1 /*
2  * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
3  * Copyright(c) 2009 Intel Corporation
4  *
5  * based on raid6recov.c:
6  *   Copyright 2002 H. Peter Anvin
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 51
20  * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  */
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/raid/pq.h>
27 #include <linux/async_tx.h>
28 
29 static struct dma_async_tx_descriptor *
30 async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
31 		  size_t len, struct async_submit_ctl *submit)
32 {
33 	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
34 						      &dest, 1, srcs, 2, len);
35 	struct dma_device *dma = chan ? chan->device : NULL;
36 	const u8 *amul, *bmul;
37 	u8 ax, bx;
38 	u8 *a, *b, *c;
39 
40 	if (dma) {
41 		dma_addr_t dma_dest[2];
42 		dma_addr_t dma_src[2];
43 		struct device *dev = dma->dev;
44 		struct dma_async_tx_descriptor *tx;
45 		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
46 
47 		if (submit->flags & ASYNC_TX_FENCE)
48 			dma_flags |= DMA_PREP_FENCE;
49 		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
50 		dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
51 		dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
52 		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef,
53 					     len, dma_flags);
54 		if (tx) {
55 			async_tx_submit(chan, tx, submit);
56 			return tx;
57 		}
58 
59 		/* could not get a descriptor, unmap and fall through to
60 		 * the synchronous path
61 		 */
62 		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
63 		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
64 		dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE);
65 	}
66 
67 	/* run the operation synchronously */
68 	async_tx_quiesce(&submit->depend_tx);
69 	amul = raid6_gfmul[coef[0]];
70 	bmul = raid6_gfmul[coef[1]];
71 	a = page_address(srcs[0]);
72 	b = page_address(srcs[1]);
73 	c = page_address(dest);
74 
75 	while (len--) {
76 		ax    = amul[*a++];
77 		bx    = bmul[*b++];
78 		*c++ = ax ^ bx;
79 	}
80 
81 	return NULL;
82 }
83 
84 static struct dma_async_tx_descriptor *
85 async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
86 	   struct async_submit_ctl *submit)
87 {
88 	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
89 						      &dest, 1, &src, 1, len);
90 	struct dma_device *dma = chan ? chan->device : NULL;
91 	const u8 *qmul; /* Q multiplier table */
92 	u8 *d, *s;
93 
94 	if (dma) {
95 		dma_addr_t dma_dest[2];
96 		dma_addr_t dma_src[1];
97 		struct device *dev = dma->dev;
98 		struct dma_async_tx_descriptor *tx;
99 		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
100 
101 		if (submit->flags & ASYNC_TX_FENCE)
102 			dma_flags |= DMA_PREP_FENCE;
103 		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
104 		dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
105 		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef,
106 					     len, dma_flags);
107 		if (tx) {
108 			async_tx_submit(chan, tx, submit);
109 			return tx;
110 		}
111 
112 		/* could not get a descriptor, unmap and fall through to
113 		 * the synchronous path
114 		 */
115 		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
116 		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
117 	}
118 
119 	/* no channel available, or failed to allocate a descriptor, so
120 	 * perform the operation synchronously
121 	 */
122 	async_tx_quiesce(&submit->depend_tx);
123 	qmul  = raid6_gfmul[coef];
124 	d = page_address(dest);
125 	s = page_address(src);
126 
127 	while (len--)
128 		*d++ = qmul[*s++];
129 
130 	return NULL;
131 }
132 
133 static struct dma_async_tx_descriptor *
134 __2data_recov_4(int disks, size_t bytes, int faila, int failb,
135 		struct page **blocks, struct async_submit_ctl *submit)
136 {
137 	struct dma_async_tx_descriptor *tx = NULL;
138 	struct page *p, *q, *a, *b;
139 	struct page *srcs[2];
140 	unsigned char coef[2];
141 	enum async_tx_flags flags = submit->flags;
142 	dma_async_tx_callback cb_fn = submit->cb_fn;
143 	void *cb_param = submit->cb_param;
144 	void *scribble = submit->scribble;
145 
146 	p = blocks[disks-2];
147 	q = blocks[disks-1];
148 
149 	a = blocks[faila];
150 	b = blocks[failb];
151 
152 	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
153 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
154 	srcs[0] = p;
155 	srcs[1] = q;
156 	coef[0] = raid6_gfexi[failb-faila];
157 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
158 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
159 	tx = async_sum_product(b, srcs, coef, bytes, submit);
160 
161 	/* Dy = P+Pxy+Dx */
162 	srcs[0] = p;
163 	srcs[1] = b;
164 	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
165 			  cb_param, scribble);
166 	tx = async_xor(a, srcs, 0, 2, bytes, submit);
167 
168 	return tx;
169 
170 }
171 
172 static struct dma_async_tx_descriptor *
173 __2data_recov_5(int disks, size_t bytes, int faila, int failb,
174 		struct page **blocks, struct async_submit_ctl *submit)
175 {
176 	struct dma_async_tx_descriptor *tx = NULL;
177 	struct page *p, *q, *g, *dp, *dq;
178 	struct page *srcs[2];
179 	unsigned char coef[2];
180 	enum async_tx_flags flags = submit->flags;
181 	dma_async_tx_callback cb_fn = submit->cb_fn;
182 	void *cb_param = submit->cb_param;
183 	void *scribble = submit->scribble;
184 	int good_srcs, good, i;
185 
186 	good_srcs = 0;
187 	good = -1;
188 	for (i = 0; i < disks-2; i++) {
189 		if (blocks[i] == NULL)
190 			continue;
191 		if (i == faila || i == failb)
192 			continue;
193 		good = i;
