1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* In-software asymmetric public-key crypto subtype 3 * 4 * See Documentation/crypto/asymmetric-keys.rst 5 * 6 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved. 7 * Written by David Howells (dhowells@redhat.com) 8 */ 9 10 #define pr_fmt(fmt) "PKEY: "fmt 11 #include <crypto/akcipher.h> 12 #include <crypto/public_key.h> 13 #include <crypto/sig.h> 14 #include <keys/asymmetric-subtype.h> 15 #include <linux/asn1.h> 16 #include <linux/err.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/seq_file.h> 20 #include <linux/slab.h> 21 #include <linux/string.h> 22 23 MODULE_DESCRIPTION("In-software asymmetric public-key subtype"); 24 MODULE_AUTHOR("Red Hat, Inc."); 25 MODULE_LICENSE("GPL"); 26 27 /* 28 * Provide a part of a description of the key for /proc/keys. 29 */ 30 static void public_key_describe(const struct key *asymmetric_key, 31 struct seq_file *m) 32 { 33 struct public_key *key = asymmetric_key->payload.data[asym_crypto]; 34 35 if (key) 36 seq_printf(m, "%s.%s", key->id_type, key->pkey_algo); 37 } 38 39 /* 40 * Destroy a public key algorithm key. 41 */ 42 void public_key_free(struct public_key *key) 43 { 44 if (key) { 45 kfree(key->key); 46 kfree(key->params); 47 kfree(key); 48 } 49 } 50 EXPORT_SYMBOL_GPL(public_key_free); 51 52 /* 53 * Destroy a public key algorithm key. 54 */ 55 static void public_key_destroy(void *payload0, void *payload3) 56 { 57 public_key_free(payload0); 58 public_key_signature_free(payload3); 59 } 60 61 /* 62 * Given a public_key, and an encoding and hash_algo to be used for signing 63 * and/or verification with that key, determine the name of the corresponding 64 * akcipher algorithm. Also check that encoding and hash_algo are allowed. 65 */ 66 static int 67 software_key_determine_akcipher(const struct public_key *pkey, 68 const char *encoding, const char *hash_algo, 69 char alg_name[CRYPTO_MAX_ALG_NAME], bool *sig, 70 enum kernel_pkey_operation op) 71 { 72 int n; 73 74 *sig = true; 75 76 if (!encoding) 77 return -EINVAL; 78 79 if (strcmp(pkey->pkey_algo, "rsa") == 0) { 80 /* 81 * RSA signatures usually use EMSA-PKCS1-1_5 [RFC3447 sec 8.2]. 82 */ 83 if (strcmp(encoding, "pkcs1") == 0) { 84 if (!hash_algo) { 85 *sig = false; 86 n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, 87 "pkcs1pad(%s)", 88 pkey->pkey_algo); 89 } else { 90 *sig = op == kernel_pkey_sign || 91 op == kernel_pkey_verify; 92 n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, 93 "pkcs1pad(%s,%s)", 94 pkey->pkey_algo, hash_algo); 95 } 96 return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0; 97 } 98 if (strcmp(encoding, "raw") != 0) 99 return -EINVAL; 100 /* 101 * Raw RSA cannot differentiate between different hash 102 * algorithms. 103 */ 104 if (hash_algo) 105 return -EINVAL; 106 *sig = false; 107 } else if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { 108 if (strcmp(encoding, "x962") != 0) 109 return -EINVAL; 110 /* 111 * ECDSA signatures are taken over a raw hash, so they don't 112 * differentiate between different hash algorithms. That means 113 * that the verifier should hard-code a specific hash algorithm. 