xref: /openbmc/linux/crypto/cryptd.c (revision 36a7b63f069630e854beb305e99c151cddd3b8e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Software async crypto daemon.
4  *
5  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6  *
7  * Added AEAD support to cryptd.
8  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9  *             Adrian Hoban <adrian.hoban@intel.com>
10  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
11  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
12  *    Copyright (c) 2010, Intel Corporation.
13  */
14 
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29 
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33 
34 static struct workqueue_struct *cryptd_wq;
35 
36 struct cryptd_cpu_queue {
37 	struct crypto_queue queue;
38 	struct work_struct work;
39 };
40 
41 struct cryptd_queue {
42 	/*
43 	 * Protected by disabling BH to allow enqueueing from softinterrupt and
44 	 * dequeuing from kworker (cryptd_queue_worker()).
45 	 */
46 	struct cryptd_cpu_queue __percpu *cpu_queue;
47 };
48 
49 struct cryptd_instance_ctx {
50 	struct crypto_spawn spawn;
51 	struct cryptd_queue *queue;
52 };
53 
54 struct skcipherd_instance_ctx {
55 	struct crypto_skcipher_spawn spawn;
56 	struct cryptd_queue *queue;
57 };
58 
59 struct hashd_instance_ctx {
60 	struct crypto_shash_spawn spawn;
61 	struct cryptd_queue *queue;
62 };
63 
64 struct aead_instance_ctx {
65 	struct crypto_aead_spawn aead_spawn;
66 	struct cryptd_queue *queue;
67 };
68 
69 struct cryptd_skcipher_ctx {
70 	refcount_t refcnt;
71 	struct crypto_sync_skcipher *child;
72 };
73 
74 struct cryptd_skcipher_request_ctx {
75 	crypto_completion_t complete;
76 };
77 
78 struct cryptd_hash_ctx {
79 	refcount_t refcnt;
80 	struct crypto_shash *child;
81 };
82 
83 struct cryptd_hash_request_ctx {
84 	crypto_completion_t complete;
85 	struct shash_desc desc;
86 };
87 
88 struct cryptd_aead_ctx {
89 	refcount_t refcnt;
90 	struct crypto_aead *child;
91 };
92 
93 struct cryptd_aead_request_ctx {
94 	crypto_completion_t complete;
95 };
96 
97 static void cryptd_queue_worker(struct work_struct *work);
98 
99 static int cryptd_init_queue(struct cryptd_queue *queue,
100 			     unsigned int max_cpu_qlen)
101 {
102 	int cpu;
103 	struct cryptd_cpu_queue *cpu_queue;
104 
105 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
106 	if (!queue->cpu_queue)
107 		return -ENOMEM;
108 	for_each_possible_cpu(cpu) {
109 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
110 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
111 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
112 	}
113 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
114 	return 0;
115 }
116 
117 static void cryptd_fini_queue(struct cryptd_queue *queue)
118 {
119 	int cpu;
120 	struct cryptd_cpu_queue *cpu_queue;
121 
122 	for_each_possible_cpu(cpu) {
123 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
124 		BUG_ON(cpu_queue->queue.qlen);
125 	}
126 	free_percpu(queue->cpu_queue);
127 }
128 
129 static int cryptd_enqueue_request(struct cryptd_queue *queue,
130 				  struct crypto_async_request *request)
131 {
132 	int err;
133 	struct cryptd_cpu_queue *cpu_queue;
134 	refcount_t *refcnt;
135 
136 	local_bh_disable();
137 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
138 	err = crypto_enqueue_request(&cpu_queue->queue, request);
139 
140 	refcnt = crypto_tfm_ctx(request->tfm);
141 
142 	if (err == -ENOSPC)
143 		goto out;
144 
145 	queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work);
146 
147 	if (!refcount_read(refcnt))
148 		goto out;
149 
150 	refcount_inc(refcnt);
151 
152 out:
153 	local_bh_enable();
154 
155 	return err;
156 }
157 
158 /* Called in workqueue context, do one real cryption work (via
159  * req->complete) and reschedule itself if there are more work to
160  * do. */
161 static void cryptd_queue_worker(struct work_struct *work)
162 {
163 	struct cryptd_cpu_queue *cpu_queue;
164 	struct crypto_async_request *req, *backlog;
165 
166 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
167 	/*
168 	 * Only handle one request at a time to avoid hogging crypto workqueue.