194 		good_srcs++;
195 	}
196 	BUG_ON(good_srcs > 1);
197 
198 	p = blocks[disks-2];
199 	q = blocks[disks-1];
200 	g = blocks[good];
201 
202 	/* Compute syndrome with zero for the missing data pages
203 	 * Use the dead data pages as temporary storage for delta p and
204 	 * delta q
205 	 */
206 	dp = blocks[faila];
207 	dq = blocks[failb];
208 
209 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
210 	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
211 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
212 	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
213 
214 	/* compute P + Pxy */
215 	srcs[0] = dp;
216 	srcs[1] = p;
217 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
218 			  NULL, NULL, scribble);
219 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
220 
221 	/* compute Q + Qxy */
222 	srcs[0] = dq;
223 	srcs[1] = q;
224 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
225 			  NULL, NULL, scribble);
226 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
227 
228 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
229 	srcs[0] = dp;
230 	srcs[1] = dq;
231 	coef[0] = raid6_gfexi[failb-faila];
232 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
233 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
234 	tx = async_sum_product(dq, srcs, coef, bytes, submit);
235 
236 	/* Dy = P+Pxy+Dx */
237 	srcs[0] = dp;
238 	srcs[1] = dq;
239 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
240 			  cb_param, scribble);
241 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
242 
243 	return tx;
244 }
245 
246 static struct dma_async_tx_descriptor *
247 __2data_recov_n(int disks, size_t bytes, int faila, int failb,
248 	      struct page **blocks, struct async_submit_ctl *submit)
249 {
250 	struct dma_async_tx_descriptor *tx = NULL;
251 	struct page *p, *q, *dp, *dq;
252 	struct page *srcs[2];
253 	unsigned char coef[2];
254 	enum async_tx_flags flags = submit->flags;
255 	dma_async_tx_callback cb_fn = submit->cb_fn;
256 	void *cb_param = submit->cb_param;
257 	void *scribble = submit->scribble;
258 
259 	p = blocks[disks-2];
260 	q = blocks[disks-1];
261 
262 	/* Compute syndrome with zero for the missing data pages
263 	 * Use the dead data pages as temporary storage for
264 	 * delta p and delta q
265 	 */
266 	dp = blocks[faila];
267 	blocks[faila] = NULL;
268 	blocks[disks-2] = dp;
269 	dq = blocks[failb];
270 	blocks[failb] = NULL;
271 	blocks[disks-1] = dq;
272 
273 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
274 	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
275 
276 	/* Restore pointer table */
277 	blocks[faila]   = dp;
278 	blocks[failb]   = dq;
279 	blocks[disks-2] = p;
280 	blocks[disks-1] = q;
281 
282 	/* compute P + Pxy */
283 	srcs[0] = dp;
284 	srcs[1] = p;
285 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
286 			  NULL, NULL, scribble);
287 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
288 
289 	/* compute Q + Qxy */
290 	srcs[0] = dq;
291 	srcs[1] = q;
292 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
293 			  NULL, NULL, scribble);
294 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
295 
296 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
297 	srcs[0] = dp;
298 	srcs[1] = dq;
299 	coef[0] = raid6_gfexi[failb-faila];
300 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
301 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
302 	tx = async_sum_product(dq, srcs, coef, bytes, submit);
303 
304 	/* Dy = P+Pxy+Dx */
305 	srcs[0] = dp;
306 	srcs[1] = dq;
307 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
308 			  cb_param, scribble);
309 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
310 
311 	return tx;
312 }
313 
314 /**
315  * async_raid6_2data_recov - asynchronously calculate two missing data blocks
316  * @disks: number of disks in the RAID-6 array
317  * @bytes: block size
318  * @faila: first failed drive index
319  * @failb: second failed drive index
320  * @blocks: array of source pointers where the last two entries are p and q
321  * @submit: submission/completion modifiers
322  */
323 struct dma_async_tx_descriptor *
324 async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
325 			struct page **blocks, struct async_submit_ctl *submit)
326 {
327 	int non_zero_srcs, i;
328 
329 	BUG_ON(faila == failb);
330 	if (failb < faila)
331 		swap(faila, failb);
332 
333 	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
334 
335 	/* we need to preserve the contents of 'blocks' for the async
336 	 * case, so punt to synchronous if a scribble buffer is not available
337 	 */
338 	if (!submit->scribble) {
339 		void **ptrs = (void **) blocks;
340 
341 		async_tx_quiesce(&submit->depend_tx);
342 		for (i = 0; i < disks; i++)
343 			if (blocks[i] == NULL)
344 				ptrs[i] = (void *) raid6_empty_zero_page;
345 			else
346 				ptrs[i] = page_address(blocks[i]);
347 
348 		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
349 
350 		async_tx_sync_epilog(submit);
351 
352 		return NULL;
353 	}
354 
355 	non_zero_srcs = 0;
356 	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
357 		if (blocks[i])
358 			non_zero_srcs++;
359 	switch (non_zero_srcs) {
360 	case 0:
361 	case 1:
362 		/* There must be at least 2 sources - the failed devices. */
363 		BUG();
364 
365 	case 2:
366 		/* dma devices do not uniformly understand a zero source pq
367 		 * operation (in contrast to the synchronous case), so
368 		 * explicitly handle the special case of a 4 disk array with
369 		 * both data disks missing.
