1 /* 2 * algif_aead: User-space interface for AEAD algorithms 3 * 4 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de> 5 * 6 * This file provides the user-space API for AEAD ciphers. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 * The following concept of the memory management is used: 14 * 15 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is 16 * filled by user space with the data submitted via sendpage/sendmsg. Filling 17 * up the TX SGL does not cause a crypto operation -- the data will only be 18 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must 19 * provide a buffer which is tracked with the RX SGL. 20 * 21 * During the processing of the recvmsg operation, the cipher request is 22 * allocated and prepared. As part of the recvmsg operation, the processed 23 * TX buffers are extracted from the TX SGL into a separate SGL. 24 * 25 * After the completion of the crypto operation, the RX SGL and the cipher 26 * request is released. The extracted TX SGL parts are released together with 27 * the RX SGL release. 28 */ 29 30 #include <crypto/internal/aead.h> 31 #include <crypto/scatterwalk.h> 32 #include <crypto/if_alg.h> 33 #include <crypto/skcipher.h> 34 #include <crypto/null.h> 35 #include <linux/init.h> 36 #include <linux/list.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/module.h> 40 #include <linux/net.h> 41 #include <net/sock.h> 42 43 struct aead_tfm { 44 struct crypto_aead *aead; 45 bool has_key; 46 struct crypto_skcipher *null_tfm; 47 }; 48 49 static inline bool aead_sufficient_data(struct sock *sk) 50 { 51 struct alg_sock *ask = alg_sk(sk); 52 struct sock *psk = ask->parent; 53 struct alg_sock *pask = alg_sk(psk); 54 struct af_alg_ctx *ctx = ask->private; 55 struct aead_tfm *aeadc = pask->private; 56 struct crypto_aead *tfm = aeadc->aead; 57 unsigned int as = crypto_aead_authsize(tfm); 58 59 /* 60 * The minimum amount of memory needed for an AEAD cipher is 61 * the AAD and in case of decryption the tag. 62 */ 63 return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as); 64 } 65 66 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 67 { 68 struct sock *sk = sock->sk; 69 struct alg_sock *ask = alg_sk(sk); 70 struct sock *psk = ask->parent; 71 struct alg_sock *pask = alg_sk(psk); 72 struct aead_tfm *aeadc = pask->private; 73 struct crypto_aead *tfm = aeadc->aead; 74 unsigned int ivsize = crypto_aead_ivsize(tfm); 75 76 return af_alg_sendmsg(sock, msg, size, ivsize); 77 } 78 79 static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm, 80 struct scatterlist *src, 81 struct scatterlist *dst, unsigned int len) 82 { 83 SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm); 84 85 skcipher_request_set_tfm(skreq, null_tfm); 86 skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG, 87 NULL, NULL); 88 skcipher_request_set_crypt(skreq, src, dst, len, NULL); 89 90 return crypto_skcipher_encrypt(skreq); 91 } 92 93 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg, 94 size_t ignored, int flags) 95 { 96 struct sock *sk = sock->sk; 97 struct alg_sock *ask = alg_sk(sk); 98 struct sock *psk = ask->parent; 99 struct alg_sock *pask = alg_sk(psk); 100 struct af_alg_ctx *ctx = ask->private; 101 struct aead_tfm *aeadc = pask->private; 102 struct crypto_aead *tfm = aeadc->aead; 103 struct crypto_skcipher *null_tfm = aeadc->null_tfm; 104 unsigned int i, as = crypto_aead_authsize(tfm); 105 struct af_alg_async_req *areq; 106 struct af_alg_tsgl *tsgl, *tmp; 107 struct scatterlist *rsgl_src, *tsgl_src = NULL; 108 int err = 0; 109 size_t used = 0; /* [in] TX bufs to be en/decrypted */ 110 size_t outlen = 0; /* [out] RX bufs produced by kernel */ 111 size_t usedpages = 0; /* [in] RX bufs to be used from user */ 112 size_t processed = 0; /* [in] TX bufs to be consumed */ 113 114 /* 115 * Data length provided by caller via sendmsg/sendpage that has not 116 * yet been processed. 