1 /* In-software asymmetric public-key crypto subtype
2  *
3  * See Documentation/crypto/asymmetric-keys.txt
4  *
5  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public Licence
10  * as published by the Free Software Foundation; either version
11  * 2 of the Licence, or (at your option) any later version.
12  */
13 
14 #define pr_fmt(fmt) "PKEY: "fmt
15 #include <linux/module.h>
16 #include <linux/export.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/seq_file.h>
20 #include <linux/scatterlist.h>
21 #include <keys/asymmetric-subtype.h>
22 #include <crypto/public_key.h>
23 #include <crypto/akcipher.h>
24 
25 MODULE_LICENSE("GPL");
26 
27 /*
28  * Provide a part of a description of the key for /proc/keys.
29  */
30 static void public_key_describe(const struct key *asymmetric_key,
31 				struct seq_file *m)
32 {
33 	struct public_key *key = asymmetric_key->payload.data[asym_crypto];
34 
35 	if (key)
36 		seq_printf(m, "%s.%s", key->id_type, key->pkey_algo);
37 }
38 
39 /*
40  * Destroy a public key algorithm key.
41  */
42 void public_key_free(struct public_key *key)
43 {
44 	if (key) {
45 		kfree(key->key);
46 		kfree(key);
47 	}
48 }
49 EXPORT_SYMBOL_GPL(public_key_free);
50 
51 /*
52  * Destroy a public key algorithm key.
53  */
54 static void public_key_destroy(void *payload0, void *payload3)
55 {
56 	public_key_free(payload0);
57 	public_key_signature_free(payload3);
58 }
59 
60 struct public_key_completion {
61 	struct completion completion;
62 	int err;
63 };
64 
65 static void public_key_verify_done(struct crypto_async_request *req, int err)
66 {
67 	struct public_key_completion *compl = req->data;
68 
69 	if (err == -EINPROGRESS)
70 		return;
71 
72 	compl->err = err;
73 	complete(&compl->completion);
74 }
75 
76 /*
77  * Verify a signature using a public key.
78  */
79 int public_key_verify_signature(const struct public_key *pkey,
80 				const struct public_key_signature *sig)
81 {
82 	struct public_key_completion compl;
83 	struct crypto_akcipher *tfm;
84 	struct akcipher_request *req;
85 	struct scatterlist sig_sg, digest_sg;
86 	const char *alg_name;
87 	char alg_name_buf[CRYPTO_MAX_ALG_NAME];
88 	void *output;
89 	unsigned int outlen;
90 	int ret = -ENOMEM;
91 
92 	pr_devel("==>%s()\n", __func__);
93 
94 	BUG_ON(!pkey);
95 	BUG_ON(!sig);
96 	BUG_ON(!sig->digest);
97 	BUG_ON(!sig->s);
98 
99 	alg_name = sig->pkey_algo;
100 	if (strcmp(sig->pkey_algo, "rsa") == 0) {
101 		/* The data wangled by the RSA algorithm is typically padded
102 		 * and encoded in some manner, such as EMSA-PKCS1-1_5 [RFC3447
103 		 * sec 8.2].
104 		 */
105 		if (snprintf(alg_name_buf, CRYPTO_MAX_ALG_NAME,
106 			     "pkcs1pad(rsa,%s)", sig->hash_algo
107 			     ) >= CRYPTO_MAX_ALG_NAME)
108 			return -EINVAL;
109 		alg_name = alg_name_buf;
110 	}
111 
112 	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
113 	if (IS_ERR(tfm))
114 		return PTR_ERR(tfm);
115 
116 	req = akcipher_request_alloc(tfm, GFP_KERNEL);
117 	if (!req)
118 		goto error_free_tfm;
119 
120 	ret = crypto_akcipher_set_pub_key(tfm, pkey->key, pkey->keylen);
121 	if (ret)
122 		goto error_free_req;
123 
124 	outlen = crypto_akcipher_maxsize(tfm);
125 	output = kmalloc(outlen, GFP_KERNEL);
126 	if (!output)
127 		goto error_free_req;
128 
129 	sg_init_one(&sig_sg, sig->s, sig->s_size);
130 	sg_init_one(&digest_sg, output, outlen);
131 	akcipher_request_set_crypt(req, &sig_sg, &digest_sg, sig->s_size,
132 				   outlen);
133 	init_completion(&compl.completion);
134 	akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
135 				      CRYPTO_TFM_REQ_MAY_SLEEP,
136 				      public_key_verify_done, &compl);
137 
138 	/* Perform the verification calculation.  This doesn't actually do the
139 	 * verification, but rather calculates the hash expected by the
140 	 * signature and returns that to us.
141 	 */
142 	ret = crypto_akcipher_verify(req);
143 	if (ret == -EINPROGRESS) {
144 		wait_for_completion(&compl.completion);
145 		ret = compl.err;
146 	}
147 	if (ret < 0)
148 		goto out_free_output;
149 
150 	/* Do the actual verification step. */
151 	if (req->dst_len != sig->digest_size ||
152 	    memcmp(sig->digest, output, sig->digest_size) != 0)
153 		ret = -EKEYREJECTED;
154 
155 out_free_output:
156 	kfree(output);
157 error_free_req:
158 	akcipher_request_free(req);
159 error_free_tfm:
160 	crypto_free_akcipher(tfm);
161 	pr_devel("<==%s() = %d\n", __func__, ret);
162 	return ret;
163 }
164 EXPORT_SYMBOL_GPL(public_key_verify_signature);
165 
166 static int public_key_verify_signature_2(const struct key *key,
167 					 const struct public_key_signature *sig)
168 {
169 	const struct public_key *pk = key->payload.data[asym_crypto];
170 	return public_key_verify_signature(pk, sig);
171 }
172 
173 /*
174  * Public key algorithm asymmetric key subtype
175  */
176 struct asymmetric_key_subtype public_key_subtype = {
177 	.owner			= THIS_MODULE,
178 	.name			= "public_key",
179 	.name_len		= sizeof("public_key") - 1,
180 	.describe		= public_key_describe,
181 	.destroy		= public_key_destroy,
182 	.verify_signature	= public_key_verify_signature_2,
183 };
184 EXPORT_SYMBOL_GPL(public_key_subtype);
185