1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * algif_aead: User-space interface for AEAD algorithms 4 * 5 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de> 6 * 7 * This file provides the user-space API for AEAD ciphers. 8 * 9 * The following concept of the memory management is used: 10 * 11 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is 12 * filled by user space with the data submitted via sendpage/sendmsg. Filling 13 * up the TX SGL does not cause a crypto operation -- the data will only be 14 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must 15 * provide a buffer which is tracked with the RX SGL. 16 * 17 * During the processing of the recvmsg operation, the cipher request is 18 * allocated and prepared. As part of the recvmsg operation, the processed 19 * TX buffers are extracted from the TX SGL into a separate SGL. 20 * 21 * After the completion of the crypto operation, the RX SGL and the cipher 22 * request is released. The extracted TX SGL parts are released together with 23 * the RX SGL release. 24 */ 25 26 #include <crypto/internal/aead.h> 27 #include <crypto/scatterwalk.h> 28 #include <crypto/if_alg.h> 29 #include <crypto/skcipher.h> 30 #include <crypto/null.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/kernel.h> 34 #include <linux/mm.h> 35 #include <linux/module.h> 36 #include <linux/net.h> 37 #include <net/sock.h> 38 39 struct aead_tfm { 40 struct crypto_aead *aead; 41 struct crypto_sync_skcipher *null_tfm; 42 }; 43 44 static inline bool aead_sufficient_data(struct sock *sk) 45 { 46 struct alg_sock *ask = alg_sk(sk); 47 struct sock *psk = ask->parent; 48 struct alg_sock *pask = alg_sk(psk); 49 struct af_alg_ctx *ctx = ask->private; 50 struct aead_tfm *aeadc = pask->private; 51 struct crypto_aead *tfm = aeadc->aead; 52 unsigned int as = crypto_aead_authsize(tfm); 53 54 /* 55 * The minimum amount of memory needed for an AEAD cipher is 56 * the AAD and in case of decryption the tag. 57 */ 58 return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as); 59 } 60 61 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 62 { 63 struct sock *sk = sock->sk; 64 struct alg_sock *ask = alg_sk(sk); 65 struct sock *psk = ask->parent; 66 struct alg_sock *pask = alg_sk(psk); 67 struct aead_tfm *aeadc = pask->private; 68 struct crypto_aead *tfm = aeadc->aead; 69 unsigned int ivsize = crypto_aead_ivsize(tfm); 70 71 return af_alg_sendmsg(sock, msg, size, ivsize); 72 } 73 74 static int crypto_aead_copy_sgl(struct crypto_sync_skcipher *null_tfm, 75 struct scatterlist *src, 76 struct scatterlist *dst, unsigned int len) 77 { 78 SYNC_SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm); 79 80 skcipher_request_set_sync_tfm(skreq, null_tfm); 81 skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG, 82 NULL, NULL); 83 skcipher_request_set_crypt(skreq, src, dst, len, NULL); 84 85 return crypto_skcipher_encrypt(skreq); 86 } 87 88 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg, 89 size_t ignored, int flags) 90 { 91 struct sock *sk = sock->sk; 92 struct alg_sock *ask = alg_sk(sk); 93 struct sock *psk = ask->parent; 94 struct alg_sock *pask = alg_sk(psk); 95 struct af_alg_ctx *ctx = ask->private; 96 struct aead_tfm *aeadc = pask->private; 97 struct crypto_aead *tfm = aeadc->aead; 98 struct crypto_sync_skcipher *null_tfm = aeadc->null_tfm; 99 unsigned int i, as = crypto_aead_authsize(tfm); 