xref: /openbmc/linux/crypto/asymmetric_keys/public_key.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /* In-software asymmetric public-key crypto subtype
2  *
3  * See Documentation/crypto/asymmetric-keys.txt
4  *
5  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public Licence
10  * as published by the Free Software Foundation; either version
11  * 2 of the Licence, or (at your option) any later version.
12  */
13 
14 #define pr_fmt(fmt) "PKEY: "fmt
15 #include <linux/module.h>
16 #include <linux/export.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/seq_file.h>
20 #include <linux/scatterlist.h>
21 #include <keys/asymmetric-subtype.h>
22 #include <crypto/public_key.h>
23 #include <crypto/akcipher.h>
24 
25 MODULE_DESCRIPTION("In-software asymmetric public-key subtype");
26 MODULE_AUTHOR("Red Hat, Inc.");
27 MODULE_LICENSE("GPL");
28 
29 /*
30  * Provide a part of a description of the key for /proc/keys.
31  */
32 static void public_key_describe(const struct key *asymmetric_key,
33 				struct seq_file *m)
34 {
35 	struct public_key *key = asymmetric_key->payload.data[asym_crypto];
36 
37 	if (key)
38 		seq_printf(m, "%s.%s", key->id_type, key->pkey_algo);
39 }
40 
41 /*
42  * Destroy a public key algorithm key.
43  */
44 void public_key_free(struct public_key *key)
45 {
46 	if (key) {
47 		kfree(key->key);
48 		kfree(key);
49 	}
50 }
51 EXPORT_SYMBOL_GPL(public_key_free);
52 
53 /*
54  * Destroy a public key algorithm key.
55  */
56 static void public_key_destroy(void *payload0, void *payload3)
57 {
58 	public_key_free(payload0);
59 	public_key_signature_free(payload3);
60 }
61 
62 /*
63  * Determine the crypto algorithm name.
64  */
65 static
66 int software_key_determine_akcipher(const char *encoding,
67 				    const char *hash_algo,
68 				    const struct public_key *pkey,
69 				    char alg_name[CRYPTO_MAX_ALG_NAME])
70 {
71 	int n;
72 
73 	if (strcmp(encoding, "pkcs1") == 0) {
74 		/* The data wangled by the RSA algorithm is typically padded
75 		 * and encoded in some manner, such as EMSA-PKCS1-1_5 [RFC3447
76 		 * sec 8.2].
77 		 */
78 		if (!hash_algo)
79 			n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
80 				     "pkcs1pad(%s)",
81 				     pkey->pkey_algo);
82 		else
83 			n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
84 				     "pkcs1pad(%s,%s)",
85 				     pkey->pkey_algo, hash_algo);
86 		return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0;
87 	}
88 
89 	if (strcmp(encoding, "raw") == 0) {
90 		strcpy(alg_name, pkey->pkey_algo);
91 		return 0;
92 	}
93 
94 	return -ENOPKG;
95 }
96 
97 /*
98  * Query information about a key.
99  */
100 static int software_key_query(const struct kernel_pkey_params *params,
101 			      struct kernel_pkey_query *info)
102 {
103 	struct crypto_akcipher *tfm;
104 	struct public_key *pkey = params->key->payload.data[asym_crypto];
105 	char alg_name[CRYPTO_MAX_ALG_NAME];
106 	int ret, len;
107 
108 	ret = software_key_determine_akcipher(params->encoding,
109 					      params->hash_algo,
110 					      pkey, alg_name);
111 	if (ret < 0)
112 		return ret;
113 
114 	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
115 	if (IS_ERR(tfm))
116 		return PTR_ERR(tfm);
117 
118 	if (pkey->key_is_private)
119 		ret = crypto_akcipher_set_priv_key(tfm,
120 						   pkey->key, pkey->keylen);
121 	else
122 		ret = crypto_akcipher_set_pub_key(tfm,
123 						  pkey->key, pkey->keylen);
124 	if (ret < 0)
125 		goto error_free_tfm;
126 
127 	len = crypto_akcipher_maxsize(tfm);
128 	info->key_size = len * 8;
129 	info->max_data_size = len;
130 	info->max_sig_size = len;
131 	info->max_enc_size = len;
132 	info->max_dec_size = len;
133 	info->supported_ops = (KEYCTL_SUPPORTS_ENCRYPT |
134 			       KEYCTL_SUPPORTS_VERIFY);
135 	if (pkey->key_is_private)
136 		info->supported_ops |= (KEYCTL_SUPPORTS_DECRYPT |
137 					KEYCTL_SUPPORTS_SIGN);
138 	ret = 0;
139 
140 error_free_tfm:
141 	crypto_free_akcipher(tfm);
142 	pr_devel("<==%s() = %d\n", __func__, ret);
143 	return ret;
144 }
145 
146 /*
147  * Do encryption, decryption and signing ops.
