xref: /openbmc/linux/crypto/algif_aead.c (revision bbecb07f)
1 /*
2  * algif_aead: User-space interface for AEAD algorithms
3  *
4  * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
5  *
6  * This file provides the user-space API for AEAD ciphers.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * The following concept of the memory management is used:
14  *
15  * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
16  * filled by user space with the data submitted via sendpage/sendmsg. Filling
17  * up the TX SGL does not cause a crypto operation -- the data will only be
18  * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
19  * provide a buffer which is tracked with the RX SGL.
20  *
21  * During the processing of the recvmsg operation, the cipher request is
22  * allocated and prepared. As part of the recvmsg operation, the processed
23  * TX buffers are extracted from the TX SGL into a separate SGL.
24  *
25  * After the completion of the crypto operation, the RX SGL and the cipher
26  * request is released. The extracted TX SGL parts are released together with
27  * the RX SGL release.
28  */
29 
30 #include <crypto/internal/aead.h>
31 #include <crypto/scatterwalk.h>
32 #include <crypto/if_alg.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/null.h>
35 #include <linux/init.h>
36 #include <linux/list.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/module.h>
40 #include <linux/net.h>
41 #include <net/sock.h>
42 
43 struct aead_tfm {
44 	struct crypto_aead *aead;
45 	bool has_key;
46 	struct crypto_skcipher *null_tfm;
47 };
48 
49 static inline bool aead_sufficient_data(struct sock *sk)
50 {
51 	struct alg_sock *ask = alg_sk(sk);
52 	struct sock *psk = ask->parent;
53 	struct alg_sock *pask = alg_sk(psk);
54 	struct af_alg_ctx *ctx = ask->private;
55 	struct aead_tfm *aeadc = pask->private;
56 	struct crypto_aead *tfm = aeadc->aead;
57 	unsigned int as = crypto_aead_authsize(tfm);
58 
59 	/*
60 	 * The minimum amount of memory needed for an AEAD cipher is
61 	 * the AAD and in case of decryption the tag.
62 	 */
63 	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
64 }
65 
66 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
67 {
68 	struct sock *sk = sock->sk;
69 	struct alg_sock *ask = alg_sk(sk);
70 	struct sock *psk = ask->parent;
71 	struct alg_sock *pask = alg_sk(psk);
72 	struct aead_tfm *aeadc = pask->private;
73 	struct crypto_aead *tfm = aeadc->aead;
74 	unsigned int ivsize = crypto_aead_ivsize(tfm);
75 
76 	return af_alg_sendmsg(sock, msg, size, ivsize);
77 }
78 
79 static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm,
80 				struct scatterlist *src,
81 				struct scatterlist *dst, unsigned int len)
82 {
83 	SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
84 
85 	skcipher_request_set_tfm(skreq, null_tfm);
86 	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG,
87 				      NULL, NULL);
88 	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
89 
90 	return crypto_skcipher_encrypt(skreq);
91 }
92 
93 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
94 			 size_t ignored, int flags)
95 {
96 	struct sock *sk = sock->sk;
97 	struct alg_sock *ask = alg_sk(sk);
98 	struct sock *psk = ask->parent;
99 	struct alg_sock *pask = alg_sk(psk);
100 	struct af_alg_ctx *ctx = ask->private;
101 	struct aead_tfm *aeadc = pask->private;
102 	struct crypto_aead *tfm = aeadc->aead;
103 	struct crypto_skcipher *null_tfm = aeadc->null_tfm;
104 	unsigned int i, as = crypto_aead_authsize(tfm);
105 	struct af_alg_async_req *areq;
106 	struct af_alg_tsgl *tsgl, *tmp;
107 	struct scatterlist *rsgl_src, *tsgl_src = NULL;
108 	int err = 0;
109 	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
110 	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
111 	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
112 	size_t processed = 0;		/* [in]  TX bufs to be consumed */
113 
114 	/*
115 	 * Data length provided by caller via sendmsg/sendpage that has not
116 	 * yet been processed.
