1 /*
2  * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
3  * Copyright(c) 2009 Intel Corporation
4  *
5  * based on raid6recov.c:
6  *   Copyright 2002 H. Peter Anvin
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 51
20  * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  */
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/raid/pq.h>
27 #include <linux/async_tx.h>
28 
29 static struct dma_async_tx_descriptor *
30 async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
31 		  size_t len, struct async_submit_ctl *submit)
32 {
33 	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
34 						      &dest, 1, srcs, 2, len);
35 	struct dma_device *dma = chan ? chan->device : NULL;
36 	const u8 *amul, *bmul;
37 	u8 ax, bx;
38 	u8 *a, *b, *c;
39 
40 	if (dma) {
41 		dma_addr_t dma_dest[2];
42 		dma_addr_t dma_src[2];
43 		struct device *dev = dma->dev;
44 		struct dma_async_tx_descriptor *tx;
45 		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
46 
47 		if (submit->flags & ASYNC_TX_FENCE)
48 			dma_flags |= DMA_PREP_FENCE;
49 		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
50 		dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
51 		dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
52 		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef,
53 					     len, dma_flags);
54 		if (tx) {
55 			async_tx_submit(chan, tx, submit);
56 			return tx;
57 		}
58 
59 		/* could not get a descriptor, unmap and fall through to
60 		 * the synchronous path
61 		 */
62 		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
63 		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
64 		dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE);
65 	}
66 
67 	/* run the operation synchronously */
68 	async_tx_quiesce(&submit->depend_tx);
69 	amul = raid6_gfmul[coef[0]];
70 	bmul = raid6_gfmul[coef[1]];
71 	a = page_address(srcs[0]);
72 	b = page_address(srcs[1]);
73 	c = page_address(dest);
74 
75 	while (len--) {
76 		ax    = amul[*a++];
77 		bx    = bmul[*b++];
78 		*c++ = ax ^ bx;
79 	}
80 
81 	return NULL;
82 }
83 
84 static struct dma_async_tx_descriptor *
85 async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
86 	   struct async_submit_ctl *submit)
87 {
88 	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
89 						      &dest, 1, &src, 1, len);
90 	struct dma_device *dma = chan ? chan->device : NULL;
91 	const u8 *qmul; /* Q multiplier table */
92 	u8 *d, *s;
93 
94 	if (dma) {
95 		dma_addr_t dma_dest[2];
96 		dma_addr_t dma_src[1];
97 		struct device *dev = dma->dev;
98 		struct dma_async_tx_descriptor *tx;
99 		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
100 
101 		if (submit->flags & ASYNC_TX_FENCE)
102 			dma_flags |= DMA_PREP_FENCE;
103 		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
104 		dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
105 		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef,
106 					     len, dma_flags);
107 		if (tx) {
108 			async_tx_submit(chan, tx, submit);
109 			return tx;
110 		}
111 
112 		/* could not get a descriptor, unmap and fall through to
113 		 * the synchronous path
114 		 */
115 		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
116 		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
117 	}
118 
119 	/* no channel available, or failed to allocate a descriptor, so
120 	 * perform the operation synchronously
121 	 */
122 	async_tx_quiesce(&submit->depend_tx);
123 	qmul  = raid6_gfmul[coef];
124 	d = page_address(dest);
125 	s = page_address(src);
126 
127 	while (len--)
128 		*d++ = qmul[*s++];
129 
130 	return NULL;
131 }
132 
133 static struct dma_async_tx_descriptor *
134 __2data_recov_4(size_t bytes, int faila, int failb, struct page **blocks,
135 	      struct async_submit_ctl *submit)
136 {
137 	struct dma_async_tx_descriptor *tx = NULL;
138 	struct page *p, *q, *a, *b;
139 	struct page *srcs[2];
140 	unsigned char coef[2];
141 	enum async_tx_flags flags = submit->flags;
142 	dma_async_tx_callback cb_fn = submit->cb_fn;
143 	void *cb_param = submit->cb_param;
144 	void *scribble = submit->scribble;
145 
146 	p = blocks[4-2];
147 	q = blocks[4-1];
148 
149 	a = blocks[faila];
150 	b = blocks[failb];
151 
152 	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
153 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
154 	srcs[0] = p;
155 	srcs[1] = q;
156 	coef[0] = raid6_gfexi[failb-faila];
157 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
158 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
159 	tx = async_sum_product(b, srcs, coef, bytes, submit);
160 
161 	/* Dy = P+Pxy+Dx */
162 	srcs[0] = p;
163 	srcs[1] = b;
164 	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
165 			  cb_param, scribble);
166 	tx = async_xor(a, srcs, 0, 2, bytes, submit);
167 
168 	return tx;