169 	 */
170 	local_bh_disable();
171 	backlog = crypto_get_backlog(&cpu_queue->queue);
172 	req = crypto_dequeue_request(&cpu_queue->queue);
173 	local_bh_enable();
174 
175 	if (!req)
176 		return;
177 
178 	if (backlog)
179 		backlog->complete(backlog, -EINPROGRESS);
180 	req->complete(req, 0);
181 
182 	if (cpu_queue->queue.qlen)
183 		queue_work(cryptd_wq, &cpu_queue->work);
184 }
185 
186 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
187 {
188 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
189 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
190 	return ictx->queue;
191 }
192 
193 static void cryptd_type_and_mask(struct crypto_attr_type *algt,
194 				 u32 *type, u32 *mask)
195 {
196 	/*
197 	 * cryptd is allowed to wrap internal algorithms, but in that case the
198 	 * resulting cryptd instance will be marked as internal as well.
199 	 */
200 	*type = algt->type & CRYPTO_ALG_INTERNAL;
201 	*mask = algt->mask & CRYPTO_ALG_INTERNAL;
202 
203 	/* No point in cryptd wrapping an algorithm that's already async. */
204 	*mask |= CRYPTO_ALG_ASYNC;
205 
206 	*mask |= crypto_algt_inherited_mask(algt);
207 }
208 
209 static int cryptd_init_instance(struct crypto_instance *inst,
210 				struct crypto_alg *alg)
211 {
212 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
213 		     "cryptd(%s)",
214 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
215 		return -ENAMETOOLONG;
216 
217 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
218 
219 	inst->alg.cra_priority = alg->cra_priority + 50;
220 	inst->alg.cra_blocksize = alg->cra_blocksize;
221 	inst->alg.cra_alignmask = alg->cra_alignmask;
222 
223 	return 0;
224 }
225 
226 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
227 				  const u8 *key, unsigned int keylen)
228 {
229 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
230 	struct crypto_sync_skcipher *child = ctx->child;
231 
232 	crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
233 	crypto_sync_skcipher_set_flags(child,
234 				       crypto_skcipher_get_flags(parent) &
235 					 CRYPTO_TFM_REQ_MASK);
236 	return crypto_sync_skcipher_setkey(child, key, keylen);
237 }
238 
239 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
240 {
241 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
242 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
243 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
244 	int refcnt = refcount_read(&ctx->refcnt);
245 
246 	local_bh_disable();
247 	rctx->complete(&req->base, err);
248 	local_bh_enable();
249 
250 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
251 		crypto_free_skcipher(tfm);
252 }
253 
254 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
255 				    int err)
256 {
257 	struct skcipher_request *req = skcipher_request_cast(base);
258 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
259 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
260 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
261 	struct crypto_sync_skcipher *child = ctx->child;
262 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
263 
264 	if (unlikely(err == -EINPROGRESS))
265 		goto out;
266 
267 	skcipher_request_set_sync_tfm(subreq, child);
268 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
269 				      NULL, NULL);
270 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
271 				   req->iv);
272 
273 	err = crypto_skcipher_encrypt(subreq);
274 	skcipher_request_zero(subreq);
275 
276 	req->base.complete = rctx->complete;
277 
278 out:
279 	cryptd_skcipher_complete(req, err);
280 }
281 
282 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
283 				    int err)
284 {
285 	struct skcipher_request *req = skcipher_request_cast(base);
286 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
287 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
288 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
289 	struct crypto_sync_skcipher *child = ctx->child;
290 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
291 
292 	if (unlikely(err == -EINPROGRESS))
293 		goto out;
294 
295 	skcipher_request_set_sync_tfm(subreq, child);
296 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
297 				      NULL, NULL);
298 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
299 				   req->iv);
300 
301 	err = crypto_skcipher_decrypt(subreq);
302 	skcipher_request_zero(subreq);
303 
304 	req->base.complete = rctx->complete;
305 
306 out:
307 	cryptd_skcipher_complete(req, err);
308 }
309 
310 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
311 				   crypto_completion_t compl)
312 {
313 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