117 	 */
118 	used = ctx->used;
119 
120 	/*
121 	 * Make sure sufficient data is present -- note, the same check is
122 	 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
123 	 * shall provide an information to the data sender that something is
124 	 * wrong, but they are irrelevant to maintain the kernel integrity.
125 	 * We need this check here too in case user space decides to not honor
126 	 * the error message in sendmsg/sendpage and still call recvmsg. This
127 	 * check here protects the kernel integrity.
128 	 */
129 	if (!aead_sufficient_data(sk))
130 		return -EINVAL;
131 
132 	/*
133 	 * Calculate the minimum output buffer size holding the result of the
134 	 * cipher operation. When encrypting data, the receiving buffer is
135 	 * larger by the tag length compared to the input buffer as the
136 	 * encryption operation generates the tag. For decryption, the input
137 	 * buffer provides the tag which is consumed resulting in only the
138 	 * plaintext without a buffer for the tag returned to the caller.
139 	 */
140 	if (ctx->enc)
141 		outlen = used + as;
142 	else
143 		outlen = used - as;
144 
145 	/*
146 	 * The cipher operation input data is reduced by the associated data
147 	 * length as this data is processed separately later on.
148 	 */
149 	used -= ctx->aead_assoclen;
150 
151 	/* Allocate cipher request for current operation. */
152 	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
153 				     crypto_aead_reqsize(tfm));
154 	if (IS_ERR(areq))
155 		return PTR_ERR(areq);
156 
157 	/* convert iovecs of output buffers into RX SGL */
158 	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
159 	if (err)
160 		goto free;
161 
162 	/*
163 	 * Ensure output buffer is sufficiently large. If the caller provides
164 	 * less buffer space, only use the relative required input size. This
165 	 * allows AIO operation where the caller sent all data to be processed
166 	 * and the AIO operation performs the operation on the different chunks
167 	 * of the input data.
168 	 */
169 	if (usedpages < outlen) {
170 		size_t less = outlen - usedpages;
171 
172 		if (used < less) {
173 			err = -EINVAL;
174 			goto free;
175 		}
176 		used -= less;
177 		outlen -= less;
178 	}
179 
180 	processed = used + ctx->aead_assoclen;
181 	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
182 		for (i = 0; i < tsgl->cur; i++) {
183 			struct scatterlist *process_sg = tsgl->sg + i;
184 
185 			if (!(process_sg->length) || !sg_page(process_sg))
186 				continue;
187 			tsgl_src = process_sg;
188 			break;
189 		}
190 		if (tsgl_src)
191 			break;
192 	}
193 	if (processed && !tsgl_src) {
194 		err = -EFAULT;
195 		goto free;
196 	}
197 
198 	/*
199 	 * Copy of AAD from source to destination
200 	 *
201 	 * The AAD is copied to the destination buffer without change. Even
202 	 * when user space uses an in-place cipher operation, the kernel
203 	 * will copy the data as it does not see whether such in-place operation
204 	 * is initiated.
205 	 *
206 	 * To ensure efficiency, the following implementation ensure that the
207 	 * ciphers are invoked to perform a crypto operation in-place. This
208 	 * is achieved by memory management specified as follows.
209 	 */
210 
211 	/* Use the RX SGL as source (and destination) for crypto op. */
212 	rsgl_src = areq->first_rsgl.sgl.sg;
213 
214 	if (ctx->enc) {
215 		/*
216 		 * Encryption operation - The in-place cipher operation is
217 		 * achieved by the following operation:
218 		 *
219 		 * TX SGL: AAD || PT
220 		 *	    |	   |
221 		 *	    | copy |
222 		 *	    v	   v
223 		 * RX SGL: AAD || PT || Tag
224 		 */
225 		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
226 					   areq->first_rsgl.sgl.sg, processed);
227 		if (err)
228 			goto free;
229 		af_alg_pull_tsgl(sk, processed, NULL, 0);
230 	} else {
231 		/*
232 		 * Decryption operation - To achieve an in-place cipher
233 		 * operation, the following  SGL structure is used:
234 		 *
235 		 * TX SGL: AAD || CT || Tag
236 		 *	    |	   |	 ^
237 		 *	    | copy |	 | Create SGL link.
