1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* In-software asymmetric public-key crypto subtype 3 * 4 * See Documentation/crypto/asymmetric-keys.rst 5 * 6 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. 7 * Written by David Howells (dhowells@redhat.com) 8 */ 9 10 #define pr_fmt(fmt) "PKEY: "fmt 11 #include <crypto/akcipher.h> 12 #include <crypto/public_key.h> 13 #include <crypto/sig.h> 14 #include <keys/asymmetric-subtype.h> 15 #include <linux/asn1.h> 16 #include <linux/err.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/seq_file.h> 20 #include <linux/slab.h> 21 #include <linux/string.h> 22 23 MODULE_DESCRIPTION("In-software asymmetric public-key subtype"); 24 MODULE_AUTHOR("Red Hat, Inc."); 25 MODULE_LICENSE("GPL"); 26 27 /* 28 * Provide a part of a description of the key for /proc/keys. 29 */ 30 static void public_key_describe(const struct key *asymmetric_key, 31 struct seq_file *m) 32 { 33 struct public_key *key = asymmetric_key->payload.data[asym_crypto]; 34 35 if (key) 36 seq_printf(m, "%s.%s", key->id_type, key->pkey_algo); 37 } 38 39 /* 40 * Destroy a public key algorithm key. 41 */ 42 void public_key_free(struct public_key *key) 43 { 44 if (key) { 45 kfree_sensitive(key->key); 46 kfree(key->params); 47 kfree(key); 48 } 49 } 50 EXPORT_SYMBOL_GPL(public_key_free); 51 52 /* 53 * Destroy a public key algorithm key. 54 */ 55 static void public_key_destroy(void *payload0, void *payload3) 56 { 57 public_key_free(payload0); 58 public_key_signature_free(payload3); 59 } 60 61 /* 62 * Given a public_key, and an encoding and hash_algo to be used for signing 63 * and/or verification with that key, determine the name of the corresponding 64 * akcipher algorithm. Also check that encoding and hash_algo are allowed. 65 */ 66 static int 67 software_key_determine_akcipher(const struct public_key *pkey, 68 const char *encoding, const char *hash_algo, 69 char alg_name[CRYPTO_MAX_ALG_NAME], bool *sig, 70 enum kernel_pkey_operation op) 71 { 72 int n; 73 74 *sig = true; 75 76 if (!encoding) 77 return -EINVAL; 78 79 if (strcmp(pkey->pkey_algo, "rsa") == 0) { 80 /* 81 * RSA signatures usually use EMSA-PKCS1-1_5 [RFC3447 sec 8.2]. 82 */ 83 if (strcmp(encoding, "pkcs1") == 0) { 84 *sig = op == kernel_pkey_sign || 85 op == kernel_pkey_verify; 86 if (!hash_algo) { 87 n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, 88 "pkcs1pad(%s)", 89 pkey->pkey_algo); 90 } else { 91 n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, 92 "pkcs1pad(%s,%s)", 93 pkey->pkey_algo, hash_algo); 94 } 95 return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0; 96 } 97 if (strcmp(encoding, "raw") != 0) 98 return -EINVAL; 99 /* 100 * Raw RSA cannot differentiate between different hash 101 * algorithms. 102 */ 103 if (hash_algo) 104 return -EINVAL; 105 *sig = false; 106 } else if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { 107 if (strcmp(encoding, "x962") != 0) 108 return -EINVAL; 109 /* 110 * ECDSA signatures are taken over a raw hash, so they don't 111 * differentiate between different hash algorithms. That means 112 * that the verifier should hard-code a specific hash algorithm. 