1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
4  * Copyright(c) 2009 Intel Corporation
5  *
6  * based on raid6recov.c:
7  *   Copyright 2002 H. Peter Anvin
8  */
9 #include <linux/kernel.h>
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/raid/pq.h>
14 #include <linux/async_tx.h>
15 #include <linux/dmaengine.h>
16 
17 static struct dma_async_tx_descriptor *
18 async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
19 		  size_t len, struct async_submit_ctl *submit)
20 {
21 	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
22 						      &dest, 1, srcs, 2, len);
23 	struct dma_device *dma = chan ? chan->device : NULL;
24 	struct dmaengine_unmap_data *unmap = NULL;
25 	const u8 *amul, *bmul;
26 	u8 ax, bx;
27 	u8 *a, *b, *c;
28 
29 	if (dma)
30 		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
31 
32 	if (unmap) {
33 		struct device *dev = dma->dev;
34 		dma_addr_t pq[2];
35 		struct dma_async_tx_descriptor *tx;
36 		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
37 
38 		if (submit->flags & ASYNC_TX_FENCE)
39 			dma_flags |= DMA_PREP_FENCE;
40 		unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
41 		unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
42 		unmap->to_cnt = 2;
43 
44 		unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
45 		unmap->bidi_cnt = 1;
46 		/* engine only looks at Q, but expects it to follow P */
47 		pq[1] = unmap->addr[2];
48 
49 		unmap->len = len;
50 		tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
51 					     len, dma_flags);
52 		if (tx) {
53 			dma_set_unmap(tx, unmap);
54 			async_tx_submit(chan, tx, submit);
55 			dmaengine_unmap_put(unmap);
56 			return tx;
57 		}
58 
59 		/* could not get a descriptor, unmap and fall through to
60 		 * the synchronous path
61 		 */
62 		dmaengine_unmap_put(unmap);
63 	}
64 
65 	/* run the operation synchronously */
66 	async_tx_quiesce(&submit->depend_tx);
67 	amul = raid6_gfmul[coef[0]];
68 	bmul = raid6_gfmul[coef[1]];
69 	a = page_address(srcs[0]);
70 	b = page_address(srcs[1]);
71 	c = page_address(dest);
72 
73 	while (len--) {
74 		ax    = amul[*a++];
75 		bx    = bmul[*b++];
76 		*c++ = ax ^ bx;
77 	}
78 
79 	return NULL;
80 }
81 
82 static struct dma_async_tx_descriptor *
83 async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
84 	   struct async_submit_ctl *submit)
85 {
86 	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
87 						      &dest, 1, &src, 1, len);
88 	struct dma_device *dma = chan ? chan->device : NULL;
89 	struct dmaengine_unmap_data *unmap = NULL;
90 	const u8 *qmul; /* Q multiplier table */
91 	u8 *d, *s;
92 
93 	if (dma)
94 		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
95 
96 	if (unmap) {
97 		dma_addr_t dma_dest[2];
98 		struct device *dev = dma->dev;
99 		struct dma_async_tx_descriptor *tx;
100 		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
101 
102 		if (submit->flags & ASYNC_TX_FENCE)
103 			dma_flags |= DMA_PREP_FENCE;
104 		unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
105 		unmap->to_cnt++;
106 		unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
107 		dma_dest[1] = unmap->addr[1];
108 		unmap->bidi_cnt++;
109 		unmap->len = len;
110 
111 		/* this looks funny, but the engine looks for Q at
112 		 * dma_dest[1] and ignores dma_dest[0] as a dest
113 		 * due to DMA_PREP_PQ_DISABLE_P
114 		 */
115 		tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
116 					     1, &coef, len, dma_flags);
117 
118 		if (tx) {
119 			dma_set_unmap(tx, unmap);
120 			dmaengine_unmap_put(unmap);
121 			async_tx_submit(chan, tx, submit);
122 			return tx;
123 		}
124 
125 		/* could not get a descriptor, unmap and fall through to
126 		 * the synchronous path
127 		 */
128 		dmaengine_unmap_put(unmap);
129 	}
130 
131 	/* no channel available, or failed to allocate a descriptor, so
132 	 * perform the operation synchronously
133 	 */
134 	async_tx_quiesce(&submit->depend_tx);