114 * Unfortunately, in practice ECDSA is used with multiple SHAs, 115 * so we have to allow all of them and not just one. 116 */ 117 if (!hash_algo) 118 return -EINVAL; 119 if (strcmp(hash_algo, "sha1") != 0 && 120 strcmp(hash_algo, "sha224") != 0 && 121 strcmp(hash_algo, "sha256") != 0 && 122 strcmp(hash_algo, "sha384") != 0 && 123 strcmp(hash_algo, "sha512") != 0) 124 return -EINVAL; 125 } else if (strcmp(pkey->pkey_algo, "sm2") == 0) { 126 if (strcmp(encoding, "raw") != 0) 127 return -EINVAL; 128 if (!hash_algo) 129 return -EINVAL; 130 if (strcmp(hash_algo, "sm3") != 0) 131 return -EINVAL; 132 } else if (strcmp(pkey->pkey_algo, "ecrdsa") == 0) { 133 if (strcmp(encoding, "raw") != 0) 134 return -EINVAL; 135 if (!hash_algo) 136 return -EINVAL; 137 if (strcmp(hash_algo, "streebog256") != 0 && 138 strcmp(hash_algo, "streebog512") != 0) 139 return -EINVAL; 140 } else { 141 /* Unknown public key algorithm */ 142 return -ENOPKG; 143 } 144 if (strscpy(alg_name, pkey->pkey_algo, CRYPTO_MAX_ALG_NAME) < 0) 145 return -EINVAL; 146 return 0; 147 } 148 149 static u8 *pkey_pack_u32(u8 *dst, u32 val) 150 { 151 memcpy(dst, &val, sizeof(val)); 152 return dst + sizeof(val); 153 } 154 155 /* 156 * Query information about a key. 157 */ 158 static int software_key_query(const struct kernel_pkey_params *params, 159 struct kernel_pkey_query *info) 160 { 161 struct crypto_akcipher *tfm; 162 struct public_key *pkey = params->key->payload.data[asym_crypto]; 163 char alg_name[CRYPTO_MAX_ALG_NAME]; 164 struct crypto_sig *sig; 165 u8 *key, *ptr; 166 int ret, len; 167 bool issig; 168 169 ret = software_key_determine_akcipher(pkey, params->encoding, 170 params->hash_algo, alg_name, 171 &issig, kernel_pkey_sign); 172 if (ret < 0) 173 return ret; 174 175 key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, 176 GFP_KERNEL); 177 if (!key) 178 return -ENOMEM; 179 180 memcpy(key, pkey->key, pkey->keylen); 181 ptr = key + pkey->keylen; 182 ptr = pkey_pack_u32(ptr, pkey->algo); 183 ptr = pkey_pack_u32(ptr, pkey->paramlen); 184 memcpy(ptr, pkey->params, pkey->paramlen); 185 186 if (issig) { 187 sig = crypto_alloc_sig(alg_name, 0, 0); 188 if (IS_ERR(sig)) { 189 ret = PTR_ERR(sig); 190 goto error_free_key; 191 } 192 193 if (pkey->key_is_private) 194 ret = crypto_sig_set_privkey(sig, key, pkey->keylen); 195 else 196 ret = crypto_sig_set_pubkey(sig, key, pkey->keylen); 197 if (ret < 0) 198 goto error_free_tfm; 199 200 len = crypto_sig_maxsize(sig); 201 202 info->supported_ops = KEYCTL_SUPPORTS_VERIFY; 203 if (pkey->key_is_private) 204 info->supported_ops |= KEYCTL_SUPPORTS_SIGN; 205 206 if (strcmp(params->encoding, "pkcs1") == 0) { 207 info->supported_ops |= KEYCTL_SUPPORTS_ENCRYPT; 208 if (pkey->key_is_private) 209 info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT; 210 } 211 } else { 212 tfm = crypto_alloc_akcipher(alg_name, 0, 0); 213 if (IS_ERR(tfm)) { 214 ret = PTR_ERR(tfm); 215 goto error_free_key; 216 } 217 218 if (pkey->key_is_private) 219 ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); 220 else 221 ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); 222 if (ret < 0) 223 goto error_free_tfm; 224 225 len = crypto_akcipher_maxsize(tfm); 226 227 info->supported_ops = KEYCTL_SUPPORTS_ENCRYPT; 228 if (pkey->key_is_private) 229 info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT; 