1 /* 2 * Copyright(c) 2007 Yuri Tikhonov <yur@emcraft.com> 3 * Copyright(c) 2009 Intel Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License as published by the Free 7 * Software Foundation; either version 2 of the License, or (at your option) 8 * any later version. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 59 17 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * The full GNU General Public License is included in this distribution in the 20 * file called COPYING. 21 */ 22 #include <linux/kernel.h> 23 #include <linux/interrupt.h> 24 #include <linux/module.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/raid/pq.h> 27 #include <linux/async_tx.h> 28 #include <linux/gfp.h> 29 30 /** 31 * pq_scribble_page - space to hold throwaway P or Q buffer for 32 * synchronous gen_syndrome 33 */ 34 static struct page *pq_scribble_page; 35 36 /* the struct page *blocks[] parameter passed to async_gen_syndrome() 37 * and async_syndrome_val() contains the 'P' destination address at 38 * blocks[disks-2] and the 'Q' destination address at blocks[disks-1] 39 * 40 * note: these are macros as they are used as lvalues 41 */ 42 #define P(b, d) (b[d-2]) 43 #define Q(b, d) (b[d-1]) 44 45 /** 46 * do_async_gen_syndrome - asynchronously calculate P and/or Q 47 */ 48 static __async_inline struct dma_async_tx_descriptor * 49 do_async_gen_syndrome(struct dma_chan *chan, 50 const unsigned char *scfs, int disks, 51 struct dmaengine_unmap_data *unmap, 52 enum dma_ctrl_flags dma_flags, 53 struct async_submit_ctl *submit) 54 { 55 struct dma_async_tx_descriptor *tx = NULL; 56 struct dma_device *dma = chan->device; 57 enum async_tx_flags flags_orig = submit->flags; 58 dma_async_tx_callback cb_fn_orig = submit->cb_fn; 59 dma_async_tx_callback cb_param_orig = submit->cb_param; 60 int src_cnt = disks - 2; 61 unsigned short pq_src_cnt; 62 dma_addr_t dma_dest[2]; 63 int src_off = 0; 64 65 if (submit->flags & ASYNC_TX_FENCE) 66 dma_flags |= DMA_PREP_FENCE; 67 68 while (src_cnt > 0) { 69 submit->flags = flags_orig; 70 pq_src_cnt = min(src_cnt, dma_maxpq(dma, dma_flags)); 71 /* if we are submitting additional pqs, leave the chain open, 72 * clear the callback parameters, and leave the destination 73 * buffers mapped 74 */ 75 if (src_cnt > pq_src_cnt) { 76 submit->flags &= ~ASYNC_TX_ACK; 77 submit->flags |= ASYNC_TX_FENCE; 78 submit->cb_fn = NULL; 79 submit->cb_param = NULL; 80 } else { 81 submit->cb_fn = cb_fn_orig; 82 submit->cb_param = cb_param_orig; 83 if (cb_fn_orig) 84 dma_flags |= DMA_PREP_INTERRUPT; 85 } 86 87 /* Drivers force forward progress in case they can not provide 88 * a descriptor 89 */ 90 for (;;) { 91 dma_dest[0] = unmap->addr[disks - 2]; 92 dma_dest[1] = unmap->addr[disks - 1]; 93 tx = dma->device_prep_dma_pq(chan, dma_dest, 94 &unmap->addr[src_off], 95 pq_src_cnt, 96 &scfs[src_off], unmap->len, 97 dma_flags); 98 if (likely(tx)) 99 break; 100 async_tx_quiesce(&submit->depend_tx); 101 dma_async_issue_pending(chan); 102 } 103 104 dma_set_unmap(tx, unmap); 105 async_tx_submit(chan, tx, submit); 106 submit->depend_tx = tx; 107 108 /* drop completed sources */ 109 src_cnt -= pq_src_cnt; 110 src_off += pq_src_cnt; 111 112 dma_flags |= DMA_PREP_CONTINUE; 113 } 114 115 return tx; 116 } 117 118 /** 119 * do_sync_gen_syndrome - synchronously calculate a raid6 syndrome 120 */ 121 static void 122 do_sync_gen_syndrome(struct page **blocks, unsigned int offset, int