1 /* 2 * algif_aead: User-space interface for AEAD algorithms 3 * 4 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de> 5 * 6 * This file provides the user-space API for AEAD ciphers. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 * The following concept of the memory management is used: 14 * 15 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is 16 * filled by user space with the data submitted via sendpage/sendmsg. Filling 17 * up the TX SGL does not cause a crypto operation -- the data will only be 18 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must 19 * provide a buffer which is tracked with the RX SGL. 20 * 21 * During the processing of the recvmsg operation, the cipher request is 22 * allocated and prepared. As part of the recvmsg operation, the processed 23 * TX buffers are extracted from the TX SGL into a separate SGL. 24 * 25 * After the completion of the crypto operation, the RX SGL and the cipher 26 * request is released. The extracted TX SGL parts are released together with 27 * the RX SGL release. 28 */ 29 30 #include <crypto/internal/aead.h> 31 #include <crypto/scatterwalk.h> 32 #include <crypto/if_alg.h> 33 #include <crypto/skcipher.h> 34 #include <crypto/null.h> 35 #include <linux/init.h> 36 #include <linux/list.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/module.h> 40 #include <linux/net.h> 41 #include <net/sock.h> 42 43 struct aead_tfm { 44 struct crypto_aead *aead; 45 bool has_key; 46 struct crypto_skcipher *null_tfm; 47 }; 48 49 static inline bool aead_sufficient_data(struct sock *sk) 50 { 51 struct alg_sock *ask = alg_sk(sk); 52 struct sock *psk = ask->parent; 53 struct alg_sock *pask = alg_sk(psk); 54 struct af_alg_ctx *ctx = ask->private; 55 struct aead_tfm *aeadc = pask->private; 56 struct crypto_aead *tfm = aeadc->aead; 57 unsigned int as = crypto_aead_authsize(tfm); 58 59 /* 60 * The minimum amount of memory needed for an AEAD cipher is 61 * the AAD and in case of decryption the tag. 62 */ 63 return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as); 64 } 65 66 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 67 { 68 struct sock *sk = sock->sk; 69 struct alg_sock *ask = alg_sk(sk); 70 struct sock *psk = ask->parent; 71 struct alg_sock *pask = alg_sk(psk); 72 struct aead_tfm *aeadc = pask->private; 73 struct crypto_aead *tfm = aeadc->aead; 74 unsigned int ivsize = crypto_aead_ivsize(tfm); 75 76 return af_alg_sendmsg(sock, msg, size, ivsize); 77 } 78 79 static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm, 80 struct scatterlist *src, 81 struct scatterlist *dst, unsigned int len) 82 { 83 SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm); 84 85 skcipher_request_set_tfm(skreq, null_tfm); 86 skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG, 87 NULL, NULL); 88 skcipher_request_set_crypt(skreq, src, dst, len, NULL); 89 90 return crypto_skcipher_encrypt(skreq); 91 } 92 93 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg, 94 size_t ignored, int flags) 95 { 96 struct sock *sk = sock->sk; 97 struct alg_sock *ask = alg_sk(sk); 98 struct sock *psk = ask->parent; 99 struct alg_sock *pask = alg_sk(psk); 100 struct af_alg_ctx *ctx = ask->private; 101 struct aead_tfm *aeadc = pask->private; 102 struct crypto_aead *tfm = aeadc->aead; 103 struct crypto_skcipher *null_tfm = aeadc->null_tfm; 104 unsigned int i, as = crypto_aead_authsize(tfm); 105 struct af_alg_async_req *areq; 106 struct af_alg_tsgl *tsgl, *tmp; 107 struct scatterlist *rsgl_src, *tsgl_src = NULL; 108 int err = 0; 109 size_t used = 0; /* [in] TX bufs to be en/decrypted */ 110 size_t outlen = 0; /* [out] RX bufs produced by kernel */ 111 size_t usedpages = 0; /* [in] RX bufs to be used from user */ 112 size_t processed = 0; /* [in] TX bufs to be consumed */ 113 114 if (!ctx->used) { 115 err = af_alg_wait_for_data(sk, flags); 116 if (err) 117 return err; 118 } 119 120 /* 121 * Data length provided by caller via sendmsg/sendpage that has not 122 * yet been processed. 