100 struct af_alg_async_req *areq; 101 struct af_alg_tsgl *tsgl, *tmp; 102 struct scatterlist *rsgl_src, *tsgl_src = NULL; 103 int err = 0; 104 size_t used = 0; /* [in] TX bufs to be en/decrypted */ 105 size_t outlen = 0; /* [out] RX bufs produced by kernel */ 106 size_t usedpages = 0; /* [in] RX bufs to be used from user */ 107 size_t processed = 0; /* [in] TX bufs to be consumed */ 108 109 if (!ctx->used) { 110 err = af_alg_wait_for_data(sk, flags); 111 if (err) 112 return err; 113 } 114 115 /* 116 * Data length provided by caller via sendmsg/sendpage that has not 117 * yet been processed. 118 */ 119 used = ctx->used; 120 121 /* 122 * Make sure sufficient data is present -- note, the same check is 123 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg 124 * shall provide an information to the data sender that something is 125 * wrong, but they are irrelevant to maintain the kernel integrity. 126 * We need this check here too in case user space decides to not honor 127 * the error message in sendmsg/sendpage and still call recvmsg. This 128 * check here protects the kernel integrity. 129 */ 130 if (!aead_sufficient_data(sk)) 131 return -EINVAL; 132 133 /* 134 * Calculate the minimum output buffer size holding the result of the 135 * cipher operation. When encrypting data, the receiving buffer is 136 * larger by the tag length compared to the input buffer as the 137 * encryption operation generates the tag. For decryption, the input 138 * buffer provides the tag which is consumed resulting in only the 139 * plaintext without a buffer for the tag returned to the caller. 140 */ 141 if (ctx->enc) 142 outlen = used + as; 143 else 144 outlen = used - as; 145 146 /* 147 * The cipher operation input data is reduced by the associated data 148 * length as this data is processed separately later on. 149 */ 150 used -= ctx->aead_assoclen; 151 152 /* Allocate cipher request for current operation. */ 153 areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) + 154 crypto_aead_reqsize(tfm)); 155 if (IS_ERR(areq)) 156 return PTR_ERR(areq); 157 158 /* convert iovecs of output buffers into RX SGL */ 159 err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages); 160 if (err) 161 goto free; 162 163 /* 164 * Ensure output buffer is sufficiently large. If the caller provides 165 * less buffer space, only use the relative required input size. This 166 * allows AIO operation where the caller sent all data to be processed 167 * and the AIO operation performs the operation on the different chunks 168 * of the input data. 169 */ 170 if (usedpages < outlen) { 171 size_t less = outlen - usedpages; 172 173 if (used < less) { 174 err = -EINVAL; 175 goto free; 176 } 177 used -= less; 178 outlen -= less; 179 } 180 181 processed = used + ctx->aead_assoclen; 182 list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) { 183 for (i = 0; i < tsgl->cur; i++) { 184 struct scatterlist *process_sg = tsgl->sg + i; 185 186 if (!(process_sg->length) || !sg_page(process_sg)) 187 continue; 188 tsgl_src = process_sg; 189 break; 190 } 191 if (tsgl_src) 192 break; 193 } 194 if (processed && !tsgl_src) { 195 err = -EFAULT; 196 goto free; 197 } 198 199 /* 200 * Copy of AAD from source to destination 201 * 202 * The AAD is copied to the destination buffer without change. Even 203 * when user space uses an in-place cipher operation, the kernel 204 * will copy the data as it does not see whether such in-place operation 205 * is initiated. 