117 */ 118 used = ctx->used; 119 120 /* 121 * Make sure sufficient data is present -- note, the same check is 122 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg 123 * shall provide an information to the data sender that something is 124 * wrong, but they are irrelevant to maintain the kernel integrity. 125 * We need this check here too in case user space decides to not honor 126 * the error message in sendmsg/sendpage and still call recvmsg. This 127 * check here protects the kernel integrity. 128 */ 129 if (!aead_sufficient_data(sk)) 130 return -EINVAL; 131 132 /* 133 * Calculate the minimum output buffer size holding the result of the 134 * cipher operation. When encrypting data, the receiving buffer is 135 * larger by the tag length compared to the input buffer as the 136 * encryption operation generates the tag. For decryption, the input 137 * buffer provides the tag which is consumed resulting in only the 138 * plaintext without a buffer for the tag returned to the caller. 139 */ 140 if (ctx->enc) 141 outlen = used + as; 142 else 143 outlen = used - as; 144 145 /* 146 * The cipher operation input data is reduced by the associated data 147 * length as this data is processed separately later on. 148 */ 149 used -= ctx->aead_assoclen; 150 151 /* Allocate cipher request for current operation. */ 152 areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) + 153 crypto_aead_reqsize(tfm)); 154 if (IS_ERR(areq)) 155 return PTR_ERR(areq); 156 157 /* convert iovecs of output buffers into RX SGL */ 158 err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages); 159 if (err) 160 goto free; 161 162 /* 163 * Ensure output buffer is sufficiently large. If the caller provides 164 * less buffer space, only use the relative required input size. This 165 * allows AIO operation where the caller sent all data to be processed 166 * and the AIO operation performs the operation on the different chunks 167 * of the input data. 168 */ 169 if (usedpages < outlen) { 170 size_t less = outlen - usedpages; 171 172 if (used < less) { 173 err = -EINVAL; 174 goto free; 175 } 176 used -= less; 177 outlen -= less; 178 } 179 180 processed = used + ctx->aead_assoclen; 181 list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) { 182 for (i = 0; i < tsgl->cur; i++) { 183 struct scatterlist *process_sg = tsgl->sg + i; 184 185 if (!(process_sg->length) || !sg_page(process_sg)) 186 continue; 187 tsgl_src = process_sg; 188 break; 189 } 190 if (tsgl_src) 191 break; 192 } 193 if (processed && !tsgl_src) { 194 err = -EFAULT; 195 goto free; 196 } 197 198 /* 199 * Copy of AAD from source to destination 200 * 201 * The AAD is copied to the destination buffer without change. Even 202 * when user space uses an in-place cipher operation, the kernel 203 * will copy the data as it does not see whether such in-place operation 204 * is initiated. 205 * 206 * To ensure efficiency, the following implementation ensure that the 207 * ciphers are invoked to perform a crypto operation in-place. This 208 * is achieved by memory management specified as follows. 