314 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
315 	struct cryptd_queue *queue;
316 
317 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
318 	rctx->complete = req->base.complete;
319 	req->base.complete = compl;
320 
321 	return cryptd_enqueue_request(queue, &req->base);
322 }
323 
324 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
325 {
326 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
327 }
328 
329 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
330 {
331 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
332 }
333 
334 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
335 {
336 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
337 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
338 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
339 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
340 	struct crypto_skcipher *cipher;
341 
342 	cipher = crypto_spawn_skcipher(spawn);
343 	if (IS_ERR(cipher))
344 		return PTR_ERR(cipher);
345 
346 	ctx->child = (struct crypto_sync_skcipher *)cipher;
347 	crypto_skcipher_set_reqsize(
348 		tfm, sizeof(struct cryptd_skcipher_request_ctx));
349 	return 0;
350 }
351 
352 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
353 {
354 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
355 
356 	crypto_free_sync_skcipher(ctx->child);
357 }
358 
359 static void cryptd_skcipher_free(struct skcipher_instance *inst)
360 {
361 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
362 
363 	crypto_drop_skcipher(&ctx->spawn);
364 	kfree(inst);
365 }
366 
367 static int cryptd_create_skcipher(struct crypto_template *tmpl,
368 				  struct rtattr **tb,
369 				  struct crypto_attr_type *algt,
370 				  struct cryptd_queue *queue)
371 {
372 	struct skcipherd_instance_ctx *ctx;
373 	struct skcipher_instance *inst;
374 	struct skcipher_alg *alg;
375 	u32 type;
376 	u32 mask;
377 	int err;
378 
379 	cryptd_type_and_mask(algt, &type, &mask);
380 
381 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
382 	if (!inst)
383 		return -ENOMEM;
384 
385 	ctx = skcipher_instance_ctx(inst);
386 	ctx->queue = queue;
387 
388 	err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
389 				   crypto_attr_alg_name(tb[1]), type, mask);
390 	if (err)
391 		goto err_free_inst;
392 
393 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
394 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
395 	if (err)
396 		goto err_free_inst;
397 
398 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
399 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
400 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
401 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
402 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
403 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
404 
405 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
406 
407 	inst->alg.init = cryptd_skcipher_init_tfm;
408 	inst->alg.exit = cryptd_skcipher_exit_tfm;
409 
410 	inst->alg.setkey = cryptd_skcipher_setkey;
411 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
412 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
413 
414 	inst->free = cryptd_skcipher_free;
415 
416 	err = skcipher_register_instance(tmpl, inst);
417 	if (err) {
418 err_free_inst:
419 		cryptd_skcipher_free(inst);
420 	}
421 	return err;
422 }
423 
424 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
425 {
426 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
427 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
428 	struct crypto_shash_spawn *spawn = &ictx->spawn;
429 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
430 	struct crypto_shash *hash;
431 
432 	hash = crypto_spawn_shash(spawn);
433 	if (IS_ERR(hash))
434 		return PTR_ERR(hash);
435 
436 	ctx->child = hash;
437 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
438 				 sizeof(struct cryptd_hash_request_ctx) +
439 				 crypto_shash_descsize(hash));
440 	return 0;
441 }
442 
443 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
444 {
445 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
446 
447 	crypto_free_shash(ctx->child);
448 }
449 
450 static int cryptd_hash_setkey(struct crypto_ahash *parent,
451 				   const u8 *key, unsigned int keylen)
452 {
453 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
454 	struct crypto_shash *child = ctx->child;
455 
456 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
457 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
458 				      CRYPTO_TFM_REQ_MASK);
459 	return crypto_shash_setkey(child, key, keylen);
460 }
461 
462 static int cryptd_hash_enqueue(struct ahash_request *req,
463 				crypto_completion_t compl)
464 {