206 * 207 * To ensure efficiency, the following implementation ensure that the 208 * ciphers are invoked to perform a crypto operation in-place. This 209 * is achieved by memory management specified as follows. 210 */ 211 212 /* Use the RX SGL as source (and destination) for crypto op. */ 213 rsgl_src = areq->first_rsgl.sgl.sg; 214 215 if (ctx->enc) { 216 /* 217 * Encryption operation - The in-place cipher operation is 218 * achieved by the following operation: 219 * 220 * TX SGL: AAD || PT 221 * | | 222 * | copy | 223 * v v 224 * RX SGL: AAD || PT || Tag 225 */ 226 err = crypto_aead_copy_sgl(null_tfm, tsgl_src, 227 areq->first_rsgl.sgl.sg, processed); 228 if (err) 229 goto free; 230 af_alg_pull_tsgl(sk, processed, NULL, 0); 231 } else { 232 /* 233 * Decryption operation - To achieve an in-place cipher 234 * operation, the following SGL structure is used: 235 * 236 * TX SGL: AAD || CT || Tag 237 * | | ^ 238 * | copy | | Create SGL link. 239 * v v | 240 * RX SGL: AAD || CT ----+ 241 */ 242 243 /* Copy AAD || CT to RX SGL buffer for in-place operation. */ 244 err = crypto_aead_copy_sgl(null_tfm, tsgl_src, 245 areq->first_rsgl.sgl.sg, outlen); 246 if (err) 247 goto free; 248 249 /* Create TX SGL for tag and chain it to RX SGL. */ 250 areq->tsgl_entries = af_alg_count_tsgl(sk, processed, 251 processed - as); 252 if (!areq->tsgl_entries) 253 areq->tsgl_entries = 1; 254 areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl), 255 areq->tsgl_entries), 256 GFP_KERNEL); 257 if (!areq->tsgl) { 258 err = -ENOMEM; 259 goto free; 260 } 261 sg_init_table(areq->tsgl, areq->tsgl_entries); 262 263 /* Release TX SGL, except for tag data and reassign tag data. */ 264 af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as); 265 266 /* chain the areq TX SGL holding the tag with RX SGL */ 267 if (usedpages) { 268 /* RX SGL present */ 269 struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl; 270 271 sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1); 272 sg_chain(sgl_prev->sg, sgl_prev->npages + 1, 273 areq->tsgl); 274 } else 275 /* no RX SGL present (e.g. authentication only) */ 276 rsgl_src = areq->tsgl; 277 } 278 279 /* Initialize the crypto operation */ 280 aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src, 281 areq->first_rsgl.sgl.sg, used, ctx->iv); 282 aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen); 283 aead_request_set_tfm(&areq->cra_u.aead_req, tfm); 284 285 if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) { 286 /* AIO operation */ 287 sock_hold(sk); 288 areq->iocb = msg->msg_iocb; 289 290 /* Remember output size that will be generated. */ 291 areq->outlen = outlen; 292 293 aead_request_set_callback(&areq->cra_u.aead_req, 294 CRYPTO_TFM_REQ_MAY_BACKLOG, 295 af_alg_async_cb, areq); 296 err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) : 297 crypto_aead_decrypt(&areq->cra_u.aead_req); 298 299 /* AIO operation in progress */ 300 if (err == -EINPROGRESS || err == -EBUSY) 301 return -EIOCBQUEUED; 302 303 sock_put(sk); 304 } else { 305 /* Synchronous operation */ 306 aead_request_set_callback(&areq->cra_u.aead_req, 307 CRYPTO_TFM_REQ_MAY_BACKLOG, 308 crypto_req_done, &ctx->wait); 309 err = crypto_wait_req(ctx->enc ? 