370 		 */
371 		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
372 	case 3:
373 		/* dma devices do not uniformly understand a single
374 		 * source pq operation (in contrast to the synchronous
375 		 * case), so explicitly handle the special case of a 5 disk
376 		 * array with 2 of 3 data disks missing.
377 		 */
378 		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
379 	default:
380 		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
381 	}
382 }
383 EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
384 
385 /**
386  * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
387  * @disks: number of disks in the RAID-6 array
388  * @bytes: block size
389  * @faila: failed drive index
390  * @blocks: array of source pointers where the last two entries are p and q
391  * @submit: submission/completion modifiers
392  */
393 struct dma_async_tx_descriptor *
394 async_raid6_datap_recov(int disks, size_t bytes, int faila,
395 			struct page **blocks, struct async_submit_ctl *submit)
396 {
397 	struct dma_async_tx_descriptor *tx = NULL;
398 	struct page *p, *q, *dq;
399 	u8 coef;
400 	enum async_tx_flags flags = submit->flags;
401 	dma_async_tx_callback cb_fn = submit->cb_fn;
402 	void *cb_param = submit->cb_param;
403 	void *scribble = submit->scribble;
404 	int good_srcs, good, i;
405 	struct page *srcs[2];
406 
407 	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
408 
409 	/* we need to preserve the contents of 'blocks' for the async
410 	 * case, so punt to synchronous if a scribble buffer is not available
411 	 */
412 	if (!scribble) {
413 		void **ptrs = (void **) blocks;
414 
415 		async_tx_quiesce(&submit->depend_tx);
416 		for (i = 0; i < disks; i++)
417 			if (blocks[i] == NULL)
418 				ptrs[i] = (void*)raid6_empty_zero_page;
419 			else
420 				ptrs[i] = page_address(blocks[i]);
421 
422 		raid6_datap_recov(disks, bytes, faila, ptrs);
423 
424 		async_tx_sync_epilog(submit);
425 
426 		return NULL;
427 	}
428 
429 	good_srcs = 0;
430 	good = -1;
431 	for (i = 0; i < disks-2; i++) {
432 		if (i == faila)
433 			continue;
434 		if (blocks[i]) {
435 			good = i;
436 			good_srcs++;
437 			if (good_srcs > 1)
438 				break;
439 		}
440 	}
441 	BUG_ON(good_srcs == 0);
442 
443 	p = blocks[disks-2];
444 	q = blocks[disks-1];
445 
446 	/* Compute syndrome with zero for the missing data page
447 	 * Use the dead data page as temporary storage for delta q
448 	 */
449 	dq = blocks[faila];
450 	blocks[faila] = NULL;
451 	blocks[disks-1] = dq;
452 
453 	/* in the 4-disk case we only need to perform a single source
454 	 * multiplication with the one good data block.
455 	 */
456 	if (good_srcs == 1) {
457 		struct page *g = blocks[good];
458 
459 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
460 				  scribble);
461 		tx = async_memcpy(p, g, 0, 0, bytes, submit);
462 
463 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
464 				  scribble);
465 		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
466 	} else {
467 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
468 				  scribble);
469 		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
470 	}
471 
472 	/* Restore pointer table */
473 	blocks[faila]   = dq;
474 	blocks[disks-1] = q;
475 
476 	/* calculate g^{-faila} */
477 	coef = raid6_gfinv[raid6_gfexp[faila]];
478 
479 	srcs[0] = dq;
480 	srcs[1] = q;
481 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
482 			  NULL, NULL, scribble);
483 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
484 
485 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
486 	tx = async_mult(dq, dq, coef, bytes, submit);
487 
488 	srcs[0] = p;
489 	srcs[1] = dq;
490 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
491 			  cb_param, scribble);
492 	tx = async_xor(p, srcs, 0, 2, bytes, submit);
493 
494 	return tx;
495 }
496 EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
497 
498 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
499 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
500 MODULE_LICENSE("GPL");
501