123 */ 124 used = ctx->used; 125 126 /* 127 * Make sure sufficient data is present -- note, the same check is 128 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg 129 * shall provide an information to the data sender that something is 130 * wrong, but they are irrelevant to maintain the kernel integrity. 131 * We need this check here too in case user space decides to not honor 132 * the error message in sendmsg/sendpage and still call recvmsg. This 133 * check here protects the kernel integrity. 134 */ 135 if (!aead_sufficient_data(sk)) 136 return -EINVAL; 137 138 /* 139 * Calculate the minimum output buffer size holding the result of the 140 * cipher operation. When encrypting data, the receiving buffer is 141 * larger by the tag length compared to the input buffer as the 142 * encryption operation generates the tag. For decryption, the input 143 * buffer provides the tag which is consumed resulting in only the 144 * plaintext without a buffer for the tag returned to the caller. 145 */ 146 if (ctx->enc) 147 outlen = used + as; 148 else 149 outlen = used - as; 150 151 /* 152 * The cipher operation input data is reduced by the associated data 153 * length as this data is processed separately later on. 154 */ 155 used -= ctx->aead_assoclen; 156 157 /* Allocate cipher request for current operation. */ 158 areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) + 159 crypto_aead_reqsize(tfm)); 160 if (IS_ERR(areq)) 161 return PTR_ERR(areq); 162 163 /* convert iovecs of output buffers into RX SGL */ 164 err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages); 165 if (err) 166 goto free; 167 168 /* 169 * Ensure output buffer is sufficiently large. If the caller provides 170 * less buffer space, only use the relative required input size. This 171 * allows AIO operation where the caller sent all data to be processed 172 * and the AIO operation performs the operation on the different chunks 173 * of the input data. 174 */ 175 if (usedpages < outlen) { 176 size_t less = outlen - usedpages; 177 178 if (used < less) { 179 err = -EINVAL; 180 goto free; 181 } 182 used -= less; 183 outlen -= less; 184 } 185 186 processed = used + ctx->aead_assoclen; 187 list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) { 188 for (i = 0; i < tsgl->cur; i++) { 189 struct scatterlist *process_sg = tsgl->sg + i; 190 191 if (!(process_sg->length) || !sg_page(process_sg)) 192 continue; 193 tsgl_src = process_sg; 194 break; 195 } 196 if (tsgl_src) 197 break; 198 } 199 if (processed && !tsgl_src) { 200 err = -EFAULT; 201 goto free; 202 } 203 204 /* 205 * Copy of AAD from source to destination 206 * 207 * The AAD is copied to the destination buffer without change. Even 208 * when user space uses an in-place cipher operation, the kernel 209 * will copy the data as it does not see whether such in-place operation 210 * is initiated. 211 * 212 * To ensure efficiency, the following implementation ensure that the 213 * ciphers are invoked to perform a crypto operation in-place. This 214 * is achieved by memory management specified as follows. 