230 } 231 232 info->key_size = len * 8; 233 234 if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) { 235 /* 236 * ECDSA key sizes are much smaller than RSA, and thus could 237 * operate on (hashed) inputs that are larger than key size. 238 * For example SHA384-hashed input used with secp256r1 239 * based keys. Set max_data_size to be at least as large as 240 * the largest supported hash size (SHA512) 241 */ 242 info->max_data_size = 64; 243 244 /* 245 * Verify takes ECDSA-Sig (described in RFC 5480) as input, 246 * which is actually 2 'key_size'-bit integers encoded in 247 * ASN.1. Account for the ASN.1 encoding overhead here. 248 */ 249 info->max_sig_size = 2 * (len + 3) + 2; 250 } else { 251 info->max_data_size = len; 252 info->max_sig_size = len; 253 } 254 255 info->max_enc_size = len; 256 info->max_dec_size = len; 257 258 ret = 0; 259 260 error_free_tfm: 261 if (issig) 262 crypto_free_sig(sig); 263 else 264 crypto_free_akcipher(tfm); 265 error_free_key: 266 kfree(key); 267 pr_devel("<==%s() = %d\n", __func__, ret); 268 return ret; 269 } 270 271 /* 272 * Do encryption, decryption and signing ops. 273 */ 274 static int software_key_eds_op(struct kernel_pkey_params *params, 275 const void *in, void *out) 276 { 277 const struct public_key *pkey = params->key->payload.data[asym_crypto]; 278 char alg_name[CRYPTO_MAX_ALG_NAME]; 279 struct crypto_akcipher *tfm; 280 struct crypto_sig *sig; 281 char *key, *ptr; 282 bool issig; 283 int ksz; 284 int ret; 285 286 pr_devel("==>%s()\n", __func__); 287 288 ret = software_key_determine_akcipher(pkey, params->encoding, 289 params->hash_algo, alg_name, 290 &issig, params->op); 291 if (ret < 0) 292 return ret; 293 294 key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, 295 GFP_KERNEL); 296 if (!key) 297 return -ENOMEM; 298 299 memcpy(key, pkey->key, pkey->keylen); 300 ptr = key + pkey->keylen; 301 ptr = pkey_pack_u32(ptr, pkey->algo); 302 ptr = pkey_pack_u32(ptr, pkey->paramlen); 303 memcpy(ptr, pkey->params, pkey->paramlen); 304 305 if (issig) { 306 sig = crypto_alloc_sig(alg_name, 0, 0); 307 if (IS_ERR(sig)) { 308 ret = PTR_ERR(sig); 309 goto error_free_key; 310 } 311 312 if (pkey->key_is_private) 313 ret = crypto_sig_set_privkey(sig, key, pkey->keylen); 314 else 315 ret = crypto_sig_set_pubkey(sig, key, pkey->keylen); 316 if (ret) 317 goto error_free_tfm; 318 319 ksz = crypto_sig_maxsize(sig); 320 } else { 321 tfm = crypto_alloc_akcipher(alg_name, 0, 0); 322 if (IS_ERR(tfm)) { 323 ret = PTR_ERR(tfm); 324 goto error_free_key; 325 } 326 327 if (pkey->key_is_private) 328 ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); 329 else 330 ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); 331 if (ret) 332 goto error_free_tfm; 333 334 ksz = crypto_akcipher_maxsize(tfm); 335 } 336 337 ret = -EINVAL; 338 339 /* Perform the encryption calculation. */ 340 switch (params->op) { 341 case kernel_pkey_encrypt: 342 if (issig) 343 break; 344 ret = crypto_akcipher_sync_encrypt(tfm, in, params->in_len, 345 out, params->out_len); 346 break; 347 case kernel_pkey_decrypt: 348 if (issig) 349 break; 350 ret = crypto_akcipher_sync_decrypt(tfm, in, params->in_len, 351 out, params->out_len); 352 break; 353 case kernel_pkey_sign: 