1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* In-software asymmetric public-key crypto subtype
3  *
4  * See Documentation/crypto/asymmetric-keys.rst
5  *
6  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
7  * Written by David Howells (dhowells@redhat.com)
8  */
9 
10 #define pr_fmt(fmt) "PKEY: "fmt
11 #include <linux/module.h>
12 #include <linux/export.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/seq_file.h>
16 #include <linux/scatterlist.h>
17 #include <keys/asymmetric-subtype.h>
18 #include <crypto/public_key.h>
19 #include <crypto/akcipher.h>
20 #include <crypto/sm2.h>
21 #include <crypto/sm3_base.h>
22 
23 MODULE_DESCRIPTION("In-software asymmetric public-key subtype");
24 MODULE_AUTHOR("Red Hat, Inc.");
25 MODULE_LICENSE("GPL");
26 
27 /*
28  * Provide a part of a description of the key for /proc/keys.
29  */
30 static void public_key_describe(const struct key *asymmetric_key,
31 				struct seq_file *m)
32 {
33 	struct public_key *key = asymmetric_key->payload.data[asym_crypto];
34 
35 	if (key)
36 		seq_printf(m, "%s.%s", key->id_type, key->pkey_algo);
37 }
38 
39 /*
40  * Destroy a public key algorithm key.
41  */
42 void public_key_free(struct public_key *key)
43 {
44 	if (key) {
45 		kfree(key->key);
46 		kfree(key->params);
47 		kfree(key);
48 	}
49 }
50 EXPORT_SYMBOL_GPL(public_key_free);
51 
52 /*
53  * Destroy a public key algorithm key.
54  */
55 static void public_key_destroy(void *payload0, void *payload3)
56 {
57 	public_key_free(payload0);
58 	public_key_signature_free(payload3);
59 }
60 
61 /*
62  * Determine the crypto algorithm name.
63  */
64 static
65 int software_key_determine_akcipher(const char *encoding,
66 				    const char *hash_algo,
67 				    const struct public_key *pkey,
68 				    char alg_name[CRYPTO_MAX_ALG_NAME])
69 {
70 	int n;
71 
72 	if (strcmp(encoding, "pkcs1") == 0) {
73 		/* The data wangled by the RSA algorithm is typically padded
74 		 * and encoded in some manner, such as EMSA-PKCS1-1_5 [RFC3447
75 		 * sec 8.2].
76 		 */
77 		if (!hash_algo)
78 			n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
79 				     "pkcs1pad(%s)",
80 				     pkey->pkey_algo);
81 		else
82 			n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
83 				     "pkcs1pad(%s,%s)",
84 				     pkey->pkey_algo, hash_algo);
85 		return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0;
86 	}
87 
88 	if (strcmp(encoding, "raw") == 0) {
89 		strcpy(alg_name, pkey->pkey_algo);
90 		return 0;
91 	}
92 
93 	return -ENOPKG;
94 }
95 
96 static u8 *pkey_pack_u32(u8 *dst, u32 val)
97 {
98 	memcpy(dst, &val, sizeof(val));
99 	return dst + sizeof(val);
100 }
101 
102 /*
103  * Query information about a key.
104  */
105 static int software_key_query(const struct kernel_pkey_params *params,
106 			      struct kernel_pkey_query *info)
107 {
108 	struct crypto_akcipher *tfm;
109 	struct public_key *pkey = params->key->payload.data[asym_crypto];
110 	char alg_name[CRYPTO_MAX_ALG_NAME];
111 	u8 *key, *ptr;
112 	int ret, len;
113 
114 	ret = software_key_determine_akcipher(params->encoding,
115 					      params->hash_algo,
116 					      pkey, alg_name);
117 	if (ret < 0)
118 		return ret;
119 
120 	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
121 	if (IS_ERR(tfm))
122 		return PTR_ERR(tfm);
123 
124 	ret = -ENOMEM;
125 	key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
126 		      GFP_KERNEL);
127 	if (!key)
128 		goto error_free_tfm;
129 	memcpy(key, pkey->key, pkey->keylen);
130 	ptr = key + pkey->keylen;
131 	ptr = pkey_pack_u32(ptr, pkey->algo);
132 	ptr = pkey_pack_u32(ptr, pkey->paramlen);
133 	memcpy(ptr, pkey->params, pkey->paramlen);
134 
135 	if (pkey->key_is_private)
136 		ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
137 	else
138 		ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
139 	if (ret < 0)
140 		goto error_free_key;
141 
142 	len = crypto_akcipher_maxsize(tfm);
143 	info->key_size = len * 8;
144 	info->max_data_size = len;
145 	info->max_sig_size = len;
146 	info->max_enc_size = len;
147 	info->max_dec_size = len;
148 	info->supported_ops = (KEYCTL_SUPPORTS_ENCRYPT |
149 			       KEYCTL_SUPPORTS_VERIFY);
150 	if (pkey->key_is_private)
151 		info->supported_ops |= (KEYCTL_SUPPORTS_DECRYPT |
152 					KEYCTL_SUPPORTS_SIGN);
153 	ret = 0;
154 
155 error_free_key:
156 	kfree(key);
157 error_free_tfm:
158 	crypto_free_akcipher(tfm);
159 	pr_devel("<==%s() = %d\n", __func__, ret);
160 	return ret;
161 }
162 
163 /*
164  * Do encryption, decryption and signing ops.
