1 /* 2 * core routines for the asynchronous memory transfer/transform api 3 * 4 * Copyright © 2006, Intel Corporation. 5 * 6 * Dan Williams <dan.j.williams@intel.com> 7 * 8 * with architecture considerations by: 9 * Neil Brown <neilb@suse.de> 10 * Jeff Garzik <jeff@garzik.org> 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms and conditions of the GNU General Public License, 14 * version 2, as published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope it will be useful, but WITHOUT 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 19 * more details. 20 * 21 * You should have received a copy of the GNU General Public License along with 22 * this program; if not, write to the Free Software Foundation, Inc., 23 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 24 * 25 */ 26 #include <linux/kernel.h> 27 #include <linux/async_tx.h> 28 29 #ifdef CONFIG_DMA_ENGINE 30 static enum dma_state_client 31 dma_channel_add_remove(struct dma_client *client, 32 struct dma_chan *chan, enum dma_state state); 33 34 static struct dma_client async_tx_dma = { 35 .event_callback = dma_channel_add_remove, 36 /* .cap_mask == 0 defaults to all channels */ 37 }; 38 39 /** 40 * dma_cap_mask_all - enable iteration over all operation types 41 */ 42 static dma_cap_mask_t dma_cap_mask_all; 43 44 /** 45 * chan_ref_percpu - tracks channel allocations per core/opertion 46 */ 47 struct chan_ref_percpu { 48 struct dma_chan_ref *ref; 49 }; 50 51 static int channel_table_initialized; 52 static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END]; 53 54 /** 55 * async_tx_lock - protect modification of async_tx_master_list and serialize 56 * rebalance operations 57 */ 58 static spinlock_t async_tx_lock; 59 60 static struct list_head 61 async_tx_master_list = LIST_HEAD_INIT(async_tx_master_list); 62 63 /* async_tx_issue_pending_all - start all transactions on all channels */ 64 void async_tx_issue_pending_all(void) 65 { 66 struct dma_chan_ref *ref; 67 68 rcu_read_lock(); 69 list_for_each_entry_rcu(ref, &async_tx_master_list, node) 70 ref->chan->device->device_issue_pending(ref->chan); 71 rcu_read_unlock(); 72 } 73 EXPORT_SYMBOL_GPL(async_tx_issue_pending_all); 74 75 /* dma_wait_for_async_tx - spin wait for a transcation to complete 76 * @tx: transaction to wait on 77 */ 78 enum dma_status 79 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 80 { 81 enum dma_status status; 82 struct dma_async_tx_descriptor *iter; 83 84 if (!tx) 85 return DMA_SUCCESS; 86 87 /* poll through the dependency chain, return when tx is complete */ 88 do { 89 iter = tx; 90 while (iter->cookie == -EBUSY) 91 iter = iter->parent; 92 93 status = dma_sync_wait(iter->chan, iter->cookie); 94 } while (status == DMA_IN_PROGRESS || (iter != tx)); 95 96 return status; 97 } 98 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); 99 100 /* async_tx_run_dependencies - helper routine for dma drivers to process 101 * (start) dependent operations on their target channel 102 * @tx: transaction with dependencies 103 */ 104 void 105 async_tx_run_dependencies(struct dma_async_tx_descriptor *tx) 106 { 107 struct dma_async_tx_descriptor *dep_tx, *_dep_tx; 108 struct dma_device *dev; 109 struct dma_chan *chan; 110 111 list_for_each_entry_safe(dep_tx, _dep_tx, &tx->depend_list, 112 depend_node) { 113 chan = dep_tx->chan; 114 dev = chan->device; 115 /* we can't depend on ourselves */ 116 BUG_ON(chan == tx->chan); 117 list_del(&dep_tx->depend_node); 118 tx->tx_submit(dep_tx); 