xref: /openbmc/linux/crypto/cryptd.c (revision 09c434b8)
1 /*
2  * Software async crypto daemon.
3  *
4  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * Added AEAD support to cryptd.
7  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
8  *             Adrian Hoban <adrian.hoban@intel.com>
9  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
10  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
11  *    Copyright (c) 2010, Intel Corporation.
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 2 of the License, or (at your option)
16  * any later version.
17  *
18  */
19 
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/cryptd.h>
24 #include <crypto/crypto_wq.h>
25 #include <linux/atomic.h>
26 #include <linux/err.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/scatterlist.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 
35 static unsigned int cryptd_max_cpu_qlen = 1000;
36 module_param(cryptd_max_cpu_qlen, uint, 0);
37 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
38 
39 struct cryptd_cpu_queue {
40 	struct crypto_queue queue;
41 	struct work_struct work;
42 };
43 
44 struct cryptd_queue {
45 	struct cryptd_cpu_queue __percpu *cpu_queue;
46 };
47 
48 struct cryptd_instance_ctx {
49 	struct crypto_spawn spawn;
50 	struct cryptd_queue *queue;
51 };
52 
53 struct skcipherd_instance_ctx {
54 	struct crypto_skcipher_spawn spawn;
55 	struct cryptd_queue *queue;
56 };
57 
58 struct hashd_instance_ctx {
59 	struct crypto_shash_spawn spawn;
60 	struct cryptd_queue *queue;
61 };
62 
63 struct aead_instance_ctx {
64 	struct crypto_aead_spawn aead_spawn;
65 	struct cryptd_queue *queue;
66 };
67 
68 struct cryptd_skcipher_ctx {
69 	atomic_t refcnt;
70 	struct crypto_sync_skcipher *child;
71 };
72 
73 struct cryptd_skcipher_request_ctx {
74 	crypto_completion_t complete;
75 };
76 
77 struct cryptd_hash_ctx {
78 	atomic_t refcnt;
79 	struct crypto_shash *child;
80 };
81 
82 struct cryptd_hash_request_ctx {
83 	crypto_completion_t complete;
84 	struct shash_desc desc;
85 };
86 
87 struct cryptd_aead_ctx {
88 	atomic_t refcnt;
89 	struct crypto_aead *child;
90 };
91 
92 struct cryptd_aead_request_ctx {
93 	crypto_completion_t complete;
94 };
95 
96 static void cryptd_queue_worker(struct work_struct *work);
97 
98 static int cryptd_init_queue(struct cryptd_queue *queue,
99 			     unsigned int max_cpu_qlen)
100 {
101 	int cpu;
102 	struct cryptd_cpu_queue *cpu_queue;
103 
104 	queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
105 	if (!queue->cpu_queue)
106 		return -ENOMEM;
107 	for_each_possible_cpu(cpu) {
108 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
109 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
110 		INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
111 	}
112 	pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
113 	return 0;
114 }
115 
116 static void cryptd_fini_queue(struct cryptd_queue *queue)
117 {
118 	int cpu;
119 	struct cryptd_cpu_queue *cpu_queue;
120 
121 	for_each_possible_cpu(cpu) {
122 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
123 		BUG_ON(cpu_queue->queue.qlen);
124 	}
125 	free_percpu(queue->cpu_queue);
126 }
127 
128 static int cryptd_enqueue_request(struct cryptd_queue *queue,
129 				  struct crypto_async_request *request)
130 {
131 	int cpu, err;
132 	struct cryptd_cpu_queue *cpu_queue;
133 	atomic_t *refcnt;
134 
135 	cpu = get_cpu();
136 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
137 	err = crypto_enqueue_request(&cpu_queue->queue, request);
138 
139 	refcnt = crypto_tfm_ctx(request->tfm);
140 
141 	if (err == -ENOSPC)
142 		goto out_put_cpu;
143 
144 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
145 
146 	if (!atomic_read(refcnt))
147 		goto out_put_cpu;
148 
149 	atomic_inc(refcnt);
150 
151 out_put_cpu:
152 	put_cpu();
153 
154 	return err;
155 }
156 
157 /* Called in workqueue context, do one real cryption work (via
158  * req->complete) and reschedule itself if there are more work to
159  * do. */
160 static void cryptd_queue_worker(struct work_struct *work)
161 {
162 	struct cryptd_cpu_queue *cpu_queue;
163 	struct crypto_async_request *req, *backlog;
164 
165 	cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
166 	/*
167 	 * Only handle one request at a time to avoid hogging crypto workqueue.
