1 /*
2  * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
3  * Copyright(c) 2009 Intel Corporation
4  *
5  * based on raid6recov.c:
6  *   Copyright 2002 H. Peter Anvin
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 51
20  * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  */
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/module.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/raid/pq.h>
28 #include <linux/async_tx.h>
29 
30 static struct dma_async_tx_descriptor *
31 async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
32 		  size_t len, struct async_submit_ctl *submit)
33 {
34 	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
35 						      &dest, 1, srcs, 2, len);
36 	struct dma_device *dma = chan ? chan->device : NULL;
37 	const u8 *amul, *bmul;
38 	u8 ax, bx;
39 	u8 *a, *b, *c;
40 
41 	if (dma) {
42 		dma_addr_t dma_dest[2];
43 		dma_addr_t dma_src[2];
44 		struct device *dev = dma->dev;
45 		struct dma_async_tx_descriptor *tx;
46 		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
47 
48 		if (submit->flags & ASYNC_TX_FENCE)
49 			dma_flags |= DMA_PREP_FENCE;
50 		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
51 		dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
52 		dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
53 		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef,
54 					     len, dma_flags);
55 		if (tx) {
56 			async_tx_submit(chan, tx, submit);
57 			return tx;
58 		}
59 
60 		/* could not get a descriptor, unmap and fall through to
61 		 * the synchronous path
62 		 */
63 		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
64 		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
65 		dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE);
66 	}
67 
68 	/* run the operation synchronously */
69 	async_tx_quiesce(&submit->depend_tx);
70 	amul = raid6_gfmul[coef[0]];
71 	bmul = raid6_gfmul[coef[1]];
72 	a = page_address(srcs[0]);
73 	b = page_address(srcs[1]);
74 	c = page_address(dest);
75 
76 	while (len--) {
77 		ax    = amul[*a++];
78 		bx    = bmul[*b++];
79 		*c++ = ax ^ bx;
80 	}
81 
82 	return NULL;
83 }
84 
85 static struct dma_async_tx_descriptor *
86 async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
87 	   struct async_submit_ctl *submit)
88 {
89 	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
90 						      &dest, 1, &src, 1, len);
91 	struct dma_device *dma = chan ? chan->device : NULL;
92 	const u8 *qmul; /* Q multiplier table */
93 	u8 *d, *s;
94 
95 	if (dma) {
96 		dma_addr_t dma_dest[2];
97 		dma_addr_t dma_src[1];
98 		struct device *dev = dma->dev;
99 		struct dma_async_tx_descriptor *tx;
100 		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
101 
102 		if (submit->flags & ASYNC_TX_FENCE)
103 			dma_flags |= DMA_PREP_FENCE;
104 		dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
105 		dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
106 		tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef,
107 					     len, dma_flags);
108 		if (tx) {
109 			async_tx_submit(chan, tx, submit);
110 			return tx;
111 		}
112 
113 		/* could not get a descriptor, unmap and fall through to
114 		 * the synchronous path
115 		 */
116 		dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL);
117 		dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE);
118 	}
119 
120 	/* no channel available, or failed to allocate a descriptor, so
121 	 * perform the operation synchronously
122 	 */
123 	async_tx_quiesce(&submit->depend_tx);
124 	qmul  = raid6_gfmul[coef];
125 	d = page_address(dest);
126 	s = page_address(src);
127 
128 	while (len--)
129 		*d++ = qmul[*s++];
130 
131 	return NULL;
132 }
133 
134 static struct dma_async_tx_descriptor *
135 __2data_recov_4(int disks, size_t bytes, int faila, int failb,
136 		struct page **blocks, struct async_submit_ctl *submit)
137 {
138 	struct dma_async_tx_descriptor *tx = NULL;
139 	struct page *p, *q, *a, *b;
140 	struct page *srcs[2];
141 	unsigned char coef[2];
142 	enum async_tx_flags flags = submit->flags;
143 	dma_async_tx_callback cb_fn = submit->cb_fn;
144 	void *cb_param = submit->cb_param;
145 	void *scribble = submit->scribble;
146 
147 	p = blocks[disks-2];
148 	q = blocks[disks-1];
149 
150 	a = blocks[faila];
151 	b = blocks[failb];
152 
153 	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
154 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
155 	srcs[0] = p;
156 	srcs[1] = q;
157 	coef[0] = raid6_gfexi[failb-faila];
158 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
159 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
160 	tx = async_sum_product(b, srcs, coef, bytes, submit);
161 
162 	/* Dy = P+Pxy+Dx */
163 	srcs[0] = p;
164 	srcs[1] = b;
165 	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
166 			  cb_param, scribble);
167 	tx = async_xor(a, srcs, 0, 2, bytes, submit);
168 
169 	return tx;
170 
171 }
172 
173 static struct dma_async_tx_descriptor *
174 __2data_recov_5(int disks, size_t bytes, int faila, int failb,
175 		struct page **blocks, struct async_submit_ctl *submit)
176 {
177 	struct dma_async_tx_descriptor *tx = NULL;
178 	struct page *p, *q, *g, *dp, *dq;
179 	struct page *srcs[2];