465 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
466 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
467 	struct cryptd_queue *queue =
468 		cryptd_get_queue(crypto_ahash_tfm(tfm));
469 
470 	rctx->complete = req->base.complete;
471 	req->base.complete = compl;
472 
473 	return cryptd_enqueue_request(queue, &req->base);
474 }
475 
476 static void cryptd_hash_complete(struct ahash_request *req, int err)
477 {
478 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
479 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
480 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
481 	int refcnt = refcount_read(&ctx->refcnt);
482 
483 	local_bh_disable();
484 	rctx->complete(&req->base, err);
485 	local_bh_enable();
486 
487 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
488 		crypto_free_ahash(tfm);
489 }
490 
491 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
492 {
493 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
494 	struct crypto_shash *child = ctx->child;
495 	struct ahash_request *req = ahash_request_cast(req_async);
496 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
497 	struct shash_desc *desc = &rctx->desc;
498 
499 	if (unlikely(err == -EINPROGRESS))
500 		goto out;
501 
502 	desc->tfm = child;
503 
504 	err = crypto_shash_init(desc);
505 
506 	req->base.complete = rctx->complete;
507 
508 out:
509 	cryptd_hash_complete(req, err);
510 }
511 
512 static int cryptd_hash_init_enqueue(struct ahash_request *req)
513 {
514 	return cryptd_hash_enqueue(req, cryptd_hash_init);
515 }
516 
517 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
518 {
519 	struct ahash_request *req = ahash_request_cast(req_async);
520 	struct cryptd_hash_request_ctx *rctx;
521 
522 	rctx = ahash_request_ctx(req);
523 
524 	if (unlikely(err == -EINPROGRESS))
525 		goto out;
526 
527 	err = shash_ahash_update(req, &rctx->desc);
528 
529 	req->base.complete = rctx->complete;
530 
531 out:
532 	cryptd_hash_complete(req, err);
533 }
534 
535 static int cryptd_hash_update_enqueue(struct ahash_request *req)
536 {
537 	return cryptd_hash_enqueue(req, cryptd_hash_update);
538 }
539 
540 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
541 {
542 	struct ahash_request *req = ahash_request_cast(req_async);
543 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
544 
545 	if (unlikely(err == -EINPROGRESS))
546 		goto out;
547 
548 	err = crypto_shash_final(&rctx->desc, req->result);
549 
550 	req->base.complete = rctx->complete;
551 
552 out:
553 	cryptd_hash_complete(req, err);
554 }
555 
556 static int cryptd_hash_final_enqueue(struct ahash_request *req)
557 {
558 	return cryptd_hash_enqueue(req, cryptd_hash_final);
559 }
560 
561 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
562 {
563 	struct ahash_request *req = ahash_request_cast(req_async);
564 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
565 
566 	if (unlikely(err == -EINPROGRESS))
567 		goto out;
568 
569 	err = shash_ahash_finup(req, &rctx->desc);
570 
571 	req->base.complete = rctx->complete;
572 
573 out:
574 	cryptd_hash_complete(req, err);
575 }
576 
577 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
578 {
579 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
580 }
581 
582 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
583 {
584 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
585 	struct crypto_shash *child = ctx->child;
586 	struct ahash_request *req = ahash_request_cast(req_async);
587 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
588 	struct shash_desc *desc = &rctx->desc;
589 
590 	if (unlikely(err == -EINPROGRESS))
591 		goto out;
592 
593 	desc->tfm = child;
594 
595 	err = shash_ahash_digest(req, desc);
596 
597 	req->base.complete = rctx->complete;
598 
599 out:
600 	cryptd_hash_complete(req, err);
601 }
602 
603 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
604 {
605 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
606 }
607 
608 static int cryptd_hash_export(struct ahash_request *req, void *out)
609 {
610 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
611 
612 	return crypto_shash_export(&rctx->desc, out);
613 }
614 
615 static int cryptd_hash_import(struct ahash_request *req, const void *in)
616 {
617 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
618 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
619 	struct shash_desc *desc = cryptd_shash_desc(req);
620 
621 	desc->tfm = ctx->child;
622 
623 	return crypto_shash_import(desc, in);
624 }
625 
626 static void cryptd_hash_free(struct ahash_instance *inst)
627 {
628 	struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
629 