168 	 * preempt_disable/enable is used to prevent being preempted by
169 	 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
170 	 * cryptd_enqueue_request() being accessed from software interrupts.
171 	 */
172 	local_bh_disable();
173 	preempt_disable();
174 	backlog = crypto_get_backlog(&cpu_queue->queue);
175 	req = crypto_dequeue_request(&cpu_queue->queue);
176 	preempt_enable();
177 	local_bh_enable();
178 
179 	if (!req)
180 		return;
181 
182 	if (backlog)
183 		backlog->complete(backlog, -EINPROGRESS);
184 	req->complete(req, 0);
185 
186 	if (cpu_queue->queue.qlen)
187 		queue_work(kcrypto_wq, &cpu_queue->work);
188 }
189 
190 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
191 {
192 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
193 	struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
194 	return ictx->queue;
195 }
196 
197 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
198 					 u32 *mask)
199 {
200 	struct crypto_attr_type *algt;
201 
202 	algt = crypto_get_attr_type(tb);
203 	if (IS_ERR(algt))
204 		return;
205 
206 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
207 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
208 }
209 
210 static int cryptd_init_instance(struct crypto_instance *inst,
211 				struct crypto_alg *alg)
212 {
213 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
214 		     "cryptd(%s)",
215 		     alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
216 		return -ENAMETOOLONG;
217 
218 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
219 
220 	inst->alg.cra_priority = alg->cra_priority + 50;
221 	inst->alg.cra_blocksize = alg->cra_blocksize;
222 	inst->alg.cra_alignmask = alg->cra_alignmask;
223 
224 	return 0;
225 }
226 
227 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
228 				   unsigned int tail)
229 {
230 	char *p;
231 	struct crypto_instance *inst;
232 	int err;
233 
234 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
235 	if (!p)
236 		return ERR_PTR(-ENOMEM);
237 
238 	inst = (void *)(p + head);
239 
240 	err = cryptd_init_instance(inst, alg);
241 	if (err)
242 		goto out_free_inst;
243 
244 out:
245 	return p;
246 
247 out_free_inst:
248 	kfree(p);
249 	p = ERR_PTR(err);
250 	goto out;
251 }
252 
253 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
254 				  const u8 *key, unsigned int keylen)
255 {
256 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
257 	struct crypto_sync_skcipher *child = ctx->child;
258 	int err;
259 
260 	crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
261 	crypto_sync_skcipher_set_flags(child,
262 				       crypto_skcipher_get_flags(parent) &
263 					 CRYPTO_TFM_REQ_MASK);
264 	err = crypto_sync_skcipher_setkey(child, key, keylen);
265 	crypto_skcipher_set_flags(parent,
266 				  crypto_sync_skcipher_get_flags(child) &
267 					  CRYPTO_TFM_RES_MASK);
268 	return err;
269 }
270 
271 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
272 {
273 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
274 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
275 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
276 	int refcnt = atomic_read(&ctx->refcnt);
277 
278 	local_bh_disable();
279 	rctx->complete(&req->base, err);
280 	local_bh_enable();
281 
282 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
283 		crypto_free_skcipher(tfm);
284 }
285 
286 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
287 				    int err)
288 {
289 	struct skcipher_request *req = skcipher_request_cast(base);
290 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
291 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
292 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
293 	struct crypto_sync_skcipher *child = ctx->child;
294 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
295 
296 	if (unlikely(err == -EINPROGRESS))
297 		goto out;
298 
299 	skcipher_request_set_sync_tfm(subreq, child);
300 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
301 				      NULL, NULL);
302 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
303 				   req->iv);
304 
305 	err = crypto_skcipher_encrypt(subreq);
306 	skcipher_request_zero(subreq);
307 