165  */
166 static int software_key_eds_op(struct kernel_pkey_params *params,
167 			       const void *in, void *out)
168 {
169 	const struct public_key *pkey = params->key->payload.data[asym_crypto];
170 	struct akcipher_request *req;
171 	struct crypto_akcipher *tfm;
172 	struct crypto_wait cwait;
173 	struct scatterlist in_sg, out_sg;
174 	char alg_name[CRYPTO_MAX_ALG_NAME];
175 	char *key, *ptr;
176 	int ret;
177 
178 	pr_devel("==>%s()\n", __func__);
179 
180 	ret = software_key_determine_akcipher(params->encoding,
181 					      params->hash_algo,
182 					      pkey, alg_name);
183 	if (ret < 0)
184 		return ret;
185 
186 	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
187 	if (IS_ERR(tfm))
188 		return PTR_ERR(tfm);
189 
190 	ret = -ENOMEM;
191 	req = akcipher_request_alloc(tfm, GFP_KERNEL);
192 	if (!req)
193 		goto error_free_tfm;
194 
195 	key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
196 		      GFP_KERNEL);
197 	if (!key)
198 		goto error_free_req;
199 
200 	memcpy(key, pkey->key, pkey->keylen);
201 	ptr = key + pkey->keylen;
202 	ptr = pkey_pack_u32(ptr, pkey->algo);
203 	ptr = pkey_pack_u32(ptr, pkey->paramlen);
204 	memcpy(ptr, pkey->params, pkey->paramlen);
205 
206 	if (pkey->key_is_private)
207 		ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
208 	else
209 		ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
210 	if (ret)
211 		goto error_free_key;
212 
213 	sg_init_one(&in_sg, in, params->in_len);
214 	sg_init_one(&out_sg, out, params->out_len);
215 	akcipher_request_set_crypt(req, &in_sg, &out_sg, params->in_len,
216 				   params->out_len);
217 	crypto_init_wait(&cwait);
218 	akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
219 				      CRYPTO_TFM_REQ_MAY_SLEEP,
220 				      crypto_req_done, &cwait);
221 
222 	/* Perform the encryption calculation. */
223 	switch (params->op) {
224 	case kernel_pkey_encrypt:
225 		ret = crypto_akcipher_encrypt(req);
226 		break;
227 	case kernel_pkey_decrypt:
228 		ret = crypto_akcipher_decrypt(req);
229 		break;
230 	case kernel_pkey_sign:
231 		ret = crypto_akcipher_sign(req);
232 		break;
233 	default:
234 		BUG();
235 	}
236 
237 	ret = crypto_wait_req(ret, &cwait);
238 	if (ret == 0)
239 		ret = req->dst_len;
240 
241 error_free_key:
242 	kfree(key);
243 error_free_req:
244 	akcipher_request_free(req);
245 error_free_tfm:
246 	crypto_free_akcipher(tfm);
247 	pr_devel("<==%s() = %d\n", __func__, ret);
248 	return ret;
249 }
250 
251 #if IS_REACHABLE(CONFIG_CRYPTO_SM2)
252 static int cert_sig_digest_update(const struct public_key_signature *sig,
253 				  struct crypto_akcipher *tfm_pkey)
254 {
255 	struct crypto_shash *tfm;
256 	struct shash_desc *desc;
257 	size_t desc_size;
258 	unsigned char dgst[SM3_DIGEST_SIZE];
259 	int ret;
260 
261 	BUG_ON(!sig->data);
262 
263 	ret = sm2_compute_z_digest(tfm_pkey, SM2_DEFAULT_USERID,
264 					SM2_DEFAULT_USERID_LEN, dgst);
265 	if (ret)
266 		return ret;
267 
268 	tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
269 	if (IS_ERR(tfm))
270 		return PTR_ERR(tfm);
271 
272 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
273 	desc = kzalloc(desc_size, GFP_KERNEL);
274 	if (!desc) {
275 		ret = -ENOMEM;
276 		goto error_free_tfm;
277 	}
278 
279 	desc->tfm = tfm;
280 
281 	ret = crypto_shash_init(desc);
282 	if (ret < 0)
283 		goto error_free_desc;
284 
285 	ret = crypto_shash_update(desc, dgst, SM3_DIGEST_SIZE);
286 	if (ret < 0)
287 		goto error_free_desc;
288 
289 	ret = crypto_shash_finup(desc, sig->data, sig->data_size, sig->digest);
290 
291 error_free_desc:
292 	kfree(desc);
293 error_free_tfm:
294 	crypto_free_shash(tfm);
295 	return ret;
296 }
297 #else
298 static inline int cert_sig_digest_update(
299 	const struct public_key_signature *sig,
300 	struct crypto_akcipher *tfm_pkey)
301 {
302 	return -ENOTSUPP;
303 }
304 #endif /* ! IS_REACHABLE(CONFIG_CRYPTO_SM2) */
305 
306 /*
307  * Verify a signature using a public key.