354 if (!issig) 355 break; 356 ret = crypto_sig_sign(sig, in, params->in_len, 357 out, params->out_len); 358 break; 359 default: 360 BUG(); 361 } 362 363 if (ret == 0) 364 ret = ksz; 365 366 error_free_tfm: 367 if (issig) 368 crypto_free_sig(sig); 369 else 370 crypto_free_akcipher(tfm); 371 error_free_key: 372 kfree(key); 373 pr_devel("<==%s() = %d\n", __func__, ret); 374 return ret; 375 } 376 377 /* 378 * Verify a signature using a public key. 379 */ 380 int public_key_verify_signature(const struct public_key *pkey, 381 const struct public_key_signature *sig) 382 { 383 char alg_name[CRYPTO_MAX_ALG_NAME]; 384 struct crypto_sig *tfm; 385 char *key, *ptr; 386 bool issig; 387 int ret; 388 389 pr_devel("==>%s()\n", __func__); 390 391 BUG_ON(!pkey); 392 BUG_ON(!sig); 393 BUG_ON(!sig->s); 394 395 /* 396 * If the signature specifies a public key algorithm, it *must* match 397 * the key's actual public key algorithm. 398 * 399 * Small exception: ECDSA signatures don't specify the curve, but ECDSA 400 * keys do. So the strings can mismatch slightly in that case: 401 * "ecdsa-nist-*" for the key, but "ecdsa" for the signature. 402 */ 403 if (sig->pkey_algo) { 404 if (strcmp(pkey->pkey_algo, sig->pkey_algo) != 0 && 405 (strncmp(pkey->pkey_algo, "ecdsa-", 6) != 0 || 406 strcmp(sig->pkey_algo, "ecdsa") != 0)) 407 return -EKEYREJECTED; 408 } 409 410 ret = software_key_determine_akcipher(pkey, sig->encoding, 411 sig->hash_algo, alg_name, 412 &issig, kernel_pkey_verify); 413 if (ret < 0) 414 return ret; 415 416 tfm = crypto_alloc_sig(alg_name, 0, 0); 417 if (IS_ERR(tfm)) 418 return PTR_ERR(tfm); 419 420 key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, 421 GFP_KERNEL); 422 if (!key) { 423 ret = -ENOMEM; 424 goto error_free_tfm; 425 } 426 427 memcpy(key, pkey->key, pkey->keylen); 428 ptr = key + pkey->keylen; 429 ptr = pkey_pack_u32(ptr, pkey->algo); 430 ptr = pkey_pack_u32(ptr, pkey->paramlen); 431 memcpy(ptr, pkey->params, pkey->paramlen); 432 433 if (pkey->key_is_private) 434 ret = crypto_sig_set_privkey(tfm, key, pkey->keylen); 435 else 436 ret = crypto_sig_set_pubkey(tfm, key, pkey->keylen); 437 if (ret) 438 goto error_free_key; 439 440 ret = crypto_sig_verify(tfm, sig->s, sig->s_size, 441 sig->digest, sig->digest_size); 442 443 error_free_key: 444 kfree(key); 445 error_free_tfm: 446 crypto_free_sig(tfm); 447 pr_devel("<==%s() = %d\n", __func__, ret); 448 if (WARN_ON_ONCE(ret > 0)) 449 ret = -EINVAL; 450 return ret; 451 } 452 EXPORT_SYMBOL_GPL(public_key_verify_signature); 453 454 static int public_key_verify_signature_2(const struct key *key, 455 const struct public_key_signature *sig) 456 { 457 const struct public_key *pk = key->payload.data[asym_crypto]; 458 return public_key_verify_signature(pk, sig); 459 } 460 461 /* 462 * Public key algorithm asymmetric key subtype 463 */ 464 struct asymmetric_key_subtype public_key_subtype = { 465 .owner = THIS_MODULE, 466 .name = "public_key", 467 .name_len = sizeof("public_key") - 1, 468 .describe = public_key_describe, 469 .destroy = public_key_destroy, 470 .query = software_key_query, 471 .eds_op = software_key_eds_op, 472 .verify_signature = public_key_verify_signature_2, 473 }; 474 EXPORT_SYMBOL_GPL(public_key_subtype); 475