113 * Unfortunately, in practice ECDSA is used with multiple SHAs, 114 * so we have to allow all of them and not just one. 115 */ 116 if (!hash_algo) 117 return -EINVAL; 118 if (strcmp(hash_algo, "sha1") != 0 && 119 strcmp(hash_algo, "sha224") != 0 && 120 strcmp(hash_algo, "sha256") != 0 && 121 strcmp(hash_algo, "sha384") != 0 && 122 strcmp(hash_algo, "sha512") != 0) 123 return -EINVAL; 124 } else if (strcmp(pkey->pkey_algo, "sm2") == 0) { 125 if (strcmp(encoding, "raw") != 0) 126 return -EINVAL; 127 if (!hash_algo) 128 return -EINVAL; 129 if (strcmp(hash_algo, "sm3") != 0) 130 return -EINVAL; 131 } else if (strcmp(pkey->pkey_algo, "ecrdsa") == 0) { 132 if (strcmp(encoding, "raw") != 0) 133 return -EINVAL; 134 if (!hash_algo) 135 return -EINVAL; 136 if (strcmp(hash_algo, "streebog256") != 0 && 137 strcmp(hash_algo, "streebog512") != 0) 138 return -EINVAL; 139 } else { 140 /* Unknown public key algorithm */ 141 return -ENOPKG; 142 } 143 if (strscpy(alg_name, pkey->pkey_algo, CRYPTO_MAX_ALG_NAME) < 0) 144 return -EINVAL; 145 return 0; 146 } 147 148 static u8 *pkey_pack_u32(u8 *dst, u32 val) 149 { 150 memcpy(dst, &val, sizeof(val)); 151 return dst + sizeof(val); 152 } 153 154 /* 155 * Query information about a key. 156 */ 157 static int software_key_query(const struct kernel_pkey_params *params, 158 struct kernel_pkey_query *info) 159 { 160 struct crypto_akcipher *tfm; 161 struct public_key *pkey = params->key->payload.data[asym_crypto]; 162 char alg_name[CRYPTO_MAX_ALG_NAME]; 163 struct crypto_sig *sig; 164 u8 *key, *ptr; 165 int ret, len; 166 bool issig; 167 168 ret = software_key_determine_akcipher(pkey, params->encoding, 169 params->hash_algo, alg_name, 170 &issig, kernel_pkey_sign); 171 if (ret < 0) 172 return ret; 173 174 key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, 175 GFP_KERNEL); 176 if (!key) 177 return -ENOMEM; 178 179 memcpy(key, pkey->key, pkey->keylen); 180 ptr = key + pkey->keylen; 181 ptr = pkey_pack_u32(ptr, pkey->algo); 182 ptr = pkey_pack_u32(ptr, pkey->paramlen); 183 memcpy(ptr, pkey->params, pkey->paramlen); 184 185 if (issig) { 186 sig = crypto_alloc_sig(alg_name, 0, 0); 187 if (IS_ERR(sig)) { 188 ret = PTR_ERR(sig); 189 goto error_free_key; 190 } 191 192 if (pkey->key_is_private) 193 ret = crypto_sig_set_privkey(sig, key, pkey->keylen); 194 else 195 ret = crypto_sig_set_pubkey(sig, key, pkey->keylen); 196 if (ret < 0) 197 goto error_free_tfm; 198 199 len = crypto_sig_maxsize(sig); 200 201 info->supported_ops = KEYCTL_SUPPORTS_VERIFY; 202 if (pkey->key_is_private) 203 info->supported_ops |= KEYCTL_SUPPORTS_SIGN; 204 205 if (strcmp(params->encoding, "pkcs1") == 0) { 206 info->supported_ops |= KEYCTL_SUPPORTS_ENCRYPT; 207 if (pkey->key_is_private) 208 info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT; 209 } 210 } else { 211 tfm = crypto_alloc_akcipher(alg_name, 0, 0); 212 if (IS_ERR(tfm)) { 213 ret = PTR_ERR(tfm); 214 goto error_free_key; 215 } 216 217 if (pkey->key_is_private) 218 ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); 219 else 220 ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); 221 if (ret < 0) 222 goto error_free_tfm; 223 224 len = crypto_akcipher_maxsize(tfm); 225 226 info->supported_ops = KEYCTL_SUPPORTS_ENCRYPT; 227 if (pkey->key_is_private) 228 info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT; 