disks, 123 size_t len, struct async_submit_ctl *submit) 124 { 125 void **srcs; 126 int i; 127 int start = -1, stop = disks - 3; 128 129 if (submit->scribble) 130 srcs = submit->scribble; 131 else 132 srcs = (void **) blocks; 133 134 for (i = 0; i < disks; i++) { 135 if (blocks[i] == NULL) { 136 BUG_ON(i > disks - 3); /* P or Q can't be zero */ 137 srcs[i] = (void*)raid6_empty_zero_page; 138 } else { 139 srcs[i] = page_address(blocks[i]) + offset; 140 if (i < disks - 2) { 141 stop = i; 142 if (start == -1) 143 start = i; 144 } 145 } 146 } 147 if (submit->flags & ASYNC_TX_PQ_XOR_DST) { 148 BUG_ON(!raid6_call.xor_syndrome); 149 if (start >= 0) 150 raid6_call.xor_syndrome(disks, start, stop, len, srcs); 151 } else 152 raid6_call.gen_syndrome(disks, len, srcs); 153 async_tx_sync_epilog(submit); 154 } 155 156 /** 157 * async_gen_syndrome - asynchronously calculate a raid6 syndrome 158 * @blocks: source blocks from idx 0..disks-3, P @ disks-2 and Q @ disks-1 159 * @offset: common offset into each block (src and dest) to start transaction 160 * @disks: number of blocks (including missing P or Q, see below) 161 * @len: length of operation in bytes 162 * @submit: submission/completion modifiers 163 * 164 * General note: This routine assumes a field of GF(2^8) with a 165 * primitive polynomial of 0x11d and a generator of {02}. 166 * 167 * 'disks' note: callers can optionally omit either P or Q (but not 168 * both) from the calculation by setting blocks[disks-2] or 169 * blocks[disks-1] to NULL. When P or Q is omitted 'len' must be <= 170 * PAGE_SIZE as a temporary buffer of this size is used in the 171 * synchronous path. 'disks' always accounts for both destination 172 * buffers. If any source buffers (blocks[i] where i < disks - 2) are 173 * set to NULL those buffers will be replaced with the raid6_zero_page 174 * in the synchronous path and omitted in the hardware-asynchronous 175 * path. 176 */ 177 struct dma_async_tx_descriptor * 178 async_gen_syndrome(struct page **blocks, unsigned int offset, int disks, 179 size_t len, struct async_submit_ctl *submit) 180 { 181 int src_cnt = disks - 2; 182 struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ, 183 &P(blocks, disks), 2, 184 blocks, src_cnt, len); 185 struct dma_device *device = chan ? chan->device : NULL; 186 struct dmaengine_unmap_data *unmap = NULL; 187 188 BUG_ON(disks > 255 || !(P(blocks, disks) || Q(blocks, disks))); 189 190 if (device) 191 unmap = dmaengine_get_unmap_data(device->dev, disks, GFP_NOWAIT); 192 193 /* XORing P/Q is only implemented in software */ 194 if (unmap && !(submit->flags & ASYNC_TX_PQ_XOR_DST) && 195 (src_cnt <= dma_maxpq(device, 0) || 196 dma_maxpq(device, DMA_PREP_CONTINUE) > 0) && 197 is_dma_pq_aligned(device, offset, 0, len)) { 198 struct dma_async_tx_descriptor *tx; 199 enum dma_ctrl_flags dma_flags = 0; 200 unsigned char coefs[src_cnt]; 201 int i, j; 202 203 /* run the p+q asynchronously */ 204 pr_debug("%s: (async) disks: %d len: %zu\n", 205 __func__, disks, len); 206 207 /* convert source addresses being careful to collapse 'empty' 208 * sources and update the coefficients accordingly 209 */ 210 unmap->len = len; 211 for (i = 0, j = 0; i < src_cnt; i++) { 212 if (blocks[i] == NULL) 213 continue; 214 unmap->addr[j] = dma_map_page(device->dev, blocks[i], offset, 215 len, DMA_TO_DEVICE); 216 coefs[j] = raid6_gfexp[i]; 217 unmap->to_cnt++; 218 j++; 219 } 220 