119 120 /* we need to poke the engine as client code does not 121 * know about dependency submission events 122 */ 123 dev->device_issue_pending(chan); 124 } 125 } 126 EXPORT_SYMBOL_GPL(async_tx_run_dependencies); 127 128 static void 129 free_dma_chan_ref(struct rcu_head *rcu) 130 { 131 struct dma_chan_ref *ref; 132 ref = container_of(rcu, struct dma_chan_ref, rcu); 133 kfree(ref); 134 } 135 136 static void 137 init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan) 138 { 139 INIT_LIST_HEAD(&ref->node); 140 INIT_RCU_HEAD(&ref->rcu); 141 ref->chan = chan; 142 atomic_set(&ref->count, 0); 143 } 144 145 /** 146 * get_chan_ref_by_cap - returns the nth channel of the given capability 147 * defaults to returning the channel with the desired capability and the 148 * lowest reference count if the index can not be satisfied 149 * @cap: capability to match 150 * @index: nth channel desired, passing -1 has the effect of forcing the 151 * default return value 152 */ 153 static struct dma_chan_ref * 154 get_chan_ref_by_cap(enum dma_transaction_type cap, int index) 155 { 156 struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref; 157 158 rcu_read_lock(); 159 list_for_each_entry_rcu(ref, &async_tx_master_list, node) 160 if (dma_has_cap(cap, ref->chan->device->cap_mask)) { 161 if (!min_ref) 162 min_ref = ref; 163 else if (atomic_read(&ref->count) < 164 atomic_read(&min_ref->count)) 165 min_ref = ref; 166 167 if (index-- == 0) { 168 ret_ref = ref; 169 break; 170 } 171 } 172 rcu_read_unlock(); 173 174 if (!ret_ref) 175 ret_ref = min_ref; 176 177 if (ret_ref) 178 atomic_inc(&ret_ref->count); 179 180 return ret_ref; 181 } 182 183 /** 184 * async_tx_rebalance - redistribute the available channels, optimize 185 * for cpu isolation in the SMP case, and opertaion isolation in the 186 * uniprocessor case 187 */ 188 static void async_tx_rebalance(void) 189 { 190 int cpu, cap, cpu_idx = 0; 191 unsigned long flags; 192 193 if (!channel_table_initialized) 194 return; 195 196 spin_lock_irqsave(&async_tx_lock, flags); 197 198 /* undo the last distribution */ 199 for_each_dma_cap_mask(cap, dma_cap_mask_all) 200 for_each_possible_cpu(cpu) { 201 struct dma_chan_ref *ref = 202 per_cpu_ptr(channel_table[cap], cpu)->ref; 203 if (ref) { 204 atomic_set(&ref->count, 0); 205 per_cpu_ptr(channel_table[cap], cpu)->ref = 206 NULL; 207 } 208 } 209 210 for_each_dma_cap_mask(cap, dma_cap_mask_all) 211 for_each_online_cpu(cpu) { 212 struct dma_chan_ref *new; 213 if (NR_CPUS > 1) 214 new = get_chan_ref_by_cap(cap, cpu_idx++); 215 else 216 new = get_chan_ref_by_cap(cap, -1); 217 218 per_cpu_ptr(channel_table[cap], cpu)->ref = new; 219 } 220 221 spin_unlock_irqrestore(&async_tx_lock, flags); 222 } 223 224 static enum dma_state_client 225 dma_channel_add_remove(struct dma_client *client, 226 struct dma_chan *chan, enum dma_state state) 227 { 228 unsigned long found, flags; 229 struct dma_chan_ref *master_ref, *ref; 230 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 231 232 switch (state) { 233 case DMA_RESOURCE_AVAILABLE: 234 found = 0; 235 rcu_read_lock(); 236 list_for_each_entry_rcu(ref, &async_tx_master_list, node) 237 if (ref->chan == chan) { 238 found = 1; 239 break; 240 } 241 rcu_read_unlock(); 242 243 pr_debug("async_tx: dma resource available [%s]\n", 244 found ? "old" : "new"); 245 246 if (!found) 247 ack = DMA_ACK; 248 else 249 break; 250 251 /* add the channel to the generic management list */ 252 master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL); 