308 	req->base.complete = rctx->complete;
309 
310 out:
311 	cryptd_skcipher_complete(req, err);
312 }
313 
314 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
315 				    int err)
316 {
317 	struct skcipher_request *req = skcipher_request_cast(base);
318 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
319 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
320 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
321 	struct crypto_sync_skcipher *child = ctx->child;
322 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
323 
324 	if (unlikely(err == -EINPROGRESS))
325 		goto out;
326 
327 	skcipher_request_set_sync_tfm(subreq, child);
328 	skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
329 				      NULL, NULL);
330 	skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
331 				   req->iv);
332 
333 	err = crypto_skcipher_decrypt(subreq);
334 	skcipher_request_zero(subreq);
335 
336 	req->base.complete = rctx->complete;
337 
338 out:
339 	cryptd_skcipher_complete(req, err);
340 }
341 
342 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
343 				   crypto_completion_t compl)
344 {
345 	struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
346 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
347 	struct cryptd_queue *queue;
348 
349 	queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
350 	rctx->complete = req->base.complete;
351 	req->base.complete = compl;
352 
353 	return cryptd_enqueue_request(queue, &req->base);
354 }
355 
356 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
357 {
358 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
359 }
360 
361 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
362 {
363 	return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
364 }
365 
366 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
367 {
368 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
369 	struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
370 	struct crypto_skcipher_spawn *spawn = &ictx->spawn;
371 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
372 	struct crypto_skcipher *cipher;
373 
374 	cipher = crypto_spawn_skcipher(spawn);
375 	if (IS_ERR(cipher))
376 		return PTR_ERR(cipher);
377 
378 	ctx->child = (struct crypto_sync_skcipher *)cipher;
379 	crypto_skcipher_set_reqsize(
380 		tfm, sizeof(struct cryptd_skcipher_request_ctx));
381 	return 0;
382 }
383 
384 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
385 {
386 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
387 
388 	crypto_free_sync_skcipher(ctx->child);
389 }
390 
391 static void cryptd_skcipher_free(struct skcipher_instance *inst)
392 {
393 	struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
394 
395 	crypto_drop_skcipher(&ctx->spawn);
396 }
397 
398 static int cryptd_create_skcipher(struct crypto_template *tmpl,
399 				  struct rtattr **tb,
400 				  struct cryptd_queue *queue)
401 {
402 	struct skcipherd_instance_ctx *ctx;
403 	struct skcipher_instance *inst;
404 	struct skcipher_alg *alg;
405 	const char *name;
406 	u32 type;
407 	u32 mask;
408 	int err;
409 
410 	type = 0;
411 	mask = CRYPTO_ALG_ASYNC;
412 
413 	cryptd_check_internal(tb, &type, &mask);
414 
415 	name = crypto_attr_alg_name(tb[1]);
416 	if (IS_ERR(name))
417 		return PTR_ERR(name);
418 
419 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
420 	if (!inst)
421 		return -ENOMEM;
422 
423 	ctx = skcipher_instance_ctx(inst);
424 	ctx->queue = queue;
425 
426 	crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
427 	err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
428 	if (err)
429 		goto out_free_inst;
430 
431 	alg = crypto_spawn_skcipher_alg(&ctx->spawn);
432 	err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
433 	if (err)
434 		goto out_drop_skcipher;
435 
436 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
437 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
438 
439 	inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
440 	inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
441 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
442 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
443 
