1 /* Instantiate a public key crypto key from an X.509 Certificate 2 * 3 * Copyright (C) 2012, 2016 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public Licence 8 * as published by the Free Software Foundation; either version 9 * 2 of the Licence, or (at your option) any later version. 10 */ 11 12 #define pr_fmt(fmt) "ASYM: "fmt 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/err.h> 16 #include <crypto/public_key.h> 17 #include "asymmetric_keys.h" 18 19 static bool use_builtin_keys; 20 static struct asymmetric_key_id *ca_keyid; 21 22 #ifndef MODULE 23 static struct { 24 struct asymmetric_key_id id; 25 unsigned char data[10]; 26 } cakey; 27 28 static int __init ca_keys_setup(char *str) 29 { 30 if (!str) /* default system keyring */ 31 return 1; 32 33 if (strncmp(str, "id:", 3) == 0) { 34 struct asymmetric_key_id *p = &cakey.id; 35 size_t hexlen = (strlen(str) - 3) / 2; 36 int ret; 37 38 if (hexlen == 0 || hexlen > sizeof(cakey.data)) { 39 pr_err("Missing or invalid ca_keys id\n"); 40 return 1; 41 } 42 43 ret = __asymmetric_key_hex_to_key_id(str + 3, p, hexlen); 44 if (ret < 0) 45 pr_err("Unparsable ca_keys id hex string\n"); 46 else 47 ca_keyid = p; /* owner key 'id:xxxxxx' */ 48 } else if (strcmp(str, "builtin") == 0) { 49 use_builtin_keys = true; 50 } 51 52 return 1; 53 } 54 __setup("ca_keys=", ca_keys_setup); 55 #endif 56 57 /** 58 * restrict_link_by_signature - Restrict additions to a ring of public keys 59 * @dest_keyring: Keyring being linked to. 60 * @type: The type of key being added. 61 * @payload: The payload of the new key. 62 * @trust_keyring: A ring of keys that can be used to vouch for the new cert. 63 * 64 * Check the new certificate against the ones in the trust keyring. If one of 65 * those is the signing key and validates the new certificate, then mark the 66 * new certificate as being trusted. 67 * 68 * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a 69 * matching parent certificate in the trusted list, -EKEYREJECTED if the 70 * signature check fails or the key is blacklisted, -ENOPKG if the signature 71 * uses unsupported crypto, or some other error if there is a matching 72 * certificate but the signature check cannot be performed. 73 */ 74 int restrict_link_by_signature(struct key *dest_keyring, 75 const struct key_type *type, 76 const union key_payload *payload, 77 struct key *trust_keyring) 78 { 79 const struct public_key_signature *sig; 80 struct key *key; 81 int ret; 82 83 pr_devel("==>%s()\n", __func__); 84 85 if (!trust_keyring) 86 return -ENOKEY; 87 88 if (type != &key_type_asymmetric) 89 return -EOPNOTSUPP; 90 91 sig = payload->data[asym_auth]; 92 if (!sig) 93 return -ENOPKG; 94 if (!sig->auth_ids[0] && !sig->auth_ids[1]) 95 return -ENOKEY; 96 97 if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid)) 98 return -EPERM; 99 100 /* See if we have a key that signed this one. */ 101 key = find_asymmetric_key(trust_keyring, 102 sig->auth_ids[0], sig->auth_ids[1], 103 false); 104 if (IS_ERR(key)) 105 return -ENOKEY; 106 107 if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags)) 108 ret = -ENOKEY; 109 else 110 ret = verify_signature(key, sig); 111 key_put(key); 112 return ret; 113 } 114 115 static bool match_either_id(const struct asymmetric_key_ids *pair, 116 const struct asymmetric_key_id *single) 117 { 118 return (asymmetric_key_id_same(pair->id[0], single) || 119 asymmetric_key_id_same(pair->id[1], single)); 120 } 121 122 static int key_or_keyring_common(struct key *dest_keyring, 123 const struct key_type *type, 124 const union key_payload *payload, 125 struct key *trusted, bool check_dest) 126 { 127 const struct public_key_signature *sig; 128 struct key *key = NULL; 129 int ret; 130 131 pr_devel("==>%s()\n", __func__); 132 133 if (!dest_keyring) 134 return -ENOKEY; 135 else if (dest_keyring->type != &key_type_keyring) 136 return -EOPNOTSUPP; 137 138 if (!trusted && !check_dest) 139 return -ENOKEY; 140 141 if (type != &key_type_asymmetric) 142 return -EOPNOTSUPP; 143 144 sig = payload->data[asym_auth]; 145 if (!sig) 146 return -ENOPKG; 147 if (!sig->auth_ids[0] && !sig->auth_ids[1]) 148 return -ENOKEY; 149 150 if (trusted) { 151 if (trusted->type == &key_type_keyring) { 152 /* See if we have a key that signed this one. */ 153 key = find_asymmetric_key(trusted, sig->auth_ids[0], 154 sig->auth_ids[1], false); 155 if (IS_ERR(key)) 156 key = NULL; 157 } else if (trusted->type == &key_type_asymmetric) { 158 const struct asymmetric_key_ids *signer_ids; 159 160 signer_ids = asymmetric_key_ids(trusted); 161 162 /* 163 * The auth_ids come from the candidate key (the 164 * one that is being considered for addition to 165 * dest_keyring) and identify the key that was 166 * used to sign. 167 * 168 * The signer_ids are identifiers for the 169 * signing key specified for dest_keyring. 