310 crypto_aead_encrypt(&areq->cra_u.aead_req) : 311 crypto_aead_decrypt(&areq->cra_u.aead_req), 312 &ctx->wait); 313 } 314 315 316 free: 317 af_alg_free_resources(areq); 318 319 return err ? err : outlen; 320 } 321 322 static int aead_recvmsg(struct socket *sock, struct msghdr *msg, 323 size_t ignored, int flags) 324 { 325 struct sock *sk = sock->sk; 326 int ret = 0; 327 328 lock_sock(sk); 329 while (msg_data_left(msg)) { 330 int err = _aead_recvmsg(sock, msg, ignored, flags); 331 332 /* 333 * This error covers -EIOCBQUEUED which implies that we can 334 * only handle one AIO request. If the caller wants to have 335 * multiple AIO requests in parallel, he must make multiple 336 * separate AIO calls. 337 * 338 * Also return the error if no data has been processed so far. 339 */ 340 if (err <= 0) { 341 if (err == -EIOCBQUEUED || err == -EBADMSG || !ret) 342 ret = err; 343 goto out; 344 } 345 346 ret += err; 347 } 348 349 out: 350 af_alg_wmem_wakeup(sk); 351 release_sock(sk); 352 return ret; 353 } 354 355 static struct proto_ops algif_aead_ops = { 356 .family = PF_ALG, 357 358 .connect = sock_no_connect, 359 .socketpair = sock_no_socketpair, 360 .getname = sock_no_getname, 361 .ioctl = sock_no_ioctl, 362 .listen = sock_no_listen, 363 .shutdown = sock_no_shutdown, 364 .mmap = sock_no_mmap, 365 .bind = sock_no_bind, 366 .accept = sock_no_accept, 367 368 .release = af_alg_release, 369 .sendmsg = aead_sendmsg, 370 .sendpage = af_alg_sendpage, 371 .recvmsg = aead_recvmsg, 372 .poll = af_alg_poll, 373 }; 374 375 static int aead_check_key(struct socket *sock) 376 { 377 int err = 0; 378 struct sock *psk; 379 struct alg_sock *pask; 380 struct aead_tfm *tfm; 381 struct sock *sk = sock->sk; 382 struct alg_sock *ask = alg_sk(sk); 383 384 lock_sock(sk); 385 if (!atomic_read(&ask->nokey_refcnt)) 386 goto unlock_child; 387 388 psk = ask->parent; 389 pask = alg_sk(ask->parent); 390 tfm = pask->private; 391 392 err = -ENOKEY; 393 lock_sock_nested(psk, SINGLE_DEPTH_NESTING); 394 if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY) 395 goto unlock; 396 397 atomic_dec(&pask->nokey_refcnt); 398 atomic_set(&ask->nokey_refcnt, 0); 399 400 err = 0; 401 402 unlock: 403 release_sock(psk); 404 unlock_child: 405 release_sock(sk); 406 407 return err; 408 } 409 410 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg, 411 size_t size) 412 { 413 int err; 414 415 err = aead_check_key(sock); 416 if (err) 417 return err; 418 419 return aead_sendmsg(sock, msg, size); 420 } 421 422 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page, 423 int offset, size_t size, int flags) 424 { 425 int err; 426 427 err = aead_check_key(sock); 428 if (err) 429 return err; 430 431 return af_alg_sendpage(sock, page, offset, size, flags); 432 } 433 434 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg, 435 size_t ignored, int flags) 436 { 437 int err; 438 439 err = aead_check_key(sock); 440 if (err) 441 return err; 442 443 return aead_recvmsg(sock, msg, ignored, flags); 444 } 445 446 static struct proto_ops algif_aead_ops_nokey = { 447 .family = PF_ALG, 448 449 .connect = sock_no_connect, 450 .socketpair = sock_no_socketpair, 451 .getname = sock_no_getname, 452 .ioctl = sock_no_ioctl, 453 .listen = sock_no_listen, 454 .shutdown = sock_no_shutdown, 455 .mmap = sock_no_mmap, 456 .bind = sock_no_bind, 457 .accept = sock_no_accept, 458 459 .release = af_alg_release, 460 .sendmsg = aead_sendmsg_nokey, 461 .sendpage = aead_sendpage_nokey, 462 .recvmsg = aead_recvmsg_nokey, 