444 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
445 
446 	inst->alg.init = cryptd_skcipher_init_tfm;
447 	inst->alg.exit = cryptd_skcipher_exit_tfm;
448 
449 	inst->alg.setkey = cryptd_skcipher_setkey;
450 	inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
451 	inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
452 
453 	inst->free = cryptd_skcipher_free;
454 
455 	err = skcipher_register_instance(tmpl, inst);
456 	if (err) {
457 out_drop_skcipher:
458 		crypto_drop_skcipher(&ctx->spawn);
459 out_free_inst:
460 		kfree(inst);
461 	}
462 	return err;
463 }
464 
465 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
466 {
467 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
468 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
469 	struct crypto_shash_spawn *spawn = &ictx->spawn;
470 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
471 	struct crypto_shash *hash;
472 
473 	hash = crypto_spawn_shash(spawn);
474 	if (IS_ERR(hash))
475 		return PTR_ERR(hash);
476 
477 	ctx->child = hash;
478 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
479 				 sizeof(struct cryptd_hash_request_ctx) +
480 				 crypto_shash_descsize(hash));
481 	return 0;
482 }
483 
484 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
485 {
486 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
487 
488 	crypto_free_shash(ctx->child);
489 }
490 
491 static int cryptd_hash_setkey(struct crypto_ahash *parent,
492 				   const u8 *key, unsigned int keylen)
493 {
494 	struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
495 	struct crypto_shash *child = ctx->child;
496 	int err;
497 
498 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
499 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
500 				      CRYPTO_TFM_REQ_MASK);
501 	err = crypto_shash_setkey(child, key, keylen);
502 	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
503 				       CRYPTO_TFM_RES_MASK);
504 	return err;
505 }
506 
507 static int cryptd_hash_enqueue(struct ahash_request *req,
508 				crypto_completion_t compl)
509 {
510 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
511 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
512 	struct cryptd_queue *queue =
513 		cryptd_get_queue(crypto_ahash_tfm(tfm));
514 
515 	rctx->complete = req->base.complete;
516 	req->base.complete = compl;
517 
518 	return cryptd_enqueue_request(queue, &req->base);
519 }
520 
521 static void cryptd_hash_complete(struct ahash_request *req, int err)
522 {
523 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
525 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
526 	int refcnt = atomic_read(&ctx->refcnt);
527 
528 	local_bh_disable();
529 	rctx->complete(&req->base, err);
530 	local_bh_enable();
531 
532 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
533 		crypto_free_ahash(tfm);
534 }
535 
536 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
537 {
538 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
539 	struct crypto_shash *child = ctx->child;
540 	struct ahash_request *req = ahash_request_cast(req_async);
541 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
542 	struct shash_desc *desc = &rctx->desc;
543 
544 	if (unlikely(err == -EINPROGRESS))
545 		goto out;
546 
547 	desc->tfm = child;
548 
549 	err = crypto_shash_init(desc);
550 
551 	req->base.complete = rctx->complete;
552 
553 out:
554 	cryptd_hash_complete(req, err);
555 }
556 
557 static int cryptd_hash_init_enqueue(struct ahash_request *req)
558 {
559 	return cryptd_hash_enqueue(req, cryptd_hash_init);
560 }
561 
562 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
563 {
564 	struct ahash_request *req = ahash_request_cast(req_async);
565 	struct cryptd_hash_request_ctx *rctx;
566 
567 	rctx = ahash_request_ctx(req);
568 
569 	if (unlikely(err == -EINPROGRESS))
570 		goto out;
571 
572 	err = shash_ahash_update(req, &rctx->desc);
573 
574 	req->base.complete = rctx->complete;
575 
576 out:
577 	cryptd_hash_complete(req, err);
578 }
579 
580 static int cryptd_hash_update_enqueue(struct ahash_request *req)
581 {
582 	return cryptd_hash_enqueue(req, cryptd_hash_update);
583 }
584 
585 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
586 {