180 	unsigned char coef[2];
181 	enum async_tx_flags flags = submit->flags;
182 	dma_async_tx_callback cb_fn = submit->cb_fn;
183 	void *cb_param = submit->cb_param;
184 	void *scribble = submit->scribble;
185 	int good_srcs, good, i;
186 
187 	good_srcs = 0;
188 	good = -1;
189 	for (i = 0; i < disks-2; i++) {
190 		if (blocks[i] == NULL)
191 			continue;
192 		if (i == faila || i == failb)
193 			continue;
194 		good = i;
195 		good_srcs++;
196 	}
197 	BUG_ON(good_srcs > 1);
198 
199 	p = blocks[disks-2];
200 	q = blocks[disks-1];
201 	g = blocks[good];
202 
203 	/* Compute syndrome with zero for the missing data pages
204 	 * Use the dead data pages as temporary storage for delta p and
205 	 * delta q
206 	 */
207 	dp = blocks[faila];
208 	dq = blocks[failb];
209 
210 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
211 	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
212 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
213 	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
214 
215 	/* compute P + Pxy */
216 	srcs[0] = dp;
217 	srcs[1] = p;
218 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
219 			  NULL, NULL, scribble);
220 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
221 
222 	/* compute Q + Qxy */
223 	srcs[0] = dq;
224 	srcs[1] = q;
225 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
226 			  NULL, NULL, scribble);
227 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
228 
229 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
230 	srcs[0] = dp;
231 	srcs[1] = dq;
232 	coef[0] = raid6_gfexi[failb-faila];
233 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
234 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
235 	tx = async_sum_product(dq, srcs, coef, bytes, submit);
236 
237 	/* Dy = P+Pxy+Dx */
238 	srcs[0] = dp;
239 	srcs[1] = dq;
240 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
241 			  cb_param, scribble);
242 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
243 
244 	return tx;
245 }
246 
247 static struct dma_async_tx_descriptor *
248 __2data_recov_n(int disks, size_t bytes, int faila, int failb,
249 	      struct page **blocks, struct async_submit_ctl *submit)
250 {
251 	struct dma_async_tx_descriptor *tx = NULL;
252 	struct page *p, *q, *dp, *dq;
253 	struct page *srcs[2];
254 	unsigned char coef[2];
255 	enum async_tx_flags flags = submit->flags;
256 	dma_async_tx_callback cb_fn = submit->cb_fn;
257 	void *cb_param = submit->cb_param;
258 	void *scribble = submit->scribble;
259 
260 	p = blocks[disks-2];
261 	q = blocks[disks-1];
262 
263 	/* Compute syndrome with zero for the missing data pages
264 	 * Use the dead data pages as temporary storage for
265 	 * delta p and delta q
266 	 */
267 	dp = blocks[faila];
268 	blocks[faila] = NULL;
269 	blocks[disks-2] = dp;
270 	dq = blocks[failb];
271 	blocks[failb] = NULL;
272 	blocks[disks-1] = dq;
273 
274 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
275 	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
276 
277 	/* Restore pointer table */
278 	blocks[faila]   = dp;
279 	blocks[failb]   = dq;
280 	blocks[disks-2] = p;
281 	blocks[disks-1] = q;
282 
283 	/* compute P + Pxy */
284 	srcs[0] = dp;
285 	srcs[1] = p;
286 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
287 			  NULL, NULL, scribble);
288 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
289 
290 	/* compute Q + Qxy */
291 	srcs[0] = dq;
292 	srcs[1] = q;
293 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
294 			  NULL, NULL, scribble);
295 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
296 
297 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
298 	srcs[0] = dp;
299 	srcs[1] = dq;
300 	coef[0] = raid6_gfexi[failb-faila];
301 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
302 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
303 	tx = async_sum_product(dq, srcs, coef, bytes, submit);
304 
305 	/* Dy = P+Pxy+Dx */
306 	srcs[0] = dp;
307 	srcs[1] = dq;
308 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
309 			  cb_param, scribble);
310 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
311 
312 	return tx;
313 }
314 
315 /**
316  * async_raid6_2data_recov - asynchronously calculate two missing data blocks
317  * @disks: number of disks in the RAID-6 array
318  * @bytes: block size
319  * @faila: first failed drive index
320  * @failb: second failed drive index
321  * @blocks: array of source pointers where the last two entries are p and q
322  * @submit: submission/completion modifiers
323  */
324 struct dma_async_tx_descriptor *
325 async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
326 			struct page **blocks, struct async_submit_ctl *submit)
327 {
328 	void *scribble = submit->scribble;
329 	int non_zero_srcs, i;
330 
331 	BUG_ON(faila == failb);
332 	if (failb < faila)
333 		swap(faila, failb);
334 
335 	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
336 
337 	/* if a dma resource is not available or a scribble buffer is not
338 	 * available punt to the synchronous path.  In the 'dma not
339 	 * available' case be sure to use the scribble buffer to
340 	 * preserve the content of 'blocks' as the caller intended.