630 	crypto_drop_shash(&ctx->spawn);
631 	kfree(inst);
632 }
633 
634 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
635 			      struct crypto_attr_type *algt,
636 			      struct cryptd_queue *queue)
637 {
638 	struct hashd_instance_ctx *ctx;
639 	struct ahash_instance *inst;
640 	struct shash_alg *alg;
641 	u32 type;
642 	u32 mask;
643 	int err;
644 
645 	cryptd_type_and_mask(algt, &type, &mask);
646 
647 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
648 	if (!inst)
649 		return -ENOMEM;
650 
651 	ctx = ahash_instance_ctx(inst);
652 	ctx->queue = queue;
653 
654 	err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
655 				crypto_attr_alg_name(tb[1]), type, mask);
656 	if (err)
657 		goto err_free_inst;
658 	alg = crypto_spawn_shash_alg(&ctx->spawn);
659 
660 	err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
661 	if (err)
662 		goto err_free_inst;
663 
664 	inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC |
665 		(alg->base.cra_flags & (CRYPTO_ALG_INTERNAL|
666 					CRYPTO_ALG_OPTIONAL_KEY));
667 	inst->alg.halg.digestsize = alg->digestsize;
668 	inst->alg.halg.statesize = alg->statesize;
669 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
670 
671 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
672 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
673 
674 	inst->alg.init   = cryptd_hash_init_enqueue;
675 	inst->alg.update = cryptd_hash_update_enqueue;
676 	inst->alg.final  = cryptd_hash_final_enqueue;
677 	inst->alg.finup  = cryptd_hash_finup_enqueue;
678 	inst->alg.export = cryptd_hash_export;
679 	inst->alg.import = cryptd_hash_import;
680 	if (crypto_shash_alg_has_setkey(alg))
681 		inst->alg.setkey = cryptd_hash_setkey;
682 	inst->alg.digest = cryptd_hash_digest_enqueue;
683 
684 	inst->free = cryptd_hash_free;
685 
686 	err = ahash_register_instance(tmpl, inst);
687 	if (err) {
688 err_free_inst:
689 		cryptd_hash_free(inst);
690 	}
691 	return err;
692 }
693 
694 static int cryptd_aead_setkey(struct crypto_aead *parent,
695 			      const u8 *key, unsigned int keylen)
696 {
697 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
698 	struct crypto_aead *child = ctx->child;
699 
700 	return crypto_aead_setkey(child, key, keylen);
701 }
702 
703 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
704 				   unsigned int authsize)
705 {
706 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
707 	struct crypto_aead *child = ctx->child;
708 
709 	return crypto_aead_setauthsize(child, authsize);
710 }
711 
712 static void cryptd_aead_crypt(struct aead_request *req,
713 			struct crypto_aead *child,
714 			int err,
715 			int (*crypt)(struct aead_request *req))
716 {
717 	struct cryptd_aead_request_ctx *rctx;
718 	struct cryptd_aead_ctx *ctx;
719 	crypto_completion_t compl;
720 	struct crypto_aead *tfm;
721 	int refcnt;
722 
723 	rctx = aead_request_ctx(req);
724 	compl = rctx->complete;
725 
726 	tfm = crypto_aead_reqtfm(req);
727 
728 	if (unlikely(err == -EINPROGRESS))
729 		goto out;
730 	aead_request_set_tfm(req, child);
731 	err = crypt( req );
732 
733 out:
734 	ctx = crypto_aead_ctx(tfm);
735 	refcnt = refcount_read(&ctx->refcnt);
736 
737 	local_bh_disable();
738 	compl(&req->base, err);
739 	local_bh_enable();
740 
741 	if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
742 		crypto_free_aead(tfm);
743 }
744 
745 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
746 {
747 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
748 	struct crypto_aead *child = ctx->child;
749 	struct aead_request *req;
750 
751 	req = container_of(areq, struct aead_request, base);
752 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
753 }
754 
755 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
756 {
757 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
758 	struct crypto_aead *child = ctx->child;
759 	struct aead_request *req;
760 
761 	req = container_of(areq, struct aead_request, base);
762 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
763 }
764 
765 static int cryptd_aead_enqueue(struct aead_request *req,
766 				    crypto_completion_t compl)
767 {
768 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
769 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
770 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
771 
772 	rctx->complete = req->base.complete;
773 	req->base.complete = compl;
774 	return cryptd_enqueue_request(queue, &req->base);
775 }
776 
777 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
778 {
779 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
780 }
781 
782 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
783 {
784 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