587 	struct ahash_request *req = ahash_request_cast(req_async);
588 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
589 
590 	if (unlikely(err == -EINPROGRESS))
591 		goto out;
592 
593 	err = crypto_shash_final(&rctx->desc, req->result);
594 
595 	req->base.complete = rctx->complete;
596 
597 out:
598 	cryptd_hash_complete(req, err);
599 }
600 
601 static int cryptd_hash_final_enqueue(struct ahash_request *req)
602 {
603 	return cryptd_hash_enqueue(req, cryptd_hash_final);
604 }
605 
606 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
607 {
608 	struct ahash_request *req = ahash_request_cast(req_async);
609 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
610 
611 	if (unlikely(err == -EINPROGRESS))
612 		goto out;
613 
614 	err = shash_ahash_finup(req, &rctx->desc);
615 
616 	req->base.complete = rctx->complete;
617 
618 out:
619 	cryptd_hash_complete(req, err);
620 }
621 
622 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
623 {
624 	return cryptd_hash_enqueue(req, cryptd_hash_finup);
625 }
626 
627 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
628 {
629 	struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
630 	struct crypto_shash *child = ctx->child;
631 	struct ahash_request *req = ahash_request_cast(req_async);
632 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
633 	struct shash_desc *desc = &rctx->desc;
634 
635 	if (unlikely(err == -EINPROGRESS))
636 		goto out;
637 
638 	desc->tfm = child;
639 
640 	err = shash_ahash_digest(req, desc);
641 
642 	req->base.complete = rctx->complete;
643 
644 out:
645 	cryptd_hash_complete(req, err);
646 }
647 
648 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
649 {
650 	return cryptd_hash_enqueue(req, cryptd_hash_digest);
651 }
652 
653 static int cryptd_hash_export(struct ahash_request *req, void *out)
654 {
655 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
656 
657 	return crypto_shash_export(&rctx->desc, out);
658 }
659 
660 static int cryptd_hash_import(struct ahash_request *req, const void *in)
661 {
662 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
663 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
664 	struct shash_desc *desc = cryptd_shash_desc(req);
665 
666 	desc->tfm = ctx->child;
667 
668 	return crypto_shash_import(desc, in);
669 }
670 
671 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
672 			      struct cryptd_queue *queue)
673 {
674 	struct hashd_instance_ctx *ctx;
675 	struct ahash_instance *inst;
676 	struct shash_alg *salg;
677 	struct crypto_alg *alg;
678 	u32 type = 0;
679 	u32 mask = 0;
680 	int err;
681 
682 	cryptd_check_internal(tb, &type, &mask);
683 
684 	salg = shash_attr_alg(tb[1], type, mask);
685 	if (IS_ERR(salg))
686 		return PTR_ERR(salg);
687 
688 	alg = &salg->base;
689 	inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
690 				     sizeof(*ctx));
691 	err = PTR_ERR(inst);
692 	if (IS_ERR(inst))
693 		goto out_put_alg;
694 
695 	ctx = ahash_instance_ctx(inst);
696 	ctx->queue = queue;
697 
698 	err = crypto_init_shash_spawn(&ctx->spawn, salg,
699 				      ahash_crypto_instance(inst));
700 	if (err)
701 		goto out_free_inst;
702 
703 	inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
704 		(alg->cra_flags & (CRYPTO_ALG_INTERNAL |
705 				   CRYPTO_ALG_OPTIONAL_KEY));
706 
707 	inst->alg.halg.digestsize = salg->digestsize;
708 	inst->alg.halg.statesize = salg->statesize;
709 	inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
710 
711 	inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
712 	inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
713 
714 	inst->alg.init   = cryptd_hash_init_enqueue;
715 	inst->alg.update = cryptd_hash_update_enqueue;
716 	inst->alg.final  = cryptd_hash_final_enqueue;
717 	inst->alg.finup  = cryptd_hash_finup_enqueue;
718 	inst->alg.export = cryptd_hash_export;
719 	inst->alg.import = cryptd_hash_import;
720 	if (crypto_shash_alg_has_setkey(salg))
721 		inst->alg.setkey = cryptd_hash_setkey;
722 	inst->alg.digest = cryptd_hash_digest_enqueue;
723 
724 	err = ahash_register_instance(tmpl, inst);
725 	if (err) {
726 		crypto_drop_shash(&ctx->spawn);
727 out_free_inst:
728 		kfree(inst);