238 		 *	    v	   v	 |
239 		 * RX SGL: AAD || CT ----+
240 		 */
241 
242 		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
243 		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
244 					   areq->first_rsgl.sgl.sg, outlen);
245 		if (err)
246 			goto free;
247 
248 		/* Create TX SGL for tag and chain it to RX SGL. */
249 		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
250 						       processed - as);
251 		if (!areq->tsgl_entries)
252 			areq->tsgl_entries = 1;
253 		areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) *
254 					      areq->tsgl_entries,
255 					  GFP_KERNEL);
256 		if (!areq->tsgl) {
257 			err = -ENOMEM;
258 			goto free;
259 		}
260 		sg_init_table(areq->tsgl, areq->tsgl_entries);
261 
262 		/* Release TX SGL, except for tag data and reassign tag data. */
263 		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
264 
265 		/* chain the areq TX SGL holding the tag with RX SGL */
266 		if (usedpages) {
267 			/* RX SGL present */
268 			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
269 
270 			sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
271 			sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
272 				 areq->tsgl);
273 		} else
274 			/* no RX SGL present (e.g. authentication only) */
275 			rsgl_src = areq->tsgl;
276 	}
277 
278 	/* Initialize the crypto operation */
279 	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
280 			       areq->first_rsgl.sgl.sg, used, ctx->iv);
281 	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
282 	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
283 
284 	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
285 		/* AIO operation */
286 		sock_hold(sk);
287 		areq->iocb = msg->msg_iocb;
288 		aead_request_set_callback(&areq->cra_u.aead_req,
289 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
290 					  af_alg_async_cb, areq);
291 		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
292 				 crypto_aead_decrypt(&areq->cra_u.aead_req);
293 
294 		/* AIO operation in progress */
295 		if (err == -EINPROGRESS || err == -EBUSY) {
296 			/* Remember output size that will be generated. */
297 			areq->outlen = outlen;
298 
299 			return -EIOCBQUEUED;
300 		}
301 
302 		sock_put(sk);
303 	} else {
304 		/* Synchronous operation */
305 		aead_request_set_callback(&areq->cra_u.aead_req,
306 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
307 					  crypto_req_done, &ctx->wait);
308 		err = crypto_wait_req(ctx->enc ?
309 				crypto_aead_encrypt(&areq->cra_u.aead_req) :
310 				crypto_aead_decrypt(&areq->cra_u.aead_req),
311 				&ctx->wait);
312 	}
313 
314 
315 free:
316 	af_alg_free_resources(areq);
317 
318 	return err ? err : outlen;
319 }
320 
321 static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
322 			size_t ignored, int flags)
323 {
324 	struct sock *sk = sock->sk;
325 	int ret = 0;
326 
327 	lock_sock(sk);
328 	while (msg_data_left(msg)) {
329 		int err = _aead_recvmsg(sock, msg, ignored, flags);
330 
331 		/*
332 		 * This error covers -EIOCBQUEUED which implies that we can
333 		 * only handle one AIO request. If the caller wants to have
334 		 * multiple AIO requests in parallel, he must make multiple
335 		 * separate AIO calls.
336 		 *
337 		 * Also return the error if no data has been processed so far.