135 	qmul  = raid6_gfmul[coef];
136 	d = page_address(dest);
137 	s = page_address(src);
138 
139 	while (len--)
140 		*d++ = qmul[*s++];
141 
142 	return NULL;
143 }
144 
145 static struct dma_async_tx_descriptor *
146 __2data_recov_4(int disks, size_t bytes, int faila, int failb,
147 		struct page **blocks, struct async_submit_ctl *submit)
148 {
149 	struct dma_async_tx_descriptor *tx = NULL;
150 	struct page *p, *q, *a, *b;
151 	struct page *srcs[2];
152 	unsigned char coef[2];
153 	enum async_tx_flags flags = submit->flags;
154 	dma_async_tx_callback cb_fn = submit->cb_fn;
155 	void *cb_param = submit->cb_param;
156 	void *scribble = submit->scribble;
157 
158 	p = blocks[disks-2];
159 	q = blocks[disks-1];
160 
161 	a = blocks[faila];
162 	b = blocks[failb];
163 
164 	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
165 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
166 	srcs[0] = p;
167 	srcs[1] = q;
168 	coef[0] = raid6_gfexi[failb-faila];
169 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
170 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
171 	tx = async_sum_product(b, srcs, coef, bytes, submit);
172 
173 	/* Dy = P+Pxy+Dx */
174 	srcs[0] = p;
175 	srcs[1] = b;
176 	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
177 			  cb_param, scribble);
178 	tx = async_xor(a, srcs, 0, 2, bytes, submit);
179 
180 	return tx;
181 
182 }
183 
184 static struct dma_async_tx_descriptor *
185 __2data_recov_5(int disks, size_t bytes, int faila, int failb,
186 		struct page **blocks, struct async_submit_ctl *submit)
187 {
188 	struct dma_async_tx_descriptor *tx = NULL;
189 	struct page *p, *q, *g, *dp, *dq;
190 	struct page *srcs[2];
191 	unsigned char coef[2];
192 	enum async_tx_flags flags = submit->flags;
193 	dma_async_tx_callback cb_fn = submit->cb_fn;
194 	void *cb_param = submit->cb_param;
195 	void *scribble = submit->scribble;
196 	int good_srcs, good, i;
197 
198 	good_srcs = 0;
199 	good = -1;
200 	for (i = 0; i < disks-2; i++) {
201 		if (blocks[i] == NULL)
202 			continue;
203 		if (i == faila || i == failb)
204 			continue;
205 		good = i;
206 		good_srcs++;
207 	}
208 	BUG_ON(good_srcs > 1);
209 
210 	p = blocks[disks-2];
211 	q = blocks[disks-1];
212 	g = blocks[good];
213 
214 	/* Compute syndrome with zero for the missing data pages
215 	 * Use the dead data pages as temporary storage for delta p and
216 	 * delta q
217 	 */
218 	dp = blocks[faila];
219 	dq = blocks[failb];
220 
221 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
222 	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
223 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
224 	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
225 
226 	/* compute P + Pxy */
227 	srcs[0] = dp;
228 	srcs[1] = p;
229 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
230 			  NULL, NULL, scribble);
231 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
232 
233 	/* compute Q + Qxy */
234 	srcs[0] = dq;
235 	srcs[1] = q;
236 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
237 			  NULL, NULL, scribble);
238 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
239 
240 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
241 	srcs[0] = dp;
242 	srcs[1] = dq;
243 	coef[0] = raid6_gfexi[failb-faila];
244 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
245 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
246 	tx = async_sum_product(dq, srcs, coef, bytes, submit);
247 
248 	/* Dy = P+Pxy+Dx */
249 	srcs[0] = dp;
250 	srcs[1] = dq;
251 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
252 			  cb_param, scribble);
253 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
254 
255 	return tx;
256 }
257 
258 static struct dma_async_tx_descriptor *
259 __2data_recov_n(int disks, size_t bytes, int faila, int failb,
260 	      struct page **blocks, struct async_submit_ctl *submit)
261 {
262 	struct dma_async_tx_descriptor *tx = NULL;