209 */ 210 211 /* Use the RX SGL as source (and destination) for crypto op. */ 212 rsgl_src = areq->first_rsgl.sgl.sg; 213 214 if (ctx->enc) { 215 /* 216 * Encryption operation - The in-place cipher operation is 217 * achieved by the following operation: 218 * 219 * TX SGL: AAD || PT 220 * | | 221 * | copy | 222 * v v 223 * RX SGL: AAD || PT || Tag 224 */ 225 err = crypto_aead_copy_sgl(null_tfm, tsgl_src, 226 areq->first_rsgl.sgl.sg, processed); 227 if (err) 228 goto free; 229 af_alg_pull_tsgl(sk, processed, NULL, 0); 230 } else { 231 /* 232 * Decryption operation - To achieve an in-place cipher 233 * operation, the following SGL structure is used: 234 * 235 * TX SGL: AAD || CT || Tag 236 * | | ^ 237 * | copy | | Create SGL link. 238 * v v | 239 * RX SGL: AAD || CT ----+ 240 */ 241 242 /* Copy AAD || CT to RX SGL buffer for in-place operation. */ 243 err = crypto_aead_copy_sgl(null_tfm, tsgl_src, 244 areq->first_rsgl.sgl.sg, outlen); 245 if (err) 246 goto free; 247 248 /* Create TX SGL for tag and chain it to RX SGL. */ 249 areq->tsgl_entries = af_alg_count_tsgl(sk, processed, 250 processed - as); 251 if (!areq->tsgl_entries) 252 areq->tsgl_entries = 1; 253 areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) * 254 areq->tsgl_entries, 255 GFP_KERNEL); 256 if (!areq->tsgl) { 257 err = -ENOMEM; 258 goto free; 259 } 260 sg_init_table(areq->tsgl, areq->tsgl_entries); 261 262 /* Release TX SGL, except for tag data and reassign tag data. */ 263 af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as); 264 265 /* chain the areq TX SGL holding the tag with RX SGL */ 266 if (usedpages) { 267 /* RX SGL present */ 268 struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl; 269 270 sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1); 271 sg_chain(sgl_prev->sg, sgl_prev->npages + 1, 272 areq->tsgl); 273 } else 274 /* no RX SGL present (e.g. authentication only) */ 275 rsgl_src = areq->tsgl; 276 } 277 278 /* Initialize the crypto operation */ 279 aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src, 280 areq->first_rsgl.sgl.sg, used, ctx->iv); 281 aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen); 282 aead_request_set_tfm(&areq->cra_u.aead_req, tfm); 283 284 if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) { 285 /* AIO operation */ 286 sock_hold(sk); 287 areq->iocb = msg->msg_iocb; 288 aead_request_set_callback(&areq->cra_u.aead_req, 289 CRYPTO_TFM_REQ_MAY_BACKLOG, 290 af_alg_async_cb, areq); 291 err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) : 292 crypto_aead_decrypt(&areq->cra_u.aead_req); 293 294 /* AIO operation in progress */ 295 if (err == -EINPROGRESS || err == -EBUSY) { 296 /* Remember output size that will be generated. */ 297 areq->outlen = outlen; 298 299 return -EIOCBQUEUED; 300 } 301 302 sock_put(sk); 303 } else { 304 /* Synchronous operation */ 305 aead_request_set_callback(&areq->cra_u.aead_req, 306 CRYPTO_TFM_REQ_MAY_BACKLOG, 307 crypto_req_done, &ctx->wait); 308 err = crypto_wait_req(ctx->enc ? 309 crypto_aead_encrypt(&areq->cra_u.aead_req) : 310 crypto_aead_decrypt(&areq->cra_u.aead_req), 311 &ctx->wait); 312 } 313 314 315 free: 316 af_alg_free_resources(areq); 317 318 return err ? err : outlen; 319 } 320 321 static int aead_recvmsg(struct socket *sock, struct msghdr *msg, 322 size_t ignored, int flags) 323 { 324 struct sock *sk = sock->sk; 325 int ret = 0; 326 327 lock_sock(sk); 328 while (msg_data_left(msg)) { 329 int err = _aead_recvmsg(sock, msg, ignored, flags); 330 331 /* 332 * This error covers -EIOCBQUEUED which implies that we can 333 * only handle one AIO request. If the caller wants to have 334 * multiple AIO requests in parallel, he must make multiple 335 * separate AIO calls. 