215 */ 216 217 /* Use the RX SGL as source (and destination) for crypto op. */ 218 rsgl_src = areq->first_rsgl.sgl.sg; 219 220 if (ctx->enc) { 221 /* 222 * Encryption operation - The in-place cipher operation is 223 * achieved by the following operation: 224 * 225 * TX SGL: AAD || PT 226 * | | 227 * | copy | 228 * v v 229 * RX SGL: AAD || PT || Tag 230 */ 231 err = crypto_aead_copy_sgl(null_tfm, tsgl_src, 232 areq->first_rsgl.sgl.sg, processed); 233 if (err) 234 goto free; 235 af_alg_pull_tsgl(sk, processed, NULL, 0); 236 } else { 237 /* 238 * Decryption operation - To achieve an in-place cipher 239 * operation, the following SGL structure is used: 240 * 241 * TX SGL: AAD || CT || Tag 242 * | | ^ 243 * | copy | | Create SGL link. 244 * v v | 245 * RX SGL: AAD || CT ----+ 246 */ 247 248 /* Copy AAD || CT to RX SGL buffer for in-place operation. */ 249 err = crypto_aead_copy_sgl(null_tfm, tsgl_src, 250 areq->first_rsgl.sgl.sg, outlen); 251 if (err) 252 goto free; 253 254 /* Create TX SGL for tag and chain it to RX SGL. */ 255 areq->tsgl_entries = af_alg_count_tsgl(sk, processed, 256 processed - as); 257 if (!areq->tsgl_entries) 258 areq->tsgl_entries = 1; 259 areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) * 260 areq->tsgl_entries, 261 GFP_KERNEL); 262 if (!areq->tsgl) { 263 err = -ENOMEM; 264 goto free; 265 } 266 sg_init_table(areq->tsgl, areq->tsgl_entries); 267 268 /* Release TX SGL, except for tag data and reassign tag data. */ 269 af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as); 270 271 /* chain the areq TX SGL holding the tag with RX SGL */ 272 if (usedpages) { 273 /* RX SGL present */ 274 struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl; 275 276 sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1); 277 sg_chain(sgl_prev->sg, sgl_prev->npages + 1, 278 areq->tsgl); 279 } else 280 /* no RX SGL present (e.g. authentication only) */ 281 rsgl_src = areq->tsgl; 282 } 283 284 /* Initialize the crypto operation */ 285 aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src, 286 areq->first_rsgl.sgl.sg, used, ctx->iv); 287 aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen); 288 aead_request_set_tfm(&areq->cra_u.aead_req, tfm); 289 290 if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) { 291 /* AIO operation */ 292 sock_hold(sk); 293 areq->iocb = msg->msg_iocb; 294 295 /* Remember output size that will be generated. */ 296 areq->outlen = outlen; 297 298 aead_request_set_callback(&areq->cra_u.aead_req, 299 CRYPTO_TFM_REQ_MAY_BACKLOG, 300 af_alg_async_cb, areq); 301 err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) : 302 crypto_aead_decrypt(&areq->cra_u.aead_req); 303 304 /* AIO operation in progress */ 305 if (err == -EINPROGRESS || err == -EBUSY) 306 return -EIOCBQUEUED; 307 308 sock_put(sk); 309 } else { 310 /* Synchronous operation */ 311 aead_request_set_callback(&areq->cra_u.aead_req, 312 CRYPTO_TFM_REQ_MAY_BACKLOG, 313 crypto_req_done, &ctx->wait); 314 err = crypto_wait_req(ctx->enc ? 315 crypto_aead_encrypt(&areq->cra_u.aead_req) : 316 crypto_aead_decrypt(&areq->cra_u.aead_req), 317 &ctx->wait); 318 } 319 320 321 free: 322 af_alg_free_resources(areq); 323 324 return err ? err : outlen; 325 } 326 327 static int aead_recvmsg(struct socket *sock, struct msghdr *msg, 328 size_t ignored, int flags) 329 { 330 struct sock *sk = sock->sk; 331 int ret = 0; 332 333 lock_sock(sk); 334 while (msg_data_left(msg)) { 335 int err = _aead_recvmsg(sock, msg, ignored, flags); 336 337 /* 338 * This error covers -EIOCBQUEUED which implies that we can 339 * only handle one AIO request. If the caller wants to have 340 * multiple AIO requests in parallel, he must make multiple 341 * separate AIO calls. 