729 	}
730 
731 out_put_alg:
732 	crypto_mod_put(alg);
733 	return err;
734 }
735 
736 static int cryptd_aead_setkey(struct crypto_aead *parent,
737 			      const u8 *key, unsigned int keylen)
738 {
739 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
740 	struct crypto_aead *child = ctx->child;
741 
742 	return crypto_aead_setkey(child, key, keylen);
743 }
744 
745 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
746 				   unsigned int authsize)
747 {
748 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
749 	struct crypto_aead *child = ctx->child;
750 
751 	return crypto_aead_setauthsize(child, authsize);
752 }
753 
754 static void cryptd_aead_crypt(struct aead_request *req,
755 			struct crypto_aead *child,
756 			int err,
757 			int (*crypt)(struct aead_request *req))
758 {
759 	struct cryptd_aead_request_ctx *rctx;
760 	struct cryptd_aead_ctx *ctx;
761 	crypto_completion_t compl;
762 	struct crypto_aead *tfm;
763 	int refcnt;
764 
765 	rctx = aead_request_ctx(req);
766 	compl = rctx->complete;
767 
768 	tfm = crypto_aead_reqtfm(req);
769 
770 	if (unlikely(err == -EINPROGRESS))
771 		goto out;
772 	aead_request_set_tfm(req, child);
773 	err = crypt( req );
774 
775 out:
776 	ctx = crypto_aead_ctx(tfm);
777 	refcnt = atomic_read(&ctx->refcnt);
778 
779 	local_bh_disable();
780 	compl(&req->base, err);
781 	local_bh_enable();
782 
783 	if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
784 		crypto_free_aead(tfm);
785 }
786 
787 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
788 {
789 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
790 	struct crypto_aead *child = ctx->child;
791 	struct aead_request *req;
792 
793 	req = container_of(areq, struct aead_request, base);
794 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
795 }
796 
797 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
798 {
799 	struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
800 	struct crypto_aead *child = ctx->child;
801 	struct aead_request *req;
802 
803 	req = container_of(areq, struct aead_request, base);
804 	cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
805 }
806 
807 static int cryptd_aead_enqueue(struct aead_request *req,
808 				    crypto_completion_t compl)
809 {
810 	struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
811 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
812 	struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
813 
814 	rctx->complete = req->base.complete;
815 	req->base.complete = compl;
816 	return cryptd_enqueue_request(queue, &req->base);
817 }
818 
819 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
820 {
821 	return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
822 }
823 
824 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
825 {
826 	return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
827 }
828 
829 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
830 {
831 	struct aead_instance *inst = aead_alg_instance(tfm);
832 	struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
833 	struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
834 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
835 	struct crypto_aead *cipher;
836 
837 	cipher = crypto_spawn_aead(spawn);
838 	if (IS_ERR(cipher))
839 		return PTR_ERR(cipher);
840 
841 	ctx->child = cipher;
842 	crypto_aead_set_reqsize(
843 		tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
844 			 crypto_aead_reqsize(cipher)));
845 	return 0;
846 }
847 
848 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
849 {
850 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
851 	crypto_free_aead(ctx->child);
852 }
853 
854 static int cryptd_create_aead(struct crypto_template *tmpl,
855 		              struct rtattr **tb,
856 			      struct cryptd_queue *queue)
857 {
858 	struct aead_instance_ctx *ctx;
859 	struct aead_instance *inst;
860 	struct aead_alg *alg;
861 	const char *name;
862 	u32 type = 0;
863 	u32 mask = CRYPTO_ALG_ASYNC;
864 	int err;
865 
866 	cryptd_check_internal(tb, &type, &mask);
867 
868 	name = crypto_attr_alg_name(tb[1]);
869 	if (IS_ERR(name))
870 		return PTR_ERR(name);
871 
872 	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