253 if (master_ref) { 254 /* keep a reference until async_tx is unloaded */ 255 dma_chan_get(chan); 256 init_dma_chan_ref(master_ref, chan); 257 spin_lock_irqsave(&async_tx_lock, flags); 258 list_add_tail_rcu(&master_ref->node, 259 &async_tx_master_list); 260 spin_unlock_irqrestore(&async_tx_lock, 261 flags); 262 } else { 263 printk(KERN_WARNING "async_tx: unable to create" 264 " new master entry in response to" 265 " a DMA_RESOURCE_ADDED event" 266 " (-ENOMEM)\n"); 267 return 0; 268 } 269 270 async_tx_rebalance(); 271 break; 272 case DMA_RESOURCE_REMOVED: 273 found = 0; 274 spin_lock_irqsave(&async_tx_lock, flags); 275 list_for_each_entry_rcu(ref, &async_tx_master_list, node) 276 if (ref->chan == chan) { 277 /* permit backing devices to go away */ 278 dma_chan_put(ref->chan); 279 list_del_rcu(&ref->node); 280 call_rcu(&ref->rcu, free_dma_chan_ref); 281 found = 1; 282 break; 283 } 284 spin_unlock_irqrestore(&async_tx_lock, flags); 285 286 pr_debug("async_tx: dma resource removed [%s]\n", 287 found ? "ours" : "not ours"); 288 289 if (found) 290 ack = DMA_ACK; 291 else 292 break; 293 294 async_tx_rebalance(); 295 break; 296 case DMA_RESOURCE_SUSPEND: 297 case DMA_RESOURCE_RESUME: 298 printk(KERN_WARNING "async_tx: does not support dma channel" 299 " suspend/resume\n"); 300 break; 301 default: 302 BUG(); 303 } 304 305 return ack; 306 } 307 308 static int __init 309 async_tx_init(void) 310 { 311 enum dma_transaction_type cap; 312 313 spin_lock_init(&async_tx_lock); 314 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); 315 316 /* an interrupt will never be an explicit operation type. 317 * clearing this bit prevents allocation to a slot in 'channel_table' 318 */ 319 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); 320 321 for_each_dma_cap_mask(cap, dma_cap_mask_all) { 322 channel_table[cap] = alloc_percpu(struct chan_ref_percpu); 323 if (!channel_table[cap]) 324 goto err; 325 } 326 327 channel_table_initialized = 1; 328 dma_async_client_register(&async_tx_dma); 329 dma_async_client_chan_request(&async_tx_dma); 330 331 printk(KERN_INFO "async_tx: api initialized (async)\n"); 332 333 return 0; 334 err: 335 printk(KERN_ERR "async_tx: initialization failure\n"); 336 337 while (--cap >= 0) 338 free_percpu(channel_table[cap]); 339 340 return 1; 341 } 342 343 static void __exit async_tx_exit(void) 344 { 345 enum dma_transaction_type cap; 346 347 channel_table_initialized = 0; 348 349 for_each_dma_cap_mask(cap, dma_cap_mask_all) 350 if (channel_table[cap]) 351 free_percpu(channel_table[cap]); 352 353 dma_async_client_unregister(&async_tx_dma); 354 } 355 356 /** 357 * async_tx_find_channel - find a channel to carry out the operation or let 358 * the transaction execute synchronously 359 * @depend_tx: transaction dependency 360 * @tx_type: transaction type 361 */ 362 struct dma_chan * 363 async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx, 364 enum dma_transaction_type tx_type) 365 { 366 /* see if we can keep the chain on one channel */ 367 if (depend_tx && 368 dma_has_cap(tx_type, depend_tx->chan->device->cap_mask)) 369 return depend_tx->chan; 370 else if (likely(channel_table_initialized)) { 371 struct dma_chan_ref *ref; 372 int cpu = get_cpu(); 373 ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref; 374 put_cpu(); 375 return ref ? ref->chan : NULL; 376 } else 377 return NULL; 378 } 379 EXPORT_SYMBOL_GPL(async_tx_find_channel); 380 #else 381 static int __init async_tx_init(void) 