169 
170 }
171 
172 static struct dma_async_tx_descriptor *
173 __2data_recov_5(size_t bytes, int faila, int failb, struct page **blocks,
174 	      struct async_submit_ctl *submit)
175 {
176 	struct dma_async_tx_descriptor *tx = NULL;
177 	struct page *p, *q, *g, *dp, *dq;
178 	struct page *srcs[2];
179 	unsigned char coef[2];
180 	enum async_tx_flags flags = submit->flags;
181 	dma_async_tx_callback cb_fn = submit->cb_fn;
182 	void *cb_param = submit->cb_param;
183 	void *scribble = submit->scribble;
184 	int uninitialized_var(good);
185 	int i;
186 
187 	for (i = 0; i < 3; i++) {
188 		if (i == faila || i == failb)
189 			continue;
190 		else {
191 			good = i;
192 			break;
193 		}
194 	}
195 	BUG_ON(i >= 3);
196 
197 	p = blocks[5-2];
198 	q = blocks[5-1];
199 	g = blocks[good];
200 
201 	/* Compute syndrome with zero for the missing data pages
202 	 * Use the dead data pages as temporary storage for delta p and
203 	 * delta q
204 	 */
205 	dp = blocks[faila];
206 	dq = blocks[failb];
207 
208 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
209 	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
210 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
211 	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
212 
213 	/* compute P + Pxy */
214 	srcs[0] = dp;
215 	srcs[1] = p;
216 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
217 			  NULL, NULL, scribble);
218 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
219 
220 	/* compute Q + Qxy */
221 	srcs[0] = dq;
222 	srcs[1] = q;
223 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
224 			  NULL, NULL, scribble);
225 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
226 
227 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
228 	srcs[0] = dp;
229 	srcs[1] = dq;
230 	coef[0] = raid6_gfexi[failb-faila];
231 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
232 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
233 	tx = async_sum_product(dq, srcs, coef, bytes, submit);
234 
235 	/* Dy = P+Pxy+Dx */
236 	srcs[0] = dp;
237 	srcs[1] = dq;
238 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
239 			  cb_param, scribble);
240 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
241 
242 	return tx;
243 }
244 
245 static struct dma_async_tx_descriptor *
246 __2data_recov_n(int disks, size_t bytes, int faila, int failb,
247 	      struct page **blocks, struct async_submit_ctl *submit)
248 {
249 	struct dma_async_tx_descriptor *tx = NULL;
250 	struct page *p, *q, *dp, *dq;
251 	struct page *srcs[2];
252 	unsigned char coef[2];
253 	enum async_tx_flags flags = submit->flags;
254 	dma_async_tx_callback cb_fn = submit->cb_fn;
255 	void *cb_param = submit->cb_param;
256 	void *scribble = submit->scribble;
257 
258 	p = blocks[disks-2];
259 	q = blocks[disks-1];
260 
261 	/* Compute syndrome with zero for the missing data pages
262 	 * Use the dead data pages as temporary storage for
263 	 * delta p and delta q
264 	 */
265 	dp = blocks[faila];
266 	blocks[faila] = NULL;
267 	blocks[disks-2] = dp;
268 	dq = blocks[failb];
269 	blocks[failb] = NULL;
270 	blocks[disks-1] = dq;
271 
272 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
273 	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
274 
275 	/* Restore pointer table */
276 	blocks[faila]   = dp;
277 	blocks[failb]   = dq;
278 	blocks[disks-2] = p;
279 	blocks[disks-1] = q;
280 
281 	/* compute P + Pxy */
282 	srcs[0] = dp;
283 	srcs[1] = p;
284 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
285 			  NULL, NULL, scribble);
286 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
287 
288 	/* compute Q + Qxy */
289 	srcs[0] = dq;
290 	srcs[1] = q;
291 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
292 			  NULL, NULL, scribble);
293 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
294 
295 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
296 	srcs[0] = dp;
297 	srcs[1] = dq;
298 	coef[0] = raid6_gfexi[failb-faila];
299 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
300 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
301 	tx = async_sum_product(dq, srcs, coef, bytes, submit);
302 
303 	/* Dy = P+Pxy+Dx */
304 	srcs[0] = dp;
305 	srcs[1] = dq;
306 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
307 			  cb_param, scribble);
308 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
309 
310 	return tx;
311 }
312 
313 /**
314  * async_raid6_2data_recov - asynchronously calculate two missing data blocks
315  * @disks: number of disks in the RAID-6 array
316  * @bytes: block size
317  * @faila: first failed drive index
318  * @failb: second failed drive index
319  * @blocks: array of source pointers where the last two entries are p and q
320  * @submit: submission/completion modifiers
321  */
322 struct dma_async_tx_descriptor *
