE_ALIAS_CRYPTO("cryptd");
1403