382 { 383 printk(KERN_INFO "async_tx: api initialized (sync-only)\n"); 384 return 0; 385 } 386 387 static void __exit async_tx_exit(void) 388 { 389 do { } while (0); 390 } 391 #endif 392 393 void 394 async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx, 395 enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx, 396 dma_async_tx_callback cb_fn, void *cb_param) 397 { 398 tx->callback = cb_fn; 399 tx->callback_param = cb_param; 400 401 /* set this new tx to run after depend_tx if: 402 * 1/ a dependency exists (depend_tx is !NULL) 403 * 2/ the tx can not be submitted to the current channel 404 */ 405 if (depend_tx && depend_tx->chan != chan) { 406 /* if ack is already set then we cannot be sure 407 * we are referring to the correct operation 408 */ 409 BUG_ON(depend_tx->ack); 410 411 tx->parent = depend_tx; 412 spin_lock_bh(&depend_tx->lock); 413 list_add_tail(&tx->depend_node, &depend_tx->depend_list); 414 if (depend_tx->cookie == 0) { 415 struct dma_chan *dep_chan = depend_tx->chan; 416 struct dma_device *dep_dev = dep_chan->device; 417 dep_dev->device_dependency_added(dep_chan); 418 } 419 spin_unlock_bh(&depend_tx->lock); 420 421 /* schedule an interrupt to trigger the channel switch */ 422 async_trigger_callback(ASYNC_TX_ACK, depend_tx, NULL, NULL); 423 } else { 424 tx->parent = NULL; 425 tx->tx_submit(tx); 426 } 427 428 if (flags & ASYNC_TX_ACK) 429 async_tx_ack(tx); 430 431 if (depend_tx && (flags & ASYNC_TX_DEP_ACK)) 432 async_tx_ack(depend_tx); 433 } 434 EXPORT_SYMBOL_GPL(async_tx_submit); 435 436 /** 437 * async_trigger_callback - schedules the callback function to be run after 438 * any dependent operations have been completed. 439 * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK 440 * @depend_tx: 'callback' requires the completion of this transaction 441 * @cb_fn: function to call after depend_tx completes 442 * @cb_param: parameter to pass to the callback routine 443 */ 444 struct dma_async_tx_descriptor * 445 async_trigger_callback(enum async_tx_flags flags, 446 struct dma_async_tx_descriptor *depend_tx, 447 dma_async_tx_callback cb_fn, void *cb_param) 448 { 449 struct dma_chan *chan; 450 struct dma_device *device; 451 struct dma_async_tx_descriptor *tx; 452 453 if (depend_tx) { 454 chan = depend_tx->chan; 455 device = chan->device; 456 457 /* see if we can schedule an interrupt 458 * otherwise poll for completion 459 */ 460 if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask)) 461 device = NULL; 462 463 tx = device ? device->device_prep_dma_interrupt(chan) : NULL; 464 } else 465 tx = NULL; 466 467 if (tx) { 468 pr_debug("%s: (async)\n", __FUNCTION__); 469 470 async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param); 471 } else { 472 pr_debug("%s: (sync)\n", __FUNCTION__); 473 474 /* wait for any prerequisite operations */ 475 if (depend_tx) { 476 /* if ack is already set then we cannot be sure 477 * we are referring to the correct operation 478 */ 479 BUG_ON(depend_tx->ack); 480 if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR) 481 panic("%s: DMA_ERROR waiting for depend_tx\n", 482 __FUNCTION__); 483 } 484 485 async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param); 486 } 487 488 return tx; 489 } 490 EXPORT_SYMBOL_GPL(async_trigger_callback); 491 492 module_init(async_tx_init); 493 module_exit(async_tx_exit); 494 495 MODULE_AUTHOR("Intel Corporation"); 496 MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API"); 497 MODULE_LICENSE("GPL"); 498