308  */
309 int public_key_verify_signature(const struct public_key *pkey,
310 				const struct public_key_signature *sig)
311 {
312 	struct crypto_wait cwait;
313 	struct crypto_akcipher *tfm;
314 	struct akcipher_request *req;
315 	struct scatterlist src_sg[2];
316 	char alg_name[CRYPTO_MAX_ALG_NAME];
317 	char *key, *ptr;
318 	int ret;
319 
320 	pr_devel("==>%s()\n", __func__);
321 
322 	BUG_ON(!pkey);
323 	BUG_ON(!sig);
324 	BUG_ON(!sig->s);
325 
326 	ret = software_key_determine_akcipher(sig->encoding,
327 					      sig->hash_algo,
328 					      pkey, alg_name);
329 	if (ret < 0)
330 		return ret;
331 
332 	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
333 	if (IS_ERR(tfm))
334 		return PTR_ERR(tfm);
335 
336 	ret = -ENOMEM;
337 	req = akcipher_request_alloc(tfm, GFP_KERNEL);
338 	if (!req)
339 		goto error_free_tfm;
340 
341 	key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
342 		      GFP_KERNEL);
343 	if (!key)
344 		goto error_free_req;
345 
346 	memcpy(key, pkey->key, pkey->keylen);
347 	ptr = key + pkey->keylen;
348 	ptr = pkey_pack_u32(ptr, pkey->algo);
349 	ptr = pkey_pack_u32(ptr, pkey->paramlen);
350 	memcpy(ptr, pkey->params, pkey->paramlen);
351 
352 	if (pkey->key_is_private)
353 		ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
354 	else
355 		ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
356 	if (ret)
357 		goto error_free_key;
358 
359 	if (strcmp(sig->pkey_algo, "sm2") == 0 && sig->data_size) {
360 		ret = cert_sig_digest_update(sig, tfm);
361 		if (ret)
362 			goto error_free_key;
363 	}
364 
365 	sg_init_table(src_sg, 2);
366 	sg_set_buf(&src_sg[0], sig->s, sig->s_size);
367 	sg_set_buf(&src_sg[1], sig->digest, sig->digest_size);
368 	akcipher_request_set_crypt(req, src_sg, NULL, sig->s_size,
369 				   sig->digest_size);
370 	crypto_init_wait(&cwait);
371 	akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
372 				      CRYPTO_TFM_REQ_MAY_SLEEP,
373 				      crypto_req_done, &cwait);
374 	ret = crypto_wait_req(crypto_akcipher_verify(req), &cwait);
375 
376 error_free_key:
377 	kfree(key);
378 error_free_req:
379 	akcipher_request_free(req);
380 error_free_tfm:
381 	crypto_free_akcipher(tfm);
382 	pr_devel("<==%s() = %d\n", __func__, ret);
383 	if (WARN_ON_ONCE(ret > 0))
384 		ret = -EINVAL;
385 	return ret;
386 }
387 EXPORT_SYMBOL_GPL(public_key_verify_signature);
388 
389 static int public_key_verify_signature_2(const struct key *key,
390 					 const struct public_key_signature *sig)
391 {
392 	const struct public_key *pk = key->payload.data[asym_crypto];
393 	return public_key_verify_signature(pk, sig);
394 }
395 
396 /*
397  * Public key algorithm asymmetric key subtype
398  */
399 struct asymmetric_key_subtype public_key_subtype = {
400 	.owner			= THIS_MODULE,
401 	.name			= "public_key",
402 	.name_len		= sizeof("public_key") - 1,
403 	.describe		= public_key_describe,
404 	.destroy		= public_key_destroy,
405 	.query			= software_key_query,
406 	.eds_op			= software_key_eds_op,
407 	.verify_signature	= public_key_verify_signature_2,
408 };
409 EXPORT_SYMBOL_GPL(public_key_subtype);
410