xref: /openbmc/linux/crypto/async_tx/raid6test.c (revision dea54fba)
1 /*
2  * asynchronous raid6 recovery self test
3  * Copyright (c) 2009, Intel Corporation.
4  *
5  * based on drivers/md/raid6test/test.c:
6  * 	Copyright 2002-2007 H. Peter Anvin
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  */
22 #include <linux/async_tx.h>
23 #include <linux/gfp.h>
24 #include <linux/mm.h>
25 #include <linux/random.h>
26 #include <linux/module.h>
27 
28 #undef pr
29 #define pr(fmt, args...) pr_info("raid6test: " fmt, ##args)
30 
31 #define NDISKS 64 /* Including P and Q */
32 
33 static struct page *dataptrs[NDISKS];
34 static addr_conv_t addr_conv[NDISKS];
35 static struct page *data[NDISKS+3];
36 static struct page *spare;
37 static struct page *recovi;
38 static struct page *recovj;
39 
40 static void callback(void *param)
41 {
42 	struct completion *cmp = param;
43 
44 	complete(cmp);
45 }
46 
47 static void makedata(int disks)
48 {
49 	int i;
50 
51 	for (i = 0; i < disks; i++) {
52 		prandom_bytes(page_address(data[i]), PAGE_SIZE);
53 		dataptrs[i] = data[i];
54 	}
55 }
56 
57 static char disk_type(int d, int disks)
58 {
59 	if (d == disks - 2)
60 		return 'P';
61 	else if (d == disks - 1)
62 		return 'Q';
63 	else
64 		return 'D';
65 }
66 
67 /* Recover two failed blocks. */
68 static void raid6_dual_recov(int disks, size_t bytes, int faila, int failb, struct page **ptrs)
69 {
70 	struct async_submit_ctl submit;
71 	struct completion cmp;
72 	struct dma_async_tx_descriptor *tx = NULL;
73 	enum sum_check_flags result = ~0;
74 
75 	if (faila > failb)
76 		swap(faila, failb);
77 
78 	if (failb == disks-1) {
79 		if (faila == disks-2) {
80 			/* P+Q failure.  Just rebuild the syndrome. */
81 			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
82 			tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
83 		} else {
84 			struct page *blocks[disks];
85 			struct page *dest;
86 			int count = 0;
87 			int i;
88 
89 			/* data+Q failure.  Reconstruct data from P,
90 			 * then rebuild syndrome
91 			 */
92 			for (i = disks; i-- ; ) {
93 				if (i == faila || i == failb)
94 					continue;
95 				blocks[count++] = ptrs[i];
96 			}
97 			dest = ptrs[faila];
98 			init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
99 					  NULL, NULL, addr_conv);
100 			tx = async_xor(dest, blocks, 0, count, bytes, &submit);
101 
102 			init_async_submit(&submit, 0, tx, NULL, NULL, addr_conv);
103 			tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
104 		}
105 	} else {
106 		if (failb == disks-2) {
107 			/* data+P failure. */
108 			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
109 			tx = async_raid6_datap_recov(disks, bytes, faila, ptrs, &submit);
110 		} else {
111 			/* data+data failure. */
112 			init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
113 			tx = async_raid6_2data_recov(disks, bytes, faila, failb, ptrs, &submit);
114 		}
115 	}
116 	init_completion(&cmp);
117 	init_async_submit(&submit, ASYNC_TX_ACK, tx, callback, &cmp, addr_conv);
118 	tx = async_syndrome_val(ptrs, 0, disks, bytes, &result, spare, &submit);
119 	async_tx_issue_pending(tx);
120 
121 	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0)
122 		pr("%s: timeout! (faila: %d failb: %d disks: %d)\n",
123 		   __func__, faila, failb, disks);
124 
125 	if (result != 0)
126 		pr("%s: validation failure! faila: %d failb: %d sum_check_flags: %x\n",
127 		   __func__, faila, failb, result);
128 }
129 