323 async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
324 			struct page **blocks, struct async_submit_ctl *submit)
325 {
326 	BUG_ON(faila == failb);
327 	if (failb < faila)
328 		swap(faila, failb);
329 
330 	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
331 
332 	/* we need to preserve the contents of 'blocks' for the async
333 	 * case, so punt to synchronous if a scribble buffer is not available
334 	 */
335 	if (!submit->scribble) {
336 		void **ptrs = (void **) blocks;
337 		int i;
338 
339 		async_tx_quiesce(&submit->depend_tx);
340 		for (i = 0; i < disks; i++)
341 			if (blocks[i] == NULL)
342 				ptrs[i] = (void*)raid6_empty_zero_page;
343 			else
344 				ptrs[i] = page_address(blocks[i]);
345 
346 		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
347 
348 		async_tx_sync_epilog(submit);
349 
350 		return NULL;
351 	}
352 
353 	switch (disks) {
354 	case 4:
355 		/* dma devices do not uniformly understand a zero source pq
356 		 * operation (in contrast to the synchronous case), so
357 		 * explicitly handle the 4 disk special case
358 		 */
359 		return __2data_recov_4(bytes, faila, failb, blocks, submit);
360 	case 5:
361 		/* dma devices do not uniformly understand a single
362 		 * source pq operation (in contrast to the synchronous
363 		 * case), so explicitly handle the 5 disk special case
364 		 */
365 		return __2data_recov_5(bytes, faila, failb, blocks, submit);
366 	default:
367 		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
368 	}
369 }
370 EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
371 
372 /**
373  * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
374  * @disks: number of disks in the RAID-6 array
375  * @bytes: block size
376  * @faila: failed drive index
377  * @blocks: array of source pointers where the last two entries are p and q
378  * @submit: submission/completion modifiers
379  */
380 struct dma_async_tx_descriptor *
381 async_raid6_datap_recov(int disks, size_t bytes, int faila,
382 			struct page **blocks, struct async_submit_ctl *submit)
383 {
384 	struct dma_async_tx_descriptor *tx = NULL;
385 	struct page *p, *q, *dq;
386 	u8 coef;
387 	enum async_tx_flags flags = submit->flags;
388 	dma_async_tx_callback cb_fn = submit->cb_fn;
389 	void *cb_param = submit->cb_param;
390 	void *scribble = submit->scribble;
391 	struct page *srcs[2];
392 
393 	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
394 
395 	/* we need to preserve the contents of 'blocks' for the async
396 	 * case, so punt to synchronous if a scribble buffer is not available
397 	 */
398 	if (!scribble) {
399 		void **ptrs = (void **) blocks;
400 		int i;
401 
402 		async_tx_quiesce(&submit->depend_tx);
403 		for (i = 0; i < disks; i++)
404 			if (blocks[i] == NULL)
405 				ptrs[i] = (void*)raid6_empty_zero_page;
406 			else
407 				ptrs[i] = page_address(blocks[i]);
408 
409 		raid6_datap_recov(disks, bytes, faila, ptrs);
410 
411 		async_tx_sync_epilog(submit);
412 
413 		return NULL;
414 	}
415 
416 	p = blocks[disks-2];
417 	q = blocks[disks-1];
418 
419 	/* Compute syndrome with zero for the missing data page
420 	 * Use the dead data page as temporary storage for delta q
421 	 */
422 	dq = blocks[faila];
423 	blocks[faila] = NULL;
424 	blocks[disks-1] = dq;
425 
426 	/* in the 4 disk case we only need to perform a single source
427 	 * multiplication
428 	 */
429 	if (disks == 4) {
430 		int good = faila == 0 ? 1 : 0;
431 		struct page *g = blocks[good];
432 
433 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
434 				  scribble);
435 		tx = async_memcpy(p, g, 0, 0, bytes, submit);
436 
437 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
438 				  scribble);
439 		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
440 	} else {
441 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
442 				  scribble);
443 		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
444 	}
445 
446 	/* Restore pointer table */
447 	blocks[faila]   = dq;
448 	blocks[disks-1] = q;
449 
450 	/* calculate g^{-faila} */
451 	coef = raid6_gfinv[raid6_gfexp[faila]];
452 
453 	srcs[0] = dq;
454 	srcs[1] = q;
455 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
456 			  NULL, NULL, scribble);
457 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
458 
459 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
460 	tx = async_mult(dq, dq, coef, bytes, submit);
461 
462 	srcs[0] = p;
463 	srcs[1] = dq;
464 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
465 			  cb_param, scribble);
466 	tx = async_xor(p, srcs, 0, 2, bytes, submit);
467 
468 	return tx;
469 }
470 EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
471 
472 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
473 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
474 MODULE_LICENSE("GPL");
475