221 /* 222 * DMAs use destinations as sources, 223 * so use BIDIRECTIONAL mapping 224 */ 225 unmap->bidi_cnt++; 226 if (P(blocks, disks)) 227 unmap->addr[j++] = dma_map_page(device->dev, P(blocks, disks), 228 offset, len, DMA_BIDIRECTIONAL); 229 else { 230 unmap->addr[j++] = 0; 231 dma_flags |= DMA_PREP_PQ_DISABLE_P; 232 } 233 234 unmap->bidi_cnt++; 235 if (Q(blocks, disks)) 236 unmap->addr[j++] = dma_map_page(device->dev, Q(blocks, disks), 237 offset, len, DMA_BIDIRECTIONAL); 238 else { 239 unmap->addr[j++] = 0; 240 dma_flags |= DMA_PREP_PQ_DISABLE_Q; 241 } 242 243 tx = do_async_gen_syndrome(chan, coefs, j, unmap, dma_flags, submit); 244 dmaengine_unmap_put(unmap); 245 return tx; 246 } 247 248 dmaengine_unmap_put(unmap); 249 250 /* run the pq synchronously */ 251 pr_debug("%s: (sync) disks: %d len: %zu\n", __func__, disks, len); 252 253 /* wait for any prerequisite operations */ 254 async_tx_quiesce(&submit->depend_tx); 255 256 if (!P(blocks, disks)) { 257 P(blocks, disks) = pq_scribble_page; 258 BUG_ON(len + offset > PAGE_SIZE); 259 } 260 if (!Q(blocks, disks)) { 261 Q(blocks, disks) = pq_scribble_page; 262 BUG_ON(len + offset > PAGE_SIZE); 263 } 264 do_sync_gen_syndrome(blocks, offset, disks, len, submit); 265 266 return NULL; 267 } 268 EXPORT_SYMBOL_GPL(async_gen_syndrome); 269 270 static inline struct dma_chan * 271 pq_val_chan(struct async_submit_ctl *submit, struct page **blocks, int disks, size_t len) 272 { 273 #ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA 274 return NULL; 275 #endif 276 return async_tx_find_channel(submit, DMA_PQ_VAL, NULL, 0, blocks, 277 disks, len); 278 } 279 280 /** 281 * async_syndrome_val - asynchronously validate a raid6 syndrome 282 * @blocks: source blocks from idx 0..disks-3, P @ disks-2 and Q @ disks-1 283 * @offset: common offset into each block (src and dest) to start transaction 284 * @disks: number of blocks (including missing P or Q, see below) 285 * @len: length of operation in bytes 286 * @pqres: on val failure SUM_CHECK_P_RESULT and/or SUM_CHECK_Q_RESULT are set 287 * @spare: temporary result buffer for the synchronous case 288 * @submit: submission / completion modifiers 289 * 290 * The same notes from async_gen_syndrome apply to the 'blocks', 291 * and 'disks' parameters of this routine. The synchronous path 292 * requires a temporary result buffer and submit->scribble to be 293 * specified. 294 */ 295 struct dma_async_tx_descriptor * 296 async_syndrome_val(struct page **blocks, unsigned int offset, int disks, 297 size_t len, enum sum_check_flags *pqres, struct page *spare, 298 struct async_submit_ctl *submit) 299 { 300 struct dma_chan *chan = pq_val_chan(submit, blocks, disks, len); 301 struct dma_device *device = chan ? chan->device : NULL; 302 struct dma_async_tx_descriptor *tx; 303 unsigned char coefs[disks-2]; 304 enum dma_ctrl_flags dma_flags = submit->cb_fn ? DMA_PREP_INTERRUPT : 0; 305 struct dmaengine_unmap_data *unmap = NULL; 306 307 BUG_ON(disks < 4); 308 309 if (device) 310 unmap = dmaengine_get_unmap_data(device->dev, disks, GFP_NOWAIT); 311 312 if (unmap && disks <= dma_maxpq(device, 0) && 313 is_dma_pq_aligned(device, offset, 0, len)) { 314 struct device *dev = device->dev; 315 dma_addr_t pq[2]; 316 int i, j = 0, src_cnt = 0; 317 318 pr_debug("%s: (async) disks: %d len: %zu\n", 319 __func__, disks, len); 320 321 unmap->len = len; 322 for (i = 0; i < disks-2; i++) 323 if (likely(blocks[i])) { 324 unmap->addr[j] = dma_map_page(dev, blocks[i], 325 offset, len, 326 DMA_TO_DEVICE); 327 coefs[j] = raid6_gfexp[i]; 328 unmap->to_cnt++; 329 src_cnt++; 330 j++; 331 } 332 333 if (!P(blocks, disks)) { 334 pq[0] = 0; 335 dma_flags |= DMA_PREP_PQ_DISABLE_P; 336 } else { 337 pq[0] = dma_map_page(dev, P(blocks, disks), 338 offset, len, 339 DMA_TO_DEVICE); 340 unmap->addr[j++] = pq[0]; 341 unmap->to_cnt++; 342 } 343 if (!Q(blocks, disks)) { 344 pq[1] = 0; 345 dma_flags |= DMA_PREP_PQ_DISABLE_Q; 346 } else { 347 pq[1] = dma_map_page(dev, Q(blocks, disks), 348 offset, len, 349 DMA_TO_DEVICE); 350 unmap->addr[j++] = pq[1]; 351 unmap->to_cnt++; 352 } 353 354 if (submit->flags & ASYNC_TX_FENCE) 355 dma_flags |= DMA_PREP_FENCE; 356 for (;;) { 357 tx = device->device_prep_dma_pq_val(chan, pq, 358 unmap->addr, 359 src_cnt, 360 coefs, 361 len, pqres, 362 dma_flags); 363 if (likely(tx)) 364 break; 365 async_tx_quiesce(&submit->depend_tx); 366 dma_async_issue_pending(chan); 367 } 368 369 dma_set_unmap(tx, unmap); 370 async_tx_submit(chan, tx, submit); 371 372 return tx; 373 } else { 374 struct page *p_src = P(blocks, disks); 375 struct page *q_src = Q(blocks, disks); 376 enum async_tx_flags flags_orig = submit->flags; 377 dma_async_tx_callback cb_fn_orig = submit->cb_fn; 378 void *scribble = submit->scribble; 379 void *cb_param_orig = submit->cb_param; 380 void *p, *q, *s; 381 382 pr_debug("%s: (sync) disks: %d len: %zu\n", 383 __func__, disks, len); 384 385 /* caller must provide a temporary result buffer and 386 * allow the input parameters to be preserved 387 */ 388 BUG_ON(!spare || !scribble); 389 390 /* wait for any prerequisite operations */ 391 async_tx_quiesce(&submit->depend_tx); 392 393 /* recompute p and/or q into the temporary buffer and then 394 * check to see the result matches the current value 395 */ 396 tx = NULL; 397 *pqres = 0; 398 if (p_src) { 399 init_async_submit(submit, ASYNC_TX_XOR_ZERO_DST, NULL, 400 NULL, NULL, scribble); 401 tx = async_xor(spare, blocks, offset, disks-2, len, submit); 402 async_tx_quiesce(&tx); 403 p = page_address(p_src) + offset; 404 s = page_address(spare) + offset; 405 *pqres |= !!memcmp(p, s, len) << SUM_CHECK_P; 406 } 407 408 if (q_src) { 409 P(blocks, disks) = NULL; 410 Q(blocks, disks) = spare; 411 init_async_submit(submit, 0, NULL, NULL, NULL, scribble); 412 tx = async_gen_syndrome(blocks, offset, disks, len, submit); 413 async_tx_quiesce(&tx); 414 q = page_address(q_src) + offset; 415 s = page_address(spare) + offset; 416 *pqres |= !!memcmp(q, s, len) << SUM_CHECK_Q; 417 } 418 419 /* restore P, Q and submit */ 420 P(blocks, disks) = p_src; 421 Q(blocks, disks) = q_src; 422 423 submit->cb_fn = cb_fn_orig; 424 submit->cb_param = cb_param_orig; 425 submit->flags = flags_orig; 426 async_tx_sync_epilog(submit); 427 428 return NULL; 429 } 430 } 431 EXPORT_SYMBOL_GPL(async_syndrome_val); 432 433 static int __init async_pq_init(void) 434 { 435 pq_scribble_page = alloc_page(GFP_KERNEL); 436 437 if (pq_scribble_page) 438 return 0; 439 440 pr_err("%s: failed to allocate required spare page\n", __func__); 441 442 return -ENOMEM; 443 } 444 445 static void __exit async_pq_exit(void) 446 { 447 __free_page(pq_scribble_page); 448 } 449 450 module_init(async_pq_init); 451 module_exit(async_pq_exit); 452 453 MODULE_DESCRIPTION("asynchronous raid6 syndrome generation/validation"); 454 MODULE_LICENSE("GPL"); 455