336 * 337 * Also return the error if no data has been processed so far. 338 */ 339 if (err <= 0) { 340 if (err == -EIOCBQUEUED || err == -EBADMSG || !ret) 341 ret = err; 342 goto out; 343 } 344 345 ret += err; 346 } 347 348 out: 349 af_alg_wmem_wakeup(sk); 350 release_sock(sk); 351 return ret; 352 } 353 354 static struct proto_ops algif_aead_ops = { 355 .family = PF_ALG, 356 357 .connect = sock_no_connect, 358 .socketpair = sock_no_socketpair, 359 .getname = sock_no_getname, 360 .ioctl = sock_no_ioctl, 361 .listen = sock_no_listen, 362 .shutdown = sock_no_shutdown, 363 .getsockopt = sock_no_getsockopt, 364 .mmap = sock_no_mmap, 365 .bind = sock_no_bind, 366 .accept = sock_no_accept, 367 .setsockopt = sock_no_setsockopt, 368 369 .release = af_alg_release, 370 .sendmsg = aead_sendmsg, 371 .sendpage = af_alg_sendpage, 372 .recvmsg = aead_recvmsg, 373 .poll = af_alg_poll, 374 }; 375 376 static int aead_check_key(struct socket *sock) 377 { 378 int err = 0; 379 struct sock *psk; 380 struct alg_sock *pask; 381 struct aead_tfm *tfm; 382 struct sock *sk = sock->sk; 383 struct alg_sock *ask = alg_sk(sk); 384 385 lock_sock(sk); 386 if (ask->refcnt) 387 goto unlock_child; 388 389 psk = ask->parent; 390 pask = alg_sk(ask->parent); 391 tfm = pask->private; 392 393 err = -ENOKEY; 394 lock_sock_nested(psk, SINGLE_DEPTH_NESTING); 395 if (!tfm->has_key) 396 goto unlock; 397 398 if (!pask->refcnt++) 399 sock_hold(psk); 400 401 ask->refcnt = 1; 402 sock_put(psk); 403 404 err = 0; 405 406 unlock: 407 release_sock(psk); 408 unlock_child: 409 release_sock(sk); 410 411 return err; 412 } 413 414 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg, 415 size_t size) 416 { 417 int err; 418 419 err = aead_check_key(sock); 420 if (err) 421 return err; 422 423 return aead_sendmsg(sock, msg, size); 424 } 425 426 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page, 427 int offset, size_t size, int flags) 428 { 429 int err; 430 431 err = aead_check_key(sock); 432 if (err) 433 return err; 434 435 return af_alg_sendpage(sock, page, offset, size, flags); 436 } 437 438 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg, 439 size_t ignored, int flags) 440 { 441 int err; 442 443 err = aead_check_key(sock); 444 if (err) 445 return err; 446 447 return aead_recvmsg(sock, msg, ignored, flags); 448 } 449 450 static struct proto_ops algif_aead_ops_nokey = { 451 .family = PF_ALG, 452 453 .connect = sock_no_connect, 454 .socketpair = sock_no_socketpair, 455 .getname = sock_no_getname, 456 .ioctl = sock_no_ioctl, 457 .listen = sock_no_listen, 458 .shutdown = sock_no_shutdown, 459 .getsockopt = sock_no_getsockopt, 460 .mmap = sock_no_mmap, 461 .bind = sock_no_bind, 462 .accept = sock_no_accept, 463 .setsockopt = sock_no_setsockopt, 464 465 .release = af_alg_release, 466 .sendmsg = aead_sendmsg_nokey, 467 .sendpage = aead_sendpage_nokey, 468 .recvmsg = aead_recvmsg_nokey, 469 .poll = af_alg_poll, 470 }; 471 472 static void *aead_bind(const char *name, u32 type, u32 mask) 473 { 474 struct aead_tfm *tfm; 475 struct crypto_aead *aead; 476 struct crypto_skcipher *null_tfm; 477 478 tfm = kzalloc(sizeof(*tfm), GFP_KERNEL); 479 if (!tfm) 480 return ERR_PTR(-ENOMEM); 481 482 aead = crypto_alloc_aead(name, type, mask); 483 if (IS_ERR(aead)) { 484 kfree(tfm); 485 return ERR_CAST(aead); 486 } 487 488 null_tfm = crypto_get_default_null_skcipher2(); 489 if (IS_ERR(null_tfm)) { 490 crypto_free_aead(aead); 491 kfree(tfm); 492 return ERR_CAST(null_tfm); 493 } 494 495 tfm->aead = aead; 496 tfm->null_tfm = null_tfm; 497 498 return tfm; 499 } 500 501 static void aead_release(void *private) 502 { 503 struct aead_tfm *tfm = private; 504 505 crypto_free_aead(tfm->aead); 506 kfree(tfm); 507 } 508 509 static int aead_setauthsize(void *private, unsigned int authsize) 510 { 511 struct aead_tfm *tfm = private; 512 513 return crypto_aead_setauthsize(tfm->aead, authsize); 514 } 515 516 static int aead_setkey(void *private, const u8 *key, unsigned int keylen) 517 { 518 struct aead_tfm *tfm = private; 519 int err; 520 521 err = crypto_aead_setkey(tfm->aead, key, keylen); 522 tfm->has_key = !err; 523 524 return err; 525 } 526 527 static void aead_sock_destruct(struct sock *sk) 528 { 529 struct alg_sock *ask = alg_sk(sk); 530 struct af_alg_ctx *ctx = ask->private; 531 struct sock *psk = ask->parent; 532 struct alg_sock *pask = alg_sk(psk); 533 struct aead_tfm *aeadc = pask->private; 534 struct crypto_aead *tfm = aeadc->aead; 535 unsigned int ivlen = crypto_aead_ivsize(tfm); 536 537 af_alg_pull_tsgl(sk, ctx->used, NULL, 0); 538 crypto_put_default_null_skcipher2(); 539 sock_kzfree_s(sk, ctx->iv, ivlen); 540 sock_kfree_s(sk, ctx, ctx->len); 541 af_alg_release_parent(sk); 542 } 543 544 static int aead_accept_parent_nokey(void *private, struct sock *sk) 545 { 546 struct af_alg_ctx *ctx; 547 struct alg_sock *ask = alg_sk(sk); 548 struct aead_tfm *tfm = private; 549 struct crypto_aead *aead = tfm->aead; 550 unsigned int len = sizeof(*ctx); 551 unsigned int ivlen = crypto_aead_ivsize(aead); 552 553 ctx = sock_kmalloc(sk, len, GFP_KERNEL); 554 if (!ctx) 555 return -ENOMEM; 556 memset(ctx, 0, len); 557 558 ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL); 559 if (!ctx->iv) { 560 sock_kfree_s(sk, ctx, len); 561 return -ENOMEM; 562 } 563 memset(ctx->iv, 0, ivlen); 564 565 INIT_LIST_HEAD(&ctx->tsgl_list); 566 ctx->len = len; 567 ctx->used = 0; 568 ctx->rcvused = 0; 569 ctx->more = 0; 570 ctx->merge = 0; 571 ctx->enc = 0; 572 ctx->aead_assoclen = 0; 573 crypto_init_wait(&ctx->wait); 574 575 ask->private = ctx; 576 577 sk->sk_destruct = aead_sock_destruct; 578 579 return 0; 580 } 581 582 static int aead_accept_parent(void *private, struct sock *sk) 583 { 584 struct aead_tfm *tfm = private; 585 586 if (!tfm->has_key) 587 return -ENOKEY; 588 589 return aead_accept_parent_nokey(private, sk); 590 } 591 592 static const struct af_alg_type algif_type_aead = { 593 .bind = aead_bind, 594 .release = aead_release, 595 .setkey = aead_setkey, 596 .setauthsize = aead_setauthsize, 597 .accept = aead_accept_parent, 598 .accept_nokey = aead_accept_parent_nokey, 599 .ops = &algif_aead_ops, 600 .ops_nokey = &algif_aead_ops_nokey, 601 .name = "aead", 602 .owner = THIS_MODULE 603 }; 604 605 static int __init algif_aead_init(void) 606 { 607 return af_alg_register_type(&algif_type_aead); 608 } 609 610 static void __exit algif_aead_exit(void) 611 { 612 int err = af_alg_unregister_type(&algif_type_aead); 613 BUG_ON(err); 614 } 615 616 module_init(algif_aead_init); 617 module_exit(algif_aead_exit); 618 MODULE_LICENSE("GPL"); 619 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); 620 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface"); 621