342 * 343 * Also return the error if no data has been processed so far. 344 */ 345 if (err <= 0) { 346 if (err == -EIOCBQUEUED || err == -EBADMSG || !ret) 347 ret = err; 348 goto out; 349 } 350 351 ret += err; 352 } 353 354 out: 355 af_alg_wmem_wakeup(sk); 356 release_sock(sk); 357 return ret; 358 } 359 360 static struct proto_ops algif_aead_ops = { 361 .family = PF_ALG, 362 363 .connect = sock_no_connect, 364 .socketpair = sock_no_socketpair, 365 .getname = sock_no_getname, 366 .ioctl = sock_no_ioctl, 367 .listen = sock_no_listen, 368 .shutdown = sock_no_shutdown, 369 .getsockopt = sock_no_getsockopt, 370 .mmap = sock_no_mmap, 371 .bind = sock_no_bind, 372 .accept = sock_no_accept, 373 .setsockopt = sock_no_setsockopt, 374 375 .release = af_alg_release, 376 .sendmsg = aead_sendmsg, 377 .sendpage = af_alg_sendpage, 378 .recvmsg = aead_recvmsg, 379 .poll = af_alg_poll, 380 }; 381 382 static int aead_check_key(struct socket *sock) 383 { 384 int err = 0; 385 struct sock *psk; 386 struct alg_sock *pask; 387 struct aead_tfm *tfm; 388 struct sock *sk = sock->sk; 389 struct alg_sock *ask = alg_sk(sk); 390 391 lock_sock(sk); 392 if (ask->refcnt) 393 goto unlock_child; 394 395 psk = ask->parent; 396 pask = alg_sk(ask->parent); 397 tfm = pask->private; 398 399 err = -ENOKEY; 400 lock_sock_nested(psk, SINGLE_DEPTH_NESTING); 401 if (!tfm->has_key) 402 goto unlock; 403 404 if (!pask->refcnt++) 405 sock_hold(psk); 406 407 ask->refcnt = 1; 408 sock_put(psk); 409 410 err = 0; 411 412 unlock: 413 release_sock(psk); 414 unlock_child: 415 release_sock(sk); 416 417 return err; 418 } 419 420 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg, 421 size_t size) 422 { 423 int err; 424 425 err = aead_check_key(sock); 426 if (err) 427 return err; 428 429 return aead_sendmsg(sock, msg, size); 430 } 431 432 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page, 433 int offset, size_t size, int flags) 434 { 435 int err; 436 437 err = aead_check_key(sock); 438 if (err) 439 return err; 440 441 return af_alg_sendpage(sock, page, offset, size, flags); 442 } 443 444 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg, 445 size_t ignored, int flags) 446 { 447 int err; 448 449 err = aead_check_key(sock); 450 if (err) 451 return err; 452 453 return aead_recvmsg(sock, msg, ignored, flags); 454 } 455 456 static struct proto_ops algif_aead_ops_nokey = { 457 .family = PF_ALG, 458 459 .connect = sock_no_connect, 460 .socketpair = sock_no_socketpair, 461 .getname = sock_no_getname, 462 .ioctl = sock_no_ioctl, 463 .listen = sock_no_listen, 464 .shutdown = sock_no_shutdown, 465 .getsockopt = sock_no_getsockopt, 466 .mmap = sock_no_mmap, 467 .bind = sock_no_bind, 468 .accept = sock_no_accept, 469 .setsockopt = sock_no_setsockopt, 470 471 .release = af_alg_release, 472 .sendmsg = aead_sendmsg_nokey, 473 .sendpage = aead_sendpage_nokey, 474 .recvmsg = aead_recvmsg_nokey, 475 .poll = af_alg_poll, 476 }; 477 478 static void *aead_bind(const char *name, u32 type, u32 mask) 479 { 480 struct aead_tfm *tfm; 481 struct crypto_aead *aead; 482 struct crypto_skcipher *null_tfm; 483 484 tfm = kzalloc(sizeof(*tfm), GFP_KERNEL); 485 if (!tfm) 486 return ERR_PTR(-ENOMEM); 487 488 aead = crypto_alloc_aead(name, type, mask); 489 if (IS_ERR(aead)) { 490 kfree(tfm); 491 return ERR_CAST(aead); 492 } 493 494 null_tfm = crypto_get_default_null_skcipher2(); 495 if (IS_ERR(null_tfm)) { 496 crypto_free_aead(aead); 497 kfree(tfm); 498 return ERR_CAST(null_tfm); 499 } 500 501 tfm->aead = aead; 502 tfm->null_tfm = null_tfm; 503 504 return tfm; 505 } 506 507 static void aead_release(void *private) 508 { 509 struct aead_tfm *tfm = private; 510 511 crypto_free_aead(tfm->aead); 512 kfree(tfm); 513 } 514 515 static int aead_setauthsize(void *private, unsigned int authsize) 516 { 517 struct aead_tfm *tfm = private; 518 519 return crypto_aead_setauthsize(tfm->aead, authsize); 520 } 521 522 static int aead_setkey(void *private, const u8 *key, unsigned int keylen) 523 { 524 struct aead_tfm *tfm = private; 525 int err; 526 527 err = crypto_aead_setkey(tfm->aead, key, keylen); 528 tfm->has_key = !err; 529 530 return err; 531 } 532 533 static void aead_sock_destruct(struct sock *sk) 534 { 535 struct alg_sock *ask = alg_sk(sk); 536 struct af_alg_ctx *ctx = ask->private; 537 struct sock *psk = ask->parent; 538 struct alg_sock *pask = alg_sk(psk); 539 struct aead_tfm *aeadc = pask->private; 540 struct crypto_aead *tfm = aeadc->aead; 541 unsigned int ivlen = crypto_aead_ivsize(tfm); 542 543 af_alg_pull_tsgl(sk, ctx->used, NULL, 0); 544 crypto_put_default_null_skcipher2(); 545 sock_kzfree_s(sk, ctx->iv, ivlen); 546 sock_kfree_s(sk, ctx, ctx->len); 547 af_alg_release_parent(sk); 548 } 549 550 static int aead_accept_parent_nokey(void *private, struct sock *sk) 551 { 552 struct af_alg_ctx *ctx; 553 struct alg_sock *ask = alg_sk(sk); 554 struct aead_tfm *tfm = private; 555 struct crypto_aead *aead = tfm->aead; 556 unsigned int len = sizeof(*ctx); 557 unsigned int ivlen = crypto_aead_ivsize(aead); 558 559 ctx = sock_kmalloc(sk, len, GFP_KERNEL); 560 if (!ctx) 561 return -ENOMEM; 562 memset(ctx, 0, len); 563 564 ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL); 565 if (!ctx->iv) { 566 sock_kfree_s(sk, ctx, len); 567 return -ENOMEM; 568 } 569 memset(ctx->iv, 0, ivlen); 570 571 INIT_LIST_HEAD(&ctx->tsgl_list); 572 ctx->len = len; 573 ctx->used = 0; 574 atomic_set(&ctx->rcvused, 0); 575 ctx->more = 0; 576 ctx->merge = 0; 577 ctx->enc = 0; 578 ctx->aead_assoclen = 0; 579 crypto_init_wait(&ctx->wait); 580 581 ask->private = ctx; 582 583 sk->sk_destruct = aead_sock_destruct; 584 585 return 0; 586 } 587 588 static int aead_accept_parent(void *private, struct sock *sk) 589 { 590 struct aead_tfm *tfm = private; 591 592 if (!tfm->has_key) 593 return -ENOKEY; 594 595 return aead_accept_parent_nokey(private, sk); 596 } 597 598 static const struct af_alg_type algif_type_aead = { 599 .bind = aead_bind, 600 .release = aead_release, 601 .setkey = aead_setkey, 602 .setauthsize = aead_setauthsize, 603 .accept = aead_accept_parent, 604 .accept_nokey = aead_accept_parent_nokey, 605 .ops = &algif_aead_ops, 606 .ops_nokey = &algif_aead_ops_nokey, 607 .name = "aead", 608 .owner = THIS_MODULE 609 }; 610 611 static int __init algif_aead_init(void) 612 { 613 return af_alg_register_type(&algif_type_aead); 614 } 615 616 static void __exit algif_aead_exit(void) 617 { 618 int err = af_alg_unregister_type(&algif_type_aead); 619 BUG_ON(err); 620 } 621 622 module_init(algif_aead_init); 623 module_exit(algif_aead_exit); 624 MODULE_LICENSE("GPL"); 625 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); 626 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface"); 627