873 	if (!inst)
874 		return -ENOMEM;
875 
876 	ctx = aead_instance_ctx(inst);
877 	ctx->queue = queue;
878 
879 	crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
880 	err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
881 	if (err)
882 		goto out_free_inst;
883 
884 	alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
885 	err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
886 	if (err)
887 		goto out_drop_aead;
888 
889 	inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
890 				   (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
891 	inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
892 
893 	inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
894 	inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
895 
896 	inst->alg.init = cryptd_aead_init_tfm;
897 	inst->alg.exit = cryptd_aead_exit_tfm;
898 	inst->alg.setkey = cryptd_aead_setkey;
899 	inst->alg.setauthsize = cryptd_aead_setauthsize;
900 	inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
901 	inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
902 
903 	err = aead_register_instance(tmpl, inst);
904 	if (err) {
905 out_drop_aead:
906 		crypto_drop_aead(&ctx->aead_spawn);
907 out_free_inst:
908 		kfree(inst);
909 	}
910 	return err;
911 }
912 
913 static struct cryptd_queue queue;
914 
915 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
916 {
917 	struct crypto_attr_type *algt;
918 
919 	algt = crypto_get_attr_type(tb);
920 	if (IS_ERR(algt))
921 		return PTR_ERR(algt);
922 
923 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
924 	case CRYPTO_ALG_TYPE_BLKCIPHER:
925 		return cryptd_create_skcipher(tmpl, tb, &queue);
926 	case CRYPTO_ALG_TYPE_DIGEST:
927 		return cryptd_create_hash(tmpl, tb, &queue);
928 	case CRYPTO_ALG_TYPE_AEAD:
929 		return cryptd_create_aead(tmpl, tb, &queue);
930 	}
931 
932 	return -EINVAL;
933 }
934 
935 static void cryptd_free(struct crypto_instance *inst)
936 {
937 	struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
938 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
939 	struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
940 
941 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
942 	case CRYPTO_ALG_TYPE_AHASH:
943 		crypto_drop_shash(&hctx->spawn);
944 		kfree(ahash_instance(inst));
945 		return;
946 	case CRYPTO_ALG_TYPE_AEAD:
947 		crypto_drop_aead(&aead_ctx->aead_spawn);
948 		kfree(aead_instance(inst));
949 		return;
950 	default:
951 		crypto_drop_spawn(&ctx->spawn);
952 		kfree(inst);
953 	}
954 }
955 
956 static struct crypto_template cryptd_tmpl = {
957 	.name = "cryptd",
958 	.create = cryptd_create,
959 	.free = cryptd_free,
960 	.module = THIS_MODULE,
961 };
962 
963 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
964 					      u32 type, u32 mask)
965 {
966 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
967 	struct cryptd_skcipher_ctx *ctx;
968 	struct crypto_skcipher *tfm;
969 
970 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
971 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
972 		return ERR_PTR(-EINVAL);
973 
974 	tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
975 	if (IS_ERR(tfm))
976 		return ERR_CAST(tfm);
977 
978 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
979 		crypto_free_skcipher(tfm);
980 		return ERR_PTR(-EINVAL);
981 	}
982 
983 	ctx = crypto_skcipher_ctx(tfm);
984 	atomic_set(&ctx->refcnt, 1);
985 
986 	return container_of(tfm, struct cryptd_skcipher, base);
987 }
988 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
989 
990 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
991 {
992 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
993 
994 	return &ctx->child->base;
995 }
996 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
997 
998 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
999 {
1000 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1001 
1002 	return atomic_read(&ctx->refcnt) - 1;
1003 }
1004 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
1005 
1006 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
1007 {
1008 	struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1009 