263 	struct page *p, *q, *dp, *dq;
264 	struct page *srcs[2];
265 	unsigned char coef[2];
266 	enum async_tx_flags flags = submit->flags;
267 	dma_async_tx_callback cb_fn = submit->cb_fn;
268 	void *cb_param = submit->cb_param;
269 	void *scribble = submit->scribble;
270 
271 	p = blocks[disks-2];
272 	q = blocks[disks-1];
273 
274 	/* Compute syndrome with zero for the missing data pages
275 	 * Use the dead data pages as temporary storage for
276 	 * delta p and delta q
277 	 */
278 	dp = blocks[faila];
279 	blocks[faila] = NULL;
280 	blocks[disks-2] = dp;
281 	dq = blocks[failb];
282 	blocks[failb] = NULL;
283 	blocks[disks-1] = dq;
284 
285 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
286 	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
287 
288 	/* Restore pointer table */
289 	blocks[faila]   = dp;
290 	blocks[failb]   = dq;
291 	blocks[disks-2] = p;
292 	blocks[disks-1] = q;
293 
294 	/* compute P + Pxy */
295 	srcs[0] = dp;
296 	srcs[1] = p;
297 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
298 			  NULL, NULL, scribble);
299 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
300 
301 	/* compute Q + Qxy */
302 	srcs[0] = dq;
303 	srcs[1] = q;
304 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
305 			  NULL, NULL, scribble);
306 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
307 
308 	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
309 	srcs[0] = dp;
310 	srcs[1] = dq;
311 	coef[0] = raid6_gfexi[failb-faila];
312 	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
313 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
314 	tx = async_sum_product(dq, srcs, coef, bytes, submit);
315 
316 	/* Dy = P+Pxy+Dx */
317 	srcs[0] = dp;
318 	srcs[1] = dq;
319 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
320 			  cb_param, scribble);
321 	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
322 
323 	return tx;
324 }
325 
326 /**
327  * async_raid6_2data_recov - asynchronously calculate two missing data blocks
328  * @disks: number of disks in the RAID-6 array
329  * @bytes: block size
330  * @faila: first failed drive index
331  * @failb: second failed drive index
332  * @blocks: array of source pointers where the last two entries are p and q
333  * @submit: submission/completion modifiers
334  */
335 struct dma_async_tx_descriptor *
336 async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
337 			struct page **blocks, struct async_submit_ctl *submit)
338 {
339 	void *scribble = submit->scribble;
340 	int non_zero_srcs, i;
341 
342 	BUG_ON(faila == failb);
343 	if (failb < faila)
344 		swap(faila, failb);
345 
346 	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
347 
348 	/* if a dma resource is not available or a scribble buffer is not
349 	 * available punt to the synchronous path.  In the 'dma not
350 	 * available' case be sure to use the scribble buffer to
351 	 * preserve the content of 'blocks' as the caller intended.
352 	 */
353 	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
354 		void **ptrs = scribble ? scribble : (void **) blocks;
355 
356 		async_tx_quiesce(&submit->depend_tx);
357 		for (i = 0; i < disks; i++)
358 			if (blocks[i] == NULL)
359 				ptrs[i] = (void *) raid6_empty_zero_page;
360 			else
361 				ptrs[i] = page_address(blocks[i]);
362 
363 		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
364 
365 		async_tx_sync_epilog(submit);
366 
367 		return NULL;
368 	}
369 
370 	non_zero_srcs = 0;
371 	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
372 		if (blocks[i])
373 			non_zero_srcs++;
374 	switch (non_zero_srcs) {
375 	case 0:
376 	case 1:
377 		/* There must be at least 2 sources - the failed devices. */
378 		BUG();
379 
380 	case 2:
381 		/* dma devices do not uniformly understand a zero source pq
382 		 * operation (in contrast to the synchronous case), so
383 		 * explicitly handle the special case of a 4 disk array with
384 		 * both data disks missing.