130 static int test_disks(int i, int j, int disks)
131 {
132 	int erra, errb;
133 
134 	memset(page_address(recovi), 0xf0, PAGE_SIZE);
135 	memset(page_address(recovj), 0xba, PAGE_SIZE);
136 
137 	dataptrs[i] = recovi;
138 	dataptrs[j] = recovj;
139 
140 	raid6_dual_recov(disks, PAGE_SIZE, i, j, dataptrs);
141 
142 	erra = memcmp(page_address(data[i]), page_address(recovi), PAGE_SIZE);
143 	errb = memcmp(page_address(data[j]), page_address(recovj), PAGE_SIZE);
144 
145 	pr("%s(%d, %d): faila=%3d(%c)  failb=%3d(%c)  %s\n",
146 	   __func__, i, j, i, disk_type(i, disks), j, disk_type(j, disks),
147 	   (!erra && !errb) ? "OK" : !erra ? "ERRB" : !errb ? "ERRA" : "ERRAB");
148 
149 	dataptrs[i] = data[i];
150 	dataptrs[j] = data[j];
151 
152 	return erra || errb;
153 }
154 
155 static int test(int disks, int *tests)
156 {
157 	struct dma_async_tx_descriptor *tx;
158 	struct async_submit_ctl submit;
159 	struct completion cmp;
160 	int err = 0;
161 	int i, j;
162 
163 	recovi = data[disks];
164 	recovj = data[disks+1];
165 	spare  = data[disks+2];
166 
167 	makedata(disks);
168 
169 	/* Nuke syndromes */
170 	memset(page_address(data[disks-2]), 0xee, PAGE_SIZE);
171 	memset(page_address(data[disks-1]), 0xee, PAGE_SIZE);
172 
173 	/* Generate assumed good syndrome */
174 	init_completion(&cmp);
175 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, callback, &cmp, addr_conv);
176 	tx = async_gen_syndrome(dataptrs, 0, disks, PAGE_SIZE, &submit);
177 	async_tx_issue_pending(tx);
178 
179 	if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0) {
180 		pr("error: initial gen_syndrome(%d) timed out\n", disks);
181 		return 1;
182 	}
183 
184 	pr("testing the %d-disk case...\n", disks);
185 	for (i = 0; i < disks-1; i++)
186 		for (j = i+1; j < disks; j++) {
187 			(*tests)++;
188 			err += test_disks(i, j, disks);
189 		}
190 
191 	return err;
192 }
193 
194 
195 static int raid6_test(void)
196 {
197 	int err = 0;
198 	int tests = 0;
199 	int i;
200 
201 	for (i = 0; i < NDISKS+3; i++) {
202 		data[i] = alloc_page(GFP_KERNEL);
203 		if (!data[i]) {
204 			while (i--)
205 				put_page(data[i]);
206 			return -ENOMEM;
207 		}
208 	}
209 
210 	/* the 4-disk and 5-disk cases are special for the recovery code */
211 	if (NDISKS > 4)
212 		err += test(4, &tests);
213 	if (NDISKS > 5)
214 		err += test(5, &tests);
215 	/* the 11 and 12 disk cases are special for ioatdma (p-disabled
216 	 * q-continuation without extended descriptor)
217 	 */
218 	if (NDISKS > 12) {
219 		err += test(11, &tests);
220 		err += test(12, &tests);
221 	}
222 
223 	/* the 24 disk case is special for ioatdma as it is the boudary point
224 	 * at which it needs to switch from 8-source ops to 16-source
225 	 * ops for continuation (assumes DMA_HAS_PQ_CONTINUE is not set)
226 	 */
227 	if (NDISKS > 24)
228 		err += test(24, &tests);
229 
230 	err += test(NDISKS, &tests);
231 
232 	pr("\n");
233 	pr("complete (%d tests, %d failure%s)\n",
234 	   tests, err, err == 1 ? "" : "s");
235 
236 	for (i = 0; i < NDISKS+3; i++)
237 		put_page(data[i]);
238 
239 	return 0;
240 }
241 
242 static void raid6_test_exit(void)
243 {
244 }
245 
246 /* when compiled-in wait for drivers to load first (assumes dma drivers
247  * are also compliled-in)
248  */
249 late_initcall(raid6_test);
250 module_exit(raid6_test_exit);
251 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
252 MODULE_DESCRIPTION("asynchronous RAID-6 recovery self tests");
253 MODULE_LICENSE("GPL");
254