1010 	if (atomic_dec_and_test(&ctx->refcnt))
1011 		crypto_free_skcipher(&tfm->base);
1012 }
1013 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1014 
1015 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1016 					u32 type, u32 mask)
1017 {
1018 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1019 	struct cryptd_hash_ctx *ctx;
1020 	struct crypto_ahash *tfm;
1021 
1022 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1023 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1024 		return ERR_PTR(-EINVAL);
1025 	tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1026 	if (IS_ERR(tfm))
1027 		return ERR_CAST(tfm);
1028 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1029 		crypto_free_ahash(tfm);
1030 		return ERR_PTR(-EINVAL);
1031 	}
1032 
1033 	ctx = crypto_ahash_ctx(tfm);
1034 	atomic_set(&ctx->refcnt, 1);
1035 
1036 	return __cryptd_ahash_cast(tfm);
1037 }
1038 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1039 
1040 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1041 {
1042 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1043 
1044 	return ctx->child;
1045 }
1046 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1047 
1048 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1049 {
1050 	struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1051 	return &rctx->desc;
1052 }
1053 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1054 
1055 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1056 {
1057 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1058 
1059 	return atomic_read(&ctx->refcnt) - 1;
1060 }
1061 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1062 
1063 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1064 {
1065 	struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1066 
1067 	if (atomic_dec_and_test(&ctx->refcnt))
1068 		crypto_free_ahash(&tfm->base);
1069 }
1070 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1071 
1072 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1073 						  u32 type, u32 mask)
1074 {
1075 	char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1076 	struct cryptd_aead_ctx *ctx;
1077 	struct crypto_aead *tfm;
1078 
1079 	if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1080 		     "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1081 		return ERR_PTR(-EINVAL);
1082 	tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1083 	if (IS_ERR(tfm))
1084 		return ERR_CAST(tfm);
1085 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1086 		crypto_free_aead(tfm);
1087 		return ERR_PTR(-EINVAL);
1088 	}
1089 
1090 	ctx = crypto_aead_ctx(tfm);
1091 	atomic_set(&ctx->refcnt, 1);
1092 
1093 	return __cryptd_aead_cast(tfm);
1094 }
1095 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1096 
1097 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1098 {
1099 	struct cryptd_aead_ctx *ctx;
1100 	ctx = crypto_aead_ctx(&tfm->base);
1101 	return ctx->child;
1102 }
1103 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1104 
1105 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1106 {
1107 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1108 
1109 	return atomic_read(&ctx->refcnt) - 1;
1110 }
1111 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1112 
1113 void cryptd_free_aead(struct cryptd_aead *tfm)
1114 {
1115 	struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1116 
1117 	if (atomic_dec_and_test(&ctx->refcnt))
1118 		crypto_free_aead(&tfm->base);
1119 }
1120 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1121 
1122 static int __init cryptd_init(void)
1123 {
1124 	int err;
1125 
1126 	err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1127 	if (err)
1128 		return err;
1129 
1130 	err = crypto_register_template(&cryptd_tmpl);
1131 	if (err)
1132 		cryptd_fini_queue(&queue);
1133 
1134 	return err;
1135 }
1136 
1137 static void __exit cryptd_exit(void)
1138 {
1139 	cryptd_fini_queue(&queue);
1140 	crypto_unregister_template(&cryptd_tmpl);
1141 }
1142 
1143 subsys_initcall(cryptd_init);
1144 module_exit(cryptd_exit);
1145 
1146 MODULE_LICENSE("GPL");
1147 MODULE_DESCRIPTION("Software async crypto daemon");
1148 MODULE_ALIAS_CRYPTO("cryptd");
1149