341 	 */
342 	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
343 		void **ptrs = scribble ? scribble : (void **) blocks;
344 
345 		async_tx_quiesce(&submit->depend_tx);
346 		for (i = 0; i < disks; i++)
347 			if (blocks[i] == NULL)
348 				ptrs[i] = (void *) raid6_empty_zero_page;
349 			else
350 				ptrs[i] = page_address(blocks[i]);
351 
352 		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
353 
354 		async_tx_sync_epilog(submit);
355 
356 		return NULL;
357 	}
358 
359 	non_zero_srcs = 0;
360 	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
361 		if (blocks[i])
362 			non_zero_srcs++;
363 	switch (non_zero_srcs) {
364 	case 0:
365 	case 1:
366 		/* There must be at least 2 sources - the failed devices. */
367 		BUG();
368 
369 	case 2:
370 		/* dma devices do not uniformly understand a zero source pq
371 		 * operation (in contrast to the synchronous case), so
372 		 * explicitly handle the special case of a 4 disk array with
373 		 * both data disks missing.
374 		 */
375 		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
376 	case 3:
377 		/* dma devices do not uniformly understand a single
378 		 * source pq operation (in contrast to the synchronous
379 		 * case), so explicitly handle the special case of a 5 disk
380 		 * array with 2 of 3 data disks missing.
381 		 */
382 		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
383 	default:
384 		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
385 	}
386 }
387 EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
388 
389 /**
390  * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
391  * @disks: number of disks in the RAID-6 array
392  * @bytes: block size
393  * @faila: failed drive index
394  * @blocks: array of source pointers where the last two entries are p and q
395  * @submit: submission/completion modifiers
396  */
397 struct dma_async_tx_descriptor *
398 async_raid6_datap_recov(int disks, size_t bytes, int faila,
399 			struct page **blocks, struct async_submit_ctl *submit)
400 {
401 	struct dma_async_tx_descriptor *tx = NULL;
402 	struct page *p, *q, *dq;
403 	u8 coef;
404 	enum async_tx_flags flags = submit->flags;
405 	dma_async_tx_callback cb_fn = submit->cb_fn;
406 	void *cb_param = submit->cb_param;
407 	void *scribble = submit->scribble;
408 	int good_srcs, good, i;
409 	struct page *srcs[2];
410 
411 	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
412 
413 	/* if a dma resource is not available or a scribble buffer is not
414 	 * available punt to the synchronous path.  In the 'dma not
415 	 * available' case be sure to use the scribble buffer to
416 	 * preserve the content of 'blocks' as the caller intended.
417 	 */
418 	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
419 		void **ptrs = scribble ? scribble : (void **) blocks;
420 
421 		async_tx_quiesce(&submit->depend_tx);
422 		for (i = 0; i < disks; i++)
423 			if (blocks[i] == NULL)
424 				ptrs[i] = (void*)raid6_empty_zero_page;
425 			else
426 				ptrs[i] = page_address(blocks[i]);
427 
428 		raid6_datap_recov(disks, bytes, faila, ptrs);
429 
430 		async_tx_sync_epilog(submit);
431 
432 		return NULL;
433 	}
434 
435 	good_srcs = 0;
436 	good = -1;
437 	for (i = 0; i < disks-2; i++) {
438 		if (i == faila)
439 			continue;
440 		if (blocks[i]) {
441 			good = i;
442 			good_srcs++;
443 			if (good_srcs > 1)
444 				break;
445 		}
446 	}
447 	BUG_ON(good_srcs == 0);
448 
449 	p = blocks[disks-2];
450 	q = blocks[disks-1];
451 
452 	/* Compute syndrome with zero for the missing data page
453 	 * Use the dead data page as temporary storage for delta q
454 	 */
455 	dq = blocks[faila];
456 	blocks[faila] = NULL;
457 	blocks[disks-1] = dq;
458 
459 	/* in the 4-disk case we only need to perform a single source
460 	 * multiplication with the one good data block.
461 	 */
462 	if (good_srcs == 1) {
463 		struct page *g = blocks[good];
464 
465 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
466 				  scribble);
467 		tx = async_memcpy(p, g, 0, 0, bytes, submit);
468 
469 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
470 				  scribble);
471 		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
472 	} else {
473 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
474 				  scribble);
475 		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
476 	}
477 
478 	/* Restore pointer table */
479 	blocks[faila]   = dq;
480 	blocks[disks-1] = q;
481 
482 	/* calculate g^{-faila} */
483 	coef = raid6_gfinv[raid6_gfexp[faila]];
484 
485 	srcs[0] = dq;
486 	srcs[1] = q;
487 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
488 			  NULL, NULL, scribble);
489 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
490 
491 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
492 	tx = async_mult(dq, dq, coef, bytes, submit);
493 
494 	srcs[0] = p;
495 	srcs[1] = dq;
496 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
497 			  cb_param, scribble);
498 	tx = async_xor(p, srcs, 0, 2, bytes, submit);
499 
500 	return tx;
501 }
502 EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
503 
504 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
505 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
506 MODULE_LICENSE("GPL");
507