148  */
149 static int software_key_eds_op(struct kernel_pkey_params *params,
150 			       const void *in, void *out)
151 {
152 	const struct public_key *pkey = params->key->payload.data[asym_crypto];
153 	struct akcipher_request *req;
154 	struct crypto_akcipher *tfm;
155 	struct crypto_wait cwait;
156 	struct scatterlist in_sg, out_sg;
157 	char alg_name[CRYPTO_MAX_ALG_NAME];
158 	int ret;
159 
160 	pr_devel("==>%s()\n", __func__);
161 
162 	ret = software_key_determine_akcipher(params->encoding,
163 					      params->hash_algo,
164 					      pkey, alg_name);
165 	if (ret < 0)
166 		return ret;
167 
168 	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
169 	if (IS_ERR(tfm))
170 		return PTR_ERR(tfm);
171 
172 	req = akcipher_request_alloc(tfm, GFP_KERNEL);
173 	if (!req)
174 		goto error_free_tfm;
175 
176 	if (pkey->key_is_private)
177 		ret = crypto_akcipher_set_priv_key(tfm,
178 						   pkey->key, pkey->keylen);
179 	else
180 		ret = crypto_akcipher_set_pub_key(tfm,
181 						  pkey->key, pkey->keylen);
182 	if (ret)
183 		goto error_free_req;
184 
185 	sg_init_one(&in_sg, in, params->in_len);
186 	sg_init_one(&out_sg, out, params->out_len);
187 	akcipher_request_set_crypt(req, &in_sg, &out_sg, params->in_len,
188 				   params->out_len);
189 	crypto_init_wait(&cwait);
190 	akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
191 				      CRYPTO_TFM_REQ_MAY_SLEEP,
192 				      crypto_req_done, &cwait);
193 
194 	/* Perform the encryption calculation. */
195 	switch (params->op) {
196 	case kernel_pkey_encrypt:
197 		ret = crypto_akcipher_encrypt(req);
198 		break;
199 	case kernel_pkey_decrypt:
200 		ret = crypto_akcipher_decrypt(req);
201 		break;
202 	case kernel_pkey_sign:
203 		ret = crypto_akcipher_sign(req);
204 		break;
205 	default:
206 		BUG();
207 	}
208 
209 	ret = crypto_wait_req(ret, &cwait);
210 	if (ret == 0)
211 		ret = req->dst_len;
212 
213 error_free_req:
214 	akcipher_request_free(req);
215 error_free_tfm:
216 	crypto_free_akcipher(tfm);
217 	pr_devel("<==%s() = %d\n", __func__, ret);
218 	return ret;
219 }
220 
221 /*
222  * Verify a signature using a public key.
223  */
224 int public_key_verify_signature(const struct public_key *pkey,
225 				const struct public_key_signature *sig)
226 {
227 	struct crypto_wait cwait;
228 	struct crypto_akcipher *tfm;
229 	struct akcipher_request *req;
230 	struct scatterlist sig_sg, digest_sg;
231 	char alg_name[CRYPTO_MAX_ALG_NAME];
232 	void *output;
233 	unsigned int outlen;
234 	int ret;
235 
236 	pr_devel("==>%s()\n", __func__);
237 
238 	BUG_ON(!pkey);
239 	BUG_ON(!sig);
240 	BUG_ON(!sig->s);
241 
242 	ret = software_key_determine_akcipher(sig->encoding,
243 					      sig->hash_algo,
244 					      pkey, alg_name);
245 	if (ret < 0)
246 		return ret;
247 
248 	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
249 	if (IS_ERR(tfm))
250 		return PTR_ERR(tfm);
251 
252 	ret = -ENOMEM;
253 	req = akcipher_request_alloc(tfm, GFP_KERNEL);
254 	if (!req)
255 		goto error_free_tfm;
256 
257 	if (pkey->key_is_private)
258 		ret = crypto_akcipher_set_priv_key(tfm,
259 						   pkey->key, pkey->keylen);
260 	else
261 		ret = crypto_akcipher_set_pub_key(tfm,
262 						  pkey->key, pkey->keylen);
263 	if (ret)
264 		goto error_free_req;
265 
266 	ret = -ENOMEM;
267 	outlen = crypto_akcipher_maxsize(tfm);
268 	output = kmalloc(outlen, GFP_KERNEL);
269 	if (!output)
270 		goto error_free_req;
271 
272 	sg_init_one(&sig_sg, sig->s, sig->s_size);
273 	sg_init_one(&digest_sg, output, outlen);
274 	akcipher_request_set_crypt(req, &sig_sg, &digest_sg, sig->s_size,
275 				   outlen);
276 	crypto_init_wait(&cwait);
277 	akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
278 				      CRYPTO_TFM_REQ_MAY_SLEEP,
279 				      crypto_req_done, &cwait);
280 
281 	/* Perform the verification calculation.  This doesn't actually do the
282 	 * verification, but rather calculates the hash expected by the
283 	 * signature and returns that to us.
284 	 */
285 	ret = crypto_wait_req(crypto_akcipher_verify(req), &cwait);
286 	if (ret)
287 		goto out_free_output;
288 
289 	/* Do the actual verification step. */
290 	if (req->dst_len != sig->digest_size ||
291 	    memcmp(sig->digest, output, sig->digest_size) != 0)
292 		ret = -EKEYREJECTED;
293 
294 out_free_output:
295 	kfree(output);
296 error_free_req:
297 	akcipher_request_free(req);
298 error_free_tfm:
299 	crypto_free_akcipher(tfm);
300 	pr_devel("<==%s() = %d\n", __func__, ret);
301 	if (WARN_ON_ONCE(ret > 0))
302 		ret = -EINVAL;
303 	return ret;
304 }
305 EXPORT_SYMBOL_GPL(public_key_verify_signature);
306 
307 static int public_key_verify_signature_2(const struct key *key,
308 					 const struct public_key_signature *sig)
309 {
310 	const struct public_key *pk = key->payload.data[asym_crypto];
311 	return public_key_verify_signature(pk, sig);
312 }
313 
314 /*
315  * Public key algorithm asymmetric key subtype
316  */
317 struct asymmetric_key_subtype public_key_subtype = {
318 	.owner			= THIS_MODULE,
319 	.name			= "public_key",
320 	.name_len		= sizeof("public_key") - 1,
321 	.describe		= public_key_describe,
322 	.destroy		= public_key_destroy,
323 	.query			= software_key_query,
324 	.eds_op			= software_key_eds_op,
325 	.verify_signature	= public_key_verify_signature_2,
326 };
327 EXPORT_SYMBOL_GPL(public_key_subtype);
328