170 * 171 * The first auth_id is the preferred id, and 172 * the second is the fallback. If only one 173 * auth_id is present, it may match against 174 * either signer_id. If two auth_ids are 175 * present, the first auth_id must match one 176 * signer_id and the second auth_id must match 177 * the second signer_id. 178 */ 179 if (!sig->auth_ids[0] || !sig->auth_ids[1]) { 180 const struct asymmetric_key_id *auth_id; 181 182 auth_id = sig->auth_ids[0] ?: sig->auth_ids[1]; 183 if (match_either_id(signer_ids, auth_id)) 184 key = __key_get(trusted); 185 186 } else if (asymmetric_key_id_same(signer_ids->id[1], 187 sig->auth_ids[1]) && 188 match_either_id(signer_ids, 189 sig->auth_ids[0])) { 190 key = __key_get(trusted); 191 } 192 } else { 193 return -EOPNOTSUPP; 194 } 195 } 196 197 if (check_dest && !key) { 198 /* See if the destination has a key that signed this one. */ 199 key = find_asymmetric_key(dest_keyring, sig->auth_ids[0], 200 sig->auth_ids[1], false); 201 if (IS_ERR(key)) 202 key = NULL; 203 } 204 205 if (!key) 206 return -ENOKEY; 207 208 ret = key_validate(key); 209 if (ret == 0) 210 ret = verify_signature(key, sig); 211 212 key_put(key); 213 return ret; 214 } 215 216 /** 217 * restrict_link_by_key_or_keyring - Restrict additions to a ring of public 218 * keys using the restrict_key information stored in the ring. 219 * @dest_keyring: Keyring being linked to. 220 * @type: The type of key being added. 221 * @payload: The payload of the new key. 222 * @trusted: A key or ring of keys that can be used to vouch for the new cert. 223 * 224 * Check the new certificate only against the key or keys passed in the data 225 * parameter. If one of those is the signing key and validates the new 226 * certificate, then mark the new certificate as being ok to link. 227 * 228 * Returns 0 if the new certificate was accepted, -ENOKEY if we 229 * couldn't find a matching parent certificate in the trusted list, 230 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses 231 * unsupported crypto, or some other error if there is a matching certificate 232 * but the signature check cannot be performed. 233 */ 234 int restrict_link_by_key_or_keyring(struct key *dest_keyring, 235 const struct key_type *type, 236 const union key_payload *payload, 237 struct key *trusted) 238 { 239 return key_or_keyring_common(dest_keyring, type, payload, trusted, 240 false); 241 } 242 243 /** 244 * restrict_link_by_key_or_keyring_chain - Restrict additions to a ring of 245 * public keys using the restrict_key information stored in the ring. 246 * @dest_keyring: Keyring being linked to. 247 * @type: The type of key being added. 248 * @payload: The payload of the new key. 249 * @trusted: A key or ring of keys that can be used to vouch for the new cert. 250 * 251 * Check the new certificate only against the key or keys passed in the data 252 * parameter. If one of those is the signing key and validates the new 253 * certificate, then mark the new certificate as being ok to link. 254 * 255 * Returns 0 if the new certificate was accepted, -ENOKEY if we 256 * couldn't find a matching parent certificate in the trusted list, 257 * -EKEYREJECTED if the signature check fails, -ENOPKG if the signature uses 258 * unsupported crypto, or some other error if there is a matching certificate 259 * but the signature check cannot be performed. 260 */ 261 int restrict_link_by_key_or_keyring_chain(struct key *dest_keyring, 262 const struct key_type *type, 263 const union key_payload *payload, 264 struct key *trusted) 265 { 266 return key_or_keyring_common(dest_keyring, type, payload, trusted, 267 true); 268 } 269