785 }
786 
787 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
788 {
789 	struct aead_instance *inst = aead_alg_instance(tfm);
790 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
791 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
792 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
793 	struct crypto_aead *cipher;
794 
795 	cipher = crypto_spawn_aead(spawn);
796 	if (IS_ERR(cipher))
797 		return PTR_ERR(cipher);
798 
799 	ctx->child = cipher;
800 	crypto_aead_set_reqsize(
801 		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
802 			 crypto_aead_reqsize(cipher)));
803 	return 0;
804 }
805 
806 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
807 {
808 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
809 	crypto_free_aead(ctx->child);
810 }
811 
812 static void cryptd_aead_free(struct aead_instance *inst)
813 {
814 	struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
815 
816 	crypto_drop_aead(&ctx->aead_spawn);
817 	kfree(inst);
818 }
819 
820 static int cryptd_create_aead(struct crypto_template *tmpl,
821 		              struct rtattr **tb,
822 			      struct crypto_attr_type *algt,
823 			      struct cryptd_queue *queue)
824 {
825 	struct aead_instance_ctx *ctx;
826 	struct aead_instance *inst;
827 	struct aead_alg *alg;
828 	u32 type;
829 	u32 mask;
830 	int err;
831 
832 	cryptd_type_and_mask(algt, &type, &mask);
833 
834 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
835 	if (!inst)
836 		return -ENOMEM;
837 
838 	ctx = aead_instance_ctx(inst);
839 	ctx->queue = queue;
840 
841 	err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
842 			       crypto_attr_alg_name(tb[1]), type, mask);
843 	if (err)
844 		goto err_free_inst;
845 
846 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
847 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
848 	if (err)
849 		goto err_free_inst;
850 
851 	inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
852 		(alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
853 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
854 
855 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
856 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
857 
858 	inst->alg.init = cryptd_aead_init_tfm;
859 	inst->alg.exit = cryptd_aead_exit_tfm;
860 	inst->alg.setkey = cryptd_aead_setkey;
861 	inst->alg.setauthsize = cryptd_aead_setauthsize;
862 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
863 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
864 
865 	inst->free = cryptd_aead_free;
866 
867 	err = aead_register_instance(tmpl, inst);
868 	if (err) {
869 err_free_inst:
870 		cryptd_aead_free(inst);
871 	}
872 	return err;
873 }
874 
875 static struct cryptd_queue queue;
876 
877 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
878 {
879 	struct crypto_attr_type *algt;
880 
881 	algt = crypto_get_attr_type(tb);
882 	if (IS_ERR(algt))
883 		return PTR_ERR(algt);
884 
885 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
886 	case CRYPTO_ALG_TYPE_SKCIPHER:
887 		return cryptd_create_skcipher(tmpl, tb, algt, &queue);
888 	case CRYPTO_ALG_TYPE_HASH:
889 		return cryptd_create_hash(tmpl, tb, algt, &queue);
890 	case CRYPTO_ALG_TYPE_AEAD:
891 		return cryptd_create_aead(tmpl, tb, algt, &queue);
892 	}
893 
894 	return -EINVAL;
895 }
896 
897 static struct crypto_template cryptd_tmpl = {
898 	.name = "cryptd",
899 	.create = cryptd_create,
900 	.module = THIS_MODULE,
901 };
902 
903 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
904 					      u32 type, u32 mask)
905 {
906 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
907 	struct cryptd_skcipher_ctx *ctx;
908 	struct crypto_skcipher *tfm;
909 
910 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
911 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
912 		return ERR_PTR(-EINVAL);
913 
914 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
915 	if (IS_ERR(tfm))
916 		return ERR_CAST(tfm);
917 
918 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
919 		crypto_free_skcipher(tfm);
920 		return ERR_PTR(-EINVAL);
921 	}
922 
923 	ctx = crypto_skcipher_ctx(tfm);
924 	refcount_set(&ctx->refcnt, 1);
925 
926 	return container_of(tfm, struct cryptd_skcipher, base);
927 }
928 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
929 
930 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
931 {
932 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
933 
934 	return &ctx->child->base;
935 }
936 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
937 
938 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
939 {
940 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
941 