338 		 */
339 		if (err <= 0) {
340 			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
341 				ret = err;
342 			goto out;
343 		}
344 
345 		ret += err;
346 	}
347 
348 out:
349 	af_alg_wmem_wakeup(sk);
350 	release_sock(sk);
351 	return ret;
352 }
353 
354 static struct proto_ops algif_aead_ops = {
355 	.family		=	PF_ALG,
356 
357 	.connect	=	sock_no_connect,
358 	.socketpair	=	sock_no_socketpair,
359 	.getname	=	sock_no_getname,
360 	.ioctl		=	sock_no_ioctl,
361 	.listen		=	sock_no_listen,
362 	.shutdown	=	sock_no_shutdown,
363 	.getsockopt	=	sock_no_getsockopt,
364 	.mmap		=	sock_no_mmap,
365 	.bind		=	sock_no_bind,
366 	.accept		=	sock_no_accept,
367 	.setsockopt	=	sock_no_setsockopt,
368 
369 	.release	=	af_alg_release,
370 	.sendmsg	=	aead_sendmsg,
371 	.sendpage	=	af_alg_sendpage,
372 	.recvmsg	=	aead_recvmsg,
373 	.poll		=	af_alg_poll,
374 };
375 
376 static int aead_check_key(struct socket *sock)
377 {
378 	int err = 0;
379 	struct sock *psk;
380 	struct alg_sock *pask;
381 	struct aead_tfm *tfm;
382 	struct sock *sk = sock->sk;
383 	struct alg_sock *ask = alg_sk(sk);
384 
385 	lock_sock(sk);
386 	if (ask->refcnt)
387 		goto unlock_child;
388 
389 	psk = ask->parent;
390 	pask = alg_sk(ask->parent);
391 	tfm = pask->private;
392 
393 	err = -ENOKEY;
394 	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
395 	if (!tfm->has_key)
396 		goto unlock;
397 
398 	if (!pask->refcnt++)
399 		sock_hold(psk);
400 
401 	ask->refcnt = 1;
402 	sock_put(psk);
403 
404 	err = 0;
405 
406 unlock:
407 	release_sock(psk);
408 unlock_child:
409 	release_sock(sk);
410 
411 	return err;
412 }
413 
414 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
415 				  size_t size)
416 {
417 	int err;
418 
419 	err = aead_check_key(sock);
420 	if (err)
421 		return err;
422 
423 	return aead_sendmsg(sock, msg, size);
424 }
425 
426 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
427 				       int offset, size_t size, int flags)
428 {
429 	int err;
430 
431 	err = aead_check_key(sock);
432 	if (err)
433 		return err;
434 
435 	return af_alg_sendpage(sock, page, offset, size, flags);
436 }
437 
438 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
439 				  size_t ignored, int flags)
440 {
441 	int err;
442 
443 	err = aead_check_key(sock);
444 	if (err)
445 		return err;
446 
447 	return aead_recvmsg(sock, msg, ignored, flags);
448 }
449 
450 static struct proto_ops algif_aead_ops_nokey = {
451 	.family		=	PF_ALG,
452 
453 	.connect	=	sock_no_connect,
454 	.socketpair	=	sock_no_socketpair,
455 	.getname	=	sock_no_getname,
456 	.ioctl		=	sock_no_ioctl,
457 	.listen		=	sock_no_listen,
458 	.shutdown	=	sock_no_shutdown,
459 	.getsockopt	=	sock_no_getsockopt,
460 	.mmap		=	sock_no_mmap,
461 	.bind		=	sock_no_bind,
462 	.accept		=	sock_no_accept,
463 	.setsockopt	=	sock_no_setsockopt,
464 
465 	.release	=	af_alg_release,
466 	.sendmsg	=	aead_sendmsg_nokey,
467 	.sendpage	=	aead_sendpage_nokey,
468 	.recvmsg	=	aead_recvmsg_nokey,
469 	.poll		=	af_alg_poll,
470 };
471 
472 static void *aead_bind(const char *name, u32 type, u32 mask)
473 {
474 	struct aead_tfm *tfm;
475 	struct crypto_aead *aead;
476 	struct crypto_skcipher *null_tfm;
477 
478 	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
479 	if (!tfm)
480 		return ERR_PTR(-ENOMEM);
481 
482 	aead = crypto_alloc_aead(name, type, mask);
483 	if (IS_ERR(aead)) {
484 		kfree(tfm);
485 		return ERR_CAST(aead);
486 	}
487 