229 } 230 231 info->key_size = len * 8; 232 233 if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { 234 /* 235 * ECDSA key sizes are much smaller than RSA, and thus could 236 * operate on (hashed) inputs that are larger than key size. 237 * For example SHA384-hashed input used with secp256r1 238 * based keys. Set max_data_size to be at least as large as 239 * the largest supported hash size (SHA512) 240 */ 241 info->max_data_size = 64; 242 243 /* 244 * Verify takes ECDSA-Sig (described in RFC 5480) as input, 245 * which is actually 2 'key_size'-bit integers encoded in 246 * ASN.1. Account for the ASN.1 encoding overhead here. 247 */ 248 info->max_sig_size = 2 * (len + 3) + 2; 249 } else { 250 info->max_data_size = len; 251 info->max_sig_size = len; 252 } 253 254 info->max_enc_size = len; 255 info->max_dec_size = len; 256 257 ret = 0; 258 259 error_free_tfm: 260 if (issig) 261 crypto_free_sig(sig); 262 else 263 crypto_free_akcipher(tfm); 264 error_free_key: 265 kfree_sensitive(key); 266 pr_devel("<==%s() = %d\n", __func__, ret); 267 return ret; 268 } 269 270 /* 271 * Do encryption, decryption and signing ops. 272 */ 273 static int software_key_eds_op(struct kernel_pkey_params *params, 274 const void *in, void *out) 275 { 276 const struct public_key *pkey = params->key->payload.data[asym_crypto]; 277 char alg_name[CRYPTO_MAX_ALG_NAME]; 278 struct crypto_akcipher *tfm; 279 struct crypto_sig *sig; 280 char *key, *ptr; 281 bool issig; 282 int ksz; 283 int ret; 284 285 pr_devel("==>%s()\n", __func__); 286 287 ret = software_key_determine_akcipher(pkey, params->encoding, 288 params->hash_algo, alg_name, 289 &issig, params->op); 290 if (ret < 0) 291 return ret; 292 293 key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, 294 GFP_KERNEL); 295 if (!key) 296 return -ENOMEM; 297 298 memcpy(key, pkey->key, pkey->keylen); 299 ptr = key + pkey->keylen; 300 ptr = pkey_pack_u32(ptr, pkey->algo); 301 ptr = pkey_pack_u32(ptr, pkey->paramlen); 302 memcpy(ptr, pkey->params, pkey->paramlen); 303 304 if (issig) { 305 sig = crypto_alloc_sig(alg_name, 0, 0); 306 if (IS_ERR(sig)) { 307 ret = PTR_ERR(sig); 308 goto error_free_key; 309 } 310 311 if (pkey->key_is_private) 312 ret = crypto_sig_set_privkey(sig, key, pkey->keylen); 313 else 314 ret = crypto_sig_set_pubkey(sig, key, pkey->keylen); 315 if (ret) 316 goto error_free_tfm; 317 318 ksz = crypto_sig_maxsize(sig); 319 } else { 320 tfm = crypto_alloc_akcipher(alg_name, 0, 0); 321 if (IS_ERR(tfm)) { 322 ret = PTR_ERR(tfm); 323 goto error_free_key; 324 } 325 326 if (pkey->key_is_private) 327 ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); 328 else 329 ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); 330 if (ret) 331 goto error_free_tfm; 332 333 ksz = crypto_akcipher_maxsize(tfm); 334 } 335 336 ret = -EINVAL; 337 338 /* Perform the encryption calculation. */ 339 switch (params->op) { 340 case kernel_pkey_encrypt: 341 if (issig) 342 break; 343 ret = crypto_akcipher_sync_encrypt(tfm, in, params->in_len, 344 out, params->out_len); 345 break; 346 case kernel_pkey_decrypt: 347 if (issig) 348 break; 349 ret = crypto_akcipher_sync_decrypt(tfm, in, params->in_len, 350 out, params->out_len); 351 break; 352 case kernel_pkey_sign: 353 if (!issig) 354 break; 355 ret = crypto_sig_sign(sig, in, params->in_len, 356 out, params->out_len); 357 break; 358 default: 359 BUG(); 360 } 361 362 if (ret == 0) 363 ret = ksz; 364 365 error_free_tfm: 366 if (issig) 367 crypto_free_sig(sig); 368 else 369 crypto_free_akcipher(tfm); 370 error_free_key: 371 kfree_sensitive(key); 372 pr_devel("<==%s() = %d\n", __func__, ret); 373 return ret; 374 } 375 376 /* 377 * Verify a signature using a public key. 378 */ 379 int public_key_verify_signature(const struct public_key *pkey, 380 const struct public_key_signature *sig) 381 { 382 char alg_name[CRYPTO_MAX_ALG_NAME]; 383 struct crypto_sig *tfm; 384 char *key, *ptr; 385 bool issig; 386 int ret; 387 388 pr_devel("==>%s()\n", __func__); 389 390 BUG_ON(!pkey); 391 BUG_ON(!sig); 392 BUG_ON(!sig->s); 393 394 /* 395 * If the signature specifies a public key algorithm, it *must* match 396 * the key's actual public key algorithm. 397 * 398 * Small exception: ECDSA signatures don't specify the curve, but ECDSA 399 * keys do. So the strings can mismatch slightly in that case: 400 * "ecdsa-nist-*" for the key, but "ecdsa" for the signature. 401 */ 402 if (sig->pkey_algo) { 403 if (strcmp(pkey->pkey_algo, sig->pkey_algo) != 0 && 404 (strncmp(pkey->pkey_algo, "ecdsa-", 6) != 0 || 405 strcmp(sig->pkey_algo, "ecdsa") != 0)) 406 return -EKEYREJECTED; 407 } 408 409 ret = software_key_determine_akcipher(pkey, sig->encoding, 410 sig->hash_algo, alg_name, 411 &issig, kernel_pkey_verify); 412 if (ret < 0) 413 return ret; 414 415 tfm = crypto_alloc_sig(alg_name, 0, 0); 416 if (IS_ERR(tfm)) 417 return PTR_ERR(tfm); 418 419 key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, 420 GFP_KERNEL); 421 if (!key) { 422 ret = -ENOMEM; 423 goto error_free_tfm; 424 } 425 426 memcpy(key, pkey->key, pkey->keylen); 427 ptr = key + pkey->keylen; 428 ptr = pkey_pack_u32(ptr, pkey->algo); 429 ptr = pkey_pack_u32(ptr, pkey->paramlen); 430 memcpy(ptr, pkey->params, pkey->paramlen); 431 432 if (pkey->key_is_private) 433 ret = crypto_sig_set_privkey(tfm, key, pkey->keylen); 434 else 435 ret = crypto_sig_set_pubkey(tfm, key, pkey->keylen); 436 if (ret) 437 goto error_free_key; 438 439 ret = crypto_sig_verify(tfm, sig->s, sig->s_size, 440 sig->digest, sig->digest_size); 441 442 error_free_key: 443 kfree_sensitive(key); 444 error_free_tfm: 445 crypto_free_sig(tfm); 446 pr_devel("<==%s() = %d\n", __func__, ret); 447 if (WARN_ON_ONCE(ret > 0)) 448 ret = -EINVAL; 449 return ret; 450 } 451 EXPORT_SYMBOL_GPL(public_key_verify_signature); 452 453 static int public_key_verify_signature_2(const struct key *key, 454 const struct public_key_signature *sig) 455 { 456 const struct public_key *pk = key->payload.data[asym_crypto]; 457 return public_key_verify_signature(pk, sig); 458 } 459 460 /* 461 * Public key algorithm asymmetric key subtype 462 */ 463 struct asymmetric_key_subtype public_key_subtype = { 464 .owner = THIS_MODULE, 465 .name = "public_key", 466 .name_len = sizeof("public_key") - 1, 467 .describe = public_key_describe, 468 .destroy = public_key_destroy, 469 .query = software_key_query, 470 .eds_op = software_key_eds_op, 471 .verify_signature = public_key_verify_signature_2, 472 }; 473 EXPORT_SYMBOL_GPL(public_key_subtype); 474