942 	return refcount_read(&ctx->refcnt) - 1;
943 }
944 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
945 
946 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
947 {
948 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
949 
950 	if (refcount_dec_and_test(&ctx->refcnt))
951 		crypto_free_skcipher(&tfm->base);
952 }
953 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
954 
955 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
956 					u32 type, u32 mask)
957 {
958 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
959 	struct cryptd_hash_ctx *ctx;
960 	struct crypto_ahash *tfm;
961 
962 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
963 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
964 		return ERR_PTR(-EINVAL);
965 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
966 	if (IS_ERR(tfm))
967 		return ERR_CAST(tfm);
968 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
969 		crypto_free_ahash(tfm);
970 		return ERR_PTR(-EINVAL);
971 	}
972 
973 	ctx = crypto_ahash_ctx(tfm);
974 	refcount_set(&ctx->refcnt, 1);
975 
976 	return __cryptd_ahash_cast(tfm);
977 }
978 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
979 
980 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
981 {
982 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
983 
984 	return ctx->child;
985 }
986 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
987 
988 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
989 {
990 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
991 	return &rctx->desc;
992 }
993 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
994 
995 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
996 {
997 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
998 
999 	return refcount_read(&ctx->refcnt) - 1;
1000 }
1001 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1002 
1003 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1004 {
1005 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1006 
1007 	if (refcount_dec_and_test(&ctx->refcnt))
1008 		crypto_free_ahash(&tfm->base);
1009 }
1010 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1011 
1012 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1013 						  u32 type, u32 mask)
1014 {
1015 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1016 	struct cryptd_aead_ctx *ctx;
1017 	struct crypto_aead *tfm;
1018 
1019 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1020 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1021 		return ERR_PTR(-EINVAL);
1022 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1023 	if (IS_ERR(tfm))
1024 		return ERR_CAST(tfm);
1025 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1026 		crypto_free_aead(tfm);
1027 		return ERR_PTR(-EINVAL);
1028 	}
1029 
1030 	ctx = crypto_aead_ctx(tfm);
1031 	refcount_set(&ctx->refcnt, 1);
1032 
1033 	return __cryptd_aead_cast(tfm);
1034 }
1035 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1036 
1037 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1038 {
1039 	struct cryptd_aead_ctx *ctx;
1040 	ctx = crypto_aead_ctx(&tfm->base);
1041 	return ctx->child;
1042 }
1043 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1044 
1045 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1046 {
1047 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1048 
1049 	return refcount_read(&ctx->refcnt) - 1;
1050 }
1051 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1052 
1053 void cryptd_free_aead(struct cryptd_aead *tfm)
1054 {
1055 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1056 
1057 	if (refcount_dec_and_test(&ctx->refcnt))
1058 		crypto_free_aead(&tfm->base);
1059 }
1060 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1061 
1062 static int __init cryptd_init(void)
1063 {
1064 	int err;
1065 
1066 	cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1067 				    1);
1068 	if (!cryptd_wq)
1069 		return -ENOMEM;
1070 
1071 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1072 	if (err)
1073 		goto err_destroy_wq;
1074 
1075 	err = crypto_register_template(&cryptd_tmpl);
1076 	if (err)
1077 		goto err_fini_queue;
1078 
1079 	return 0;
1080 
1081 err_fini_queue:
1082 	cryptd_fini_queue(&queue);
1083 err_destroy_wq:
1084 	destroy_workqueue(cryptd_wq);
1085 	return err;
1086 }
1087 
1088 static void __exit cryptd_exit(void)
1089 {
1090 	destroy_workqueue(cryptd_wq);
1091 	cryptd_fini_queue(&queue);
1092 	crypto_unregister_template(&cryptd_tmpl);
1093 }
1094 
1095 subsys_initcall(cryptd_init);
1096 module_exit(cryptd_exit);
1097 
1098 MODULE_LICENSE("GPL");
1099 MODULE_DESCRIPTION("Software async crypto daemon");
1100 MODULE_ALIAS_CRYPTO("cryptd");
1101