385 		 */
386 		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
387 	case 3:
388 		/* dma devices do not uniformly understand a single
389 		 * source pq operation (in contrast to the synchronous
390 		 * case), so explicitly handle the special case of a 5 disk
391 		 * array with 2 of 3 data disks missing.
392 		 */
393 		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
394 	default:
395 		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
396 	}
397 }
398 EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
399 
400 /**
401  * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
402  * @disks: number of disks in the RAID-6 array
403  * @bytes: block size
404  * @faila: failed drive index
405  * @blocks: array of source pointers where the last two entries are p and q
406  * @submit: submission/completion modifiers
407  */
408 struct dma_async_tx_descriptor *
409 async_raid6_datap_recov(int disks, size_t bytes, int faila,
410 			struct page **blocks, struct async_submit_ctl *submit)
411 {
412 	struct dma_async_tx_descriptor *tx = NULL;
413 	struct page *p, *q, *dq;
414 	u8 coef;
415 	enum async_tx_flags flags = submit->flags;
416 	dma_async_tx_callback cb_fn = submit->cb_fn;
417 	void *cb_param = submit->cb_param;
418 	void *scribble = submit->scribble;
419 	int good_srcs, good, i;
420 	struct page *srcs[2];
421 
422 	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
423 
424 	/* if a dma resource is not available or a scribble buffer is not
425 	 * available punt to the synchronous path.  In the 'dma not
426 	 * available' case be sure to use the scribble buffer to
427 	 * preserve the content of 'blocks' as the caller intended.
428 	 */
429 	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
430 		void **ptrs = scribble ? scribble : (void **) blocks;
431 
432 		async_tx_quiesce(&submit->depend_tx);
433 		for (i = 0; i < disks; i++)
434 			if (blocks[i] == NULL)
435 				ptrs[i] = (void*)raid6_empty_zero_page;
436 			else
437 				ptrs[i] = page_address(blocks[i]);
438 
439 		raid6_datap_recov(disks, bytes, faila, ptrs);
440 
441 		async_tx_sync_epilog(submit);
442 
443 		return NULL;
444 	}
445 
446 	good_srcs = 0;
447 	good = -1;
448 	for (i = 0; i < disks-2; i++) {
449 		if (i == faila)
450 			continue;
451 		if (blocks[i]) {
452 			good = i;
453 			good_srcs++;
454 			if (good_srcs > 1)
455 				break;
456 		}
457 	}
458 	BUG_ON(good_srcs == 0);
459 
460 	p = blocks[disks-2];
461 	q = blocks[disks-1];
462 
463 	/* Compute syndrome with zero for the missing data page
464 	 * Use the dead data page as temporary storage for delta q
465 	 */
466 	dq = blocks[faila];
467 	blocks[faila] = NULL;
468 	blocks[disks-1] = dq;
469 
470 	/* in the 4-disk case we only need to perform a single source
471 	 * multiplication with the one good data block.
472 	 */
473 	if (good_srcs == 1) {
474 		struct page *g = blocks[good];
475 
476 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
477 				  scribble);
478 		tx = async_memcpy(p, g, 0, 0, bytes, submit);
479 
480 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
481 				  scribble);
482 		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
483 	} else {
484 		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
485 				  scribble);
486 		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
487 	}
488 
489 	/* Restore pointer table */
490 	blocks[faila]   = dq;
491 	blocks[disks-1] = q;
492 
493 	/* calculate g^{-faila} */
494 	coef = raid6_gfinv[raid6_gfexp[faila]];
495 
496 	srcs[0] = dq;
497 	srcs[1] = q;
498 	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
499 			  NULL, NULL, scribble);
500 	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
501 
502 	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
503 	tx = async_mult(dq, dq, coef, bytes, submit);
504 
505 	srcs[0] = p;
506 	srcs[1] = dq;
507 	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
508 			  cb_param, scribble);
509 	tx = async_xor(p, srcs, 0, 2, bytes, submit);
510 
511 	return tx;
512 }
513 EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
514 
515 MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
516 MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
517 MODULE_LICENSE("GPL");
518