488 	null_tfm = crypto_get_default_null_skcipher2();
489 	if (IS_ERR(null_tfm)) {
490 		crypto_free_aead(aead);
491 		kfree(tfm);
492 		return ERR_CAST(null_tfm);
493 	}
494 
495 	tfm->aead = aead;
496 	tfm->null_tfm = null_tfm;
497 
498 	return tfm;
499 }
500 
501 static void aead_release(void *private)
502 {
503 	struct aead_tfm *tfm = private;
504 
505 	crypto_free_aead(tfm->aead);
506 	kfree(tfm);
507 }
508 
509 static int aead_setauthsize(void *private, unsigned int authsize)
510 {
511 	struct aead_tfm *tfm = private;
512 
513 	return crypto_aead_setauthsize(tfm->aead, authsize);
514 }
515 
516 static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
517 {
518 	struct aead_tfm *tfm = private;
519 	int err;
520 
521 	err = crypto_aead_setkey(tfm->aead, key, keylen);
522 	tfm->has_key = !err;
523 
524 	return err;
525 }
526 
527 static void aead_sock_destruct(struct sock *sk)
528 {
529 	struct alg_sock *ask = alg_sk(sk);
530 	struct af_alg_ctx *ctx = ask->private;
531 	struct sock *psk = ask->parent;
532 	struct alg_sock *pask = alg_sk(psk);
533 	struct aead_tfm *aeadc = pask->private;
534 	struct crypto_aead *tfm = aeadc->aead;
535 	unsigned int ivlen = crypto_aead_ivsize(tfm);
536 
537 	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
538 	crypto_put_default_null_skcipher2();
539 	sock_kzfree_s(sk, ctx->iv, ivlen);
540 	sock_kfree_s(sk, ctx, ctx->len);
541 	af_alg_release_parent(sk);
542 }
543 
544 static int aead_accept_parent_nokey(void *private, struct sock *sk)
545 {
546 	struct af_alg_ctx *ctx;
547 	struct alg_sock *ask = alg_sk(sk);
548 	struct aead_tfm *tfm = private;
549 	struct crypto_aead *aead = tfm->aead;
550 	unsigned int len = sizeof(*ctx);
551 	unsigned int ivlen = crypto_aead_ivsize(aead);
552 
553 	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
554 	if (!ctx)
555 		return -ENOMEM;
556 	memset(ctx, 0, len);
557 
558 	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
559 	if (!ctx->iv) {
560 		sock_kfree_s(sk, ctx, len);
561 		return -ENOMEM;
562 	}
563 	memset(ctx->iv, 0, ivlen);
564 
565 	INIT_LIST_HEAD(&ctx->tsgl_list);
566 	ctx->len = len;
567 	ctx->used = 0;
568 	ctx->rcvused = 0;
569 	ctx->more = 0;
570 	ctx->merge = 0;
571 	ctx->enc = 0;
572 	ctx->aead_assoclen = 0;
573 	crypto_init_wait(&ctx->wait);
574 
575 	ask->private = ctx;
576 
577 	sk->sk_destruct = aead_sock_destruct;
578 
579 	return 0;
580 }
581 
582 static int aead_accept_parent(void *private, struct sock *sk)
583 {
584 	struct aead_tfm *tfm = private;
585 
586 	if (!tfm->has_key)
587 		return -ENOKEY;
588 
589 	return aead_accept_parent_nokey(private, sk);
590 }
591 
592 static const struct af_alg_type algif_type_aead = {
593 	.bind		=	aead_bind,
594 	.release	=	aead_release,
595 	.setkey		=	aead_setkey,
596 	.setauthsize	=	aead_setauthsize,
597 	.accept		=	aead_accept_parent,
598 	.accept_nokey	=	aead_accept_parent_nokey,
599 	.ops		=	&algif_aead_ops,
600 	.ops_nokey	=	&algif_aead_ops_nokey,
601 	.name		=	"aead",
602 	.owner		=	THIS_MODULE
603 };
604 
605 static int __init algif_aead_init(void)
606 {
607 	return af_alg_register_type(&algif_type_aead);
608 }
609 
610 static void __exit algif_aead_exit(void)
611 {
612 	int err = af_alg_unregister_type(&algif_type_aead);
613 	BUG_ON(err);
614 }
615 
616 module_init(algif_aead_init);
617 module_exit(algif_aead_exit);
618 MODULE_LICENSE("GPL");
619 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
620 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");
621