463 .poll = af_alg_poll, 464 }; 465 466 static void *aead_bind(const char *name, u32 type, u32 mask) 467 { 468 struct aead_tfm *tfm; 469 struct crypto_aead *aead; 470 struct crypto_sync_skcipher *null_tfm; 471 472 tfm = kzalloc(sizeof(*tfm), GFP_KERNEL); 473 if (!tfm) 474 return ERR_PTR(-ENOMEM); 475 476 aead = crypto_alloc_aead(name, type, mask); 477 if (IS_ERR(aead)) { 478 kfree(tfm); 479 return ERR_CAST(aead); 480 } 481 482 null_tfm = crypto_get_default_null_skcipher(); 483 if (IS_ERR(null_tfm)) { 484 crypto_free_aead(aead); 485 kfree(tfm); 486 return ERR_CAST(null_tfm); 487 } 488 489 tfm->aead = aead; 490 tfm->null_tfm = null_tfm; 491 492 return tfm; 493 } 494 495 static void aead_release(void *private) 496 { 497 struct aead_tfm *tfm = private; 498 499 crypto_free_aead(tfm->aead); 500 crypto_put_default_null_skcipher(); 501 kfree(tfm); 502 } 503 504 static int aead_setauthsize(void *private, unsigned int authsize) 505 { 506 struct aead_tfm *tfm = private; 507 508 return crypto_aead_setauthsize(tfm->aead, authsize); 509 } 510 511 static int aead_setkey(void *private, const u8 *key, unsigned int keylen) 512 { 513 struct aead_tfm *tfm = private; 514 515 return crypto_aead_setkey(tfm->aead, key, keylen); 516 } 517 518 static void aead_sock_destruct(struct sock *sk) 519 { 520 struct alg_sock *ask = alg_sk(sk); 521 struct af_alg_ctx *ctx = ask->private; 522 struct sock *psk = ask->parent; 523 struct alg_sock *pask = alg_sk(psk); 524 struct aead_tfm *aeadc = pask->private; 525 struct crypto_aead *tfm = aeadc->aead; 526 unsigned int ivlen = crypto_aead_ivsize(tfm); 527 528 af_alg_pull_tsgl(sk, ctx->used, NULL, 0); 529 sock_kzfree_s(sk, ctx->iv, ivlen); 530 sock_kfree_s(sk, ctx, ctx->len); 531 af_alg_release_parent(sk); 532 } 533 534 static int aead_accept_parent_nokey(void *private, struct sock *sk) 535 { 536 struct af_alg_ctx *ctx; 537 struct alg_sock *ask = alg_sk(sk); 538 struct aead_tfm *tfm = private; 539 struct crypto_aead *aead = tfm->aead; 540 unsigned int len = sizeof(*ctx); 541 unsigned int ivlen = crypto_aead_ivsize(aead); 542 543 ctx = sock_kmalloc(sk, len, GFP_KERNEL); 544 if (!ctx) 545 return -ENOMEM; 546 memset(ctx, 0, len); 547 548 ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL); 549 if (!ctx->iv) { 550 sock_kfree_s(sk, ctx, len); 551 return -ENOMEM; 552 } 553 memset(ctx->iv, 0, ivlen); 554 555 INIT_LIST_HEAD(&ctx->tsgl_list); 556 ctx->len = len; 557 ctx->used = 0; 558 atomic_set(&ctx->rcvused, 0); 559 ctx->more = 0; 560 ctx->merge = 0; 561 ctx->enc = 0; 562 ctx->aead_assoclen = 0; 563 crypto_init_wait(&ctx->wait); 564 565 ask->private = ctx; 566 567 sk->sk_destruct = aead_sock_destruct; 568 569 return 0; 570 } 571 572 static int aead_accept_parent(void *private, struct sock *sk) 573 { 574 struct aead_tfm *tfm = private; 575 576 if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY) 577 return -ENOKEY; 578 579 return aead_accept_parent_nokey(private, sk); 580 } 581 582 static const struct af_alg_type algif_type_aead = { 583 .bind = aead_bind, 584 .release = aead_release, 585 .setkey = aead_setkey, 586 .setauthsize = aead_setauthsize, 587 .accept = aead_accept_parent, 588 .accept_nokey = aead_accept_parent_nokey, 589 .ops = &algif_aead_ops, 590 .ops_nokey = &algif_aead_ops_nokey, 591 .name = "aead", 592 .owner = THIS_MODULE 593 }; 594 595 static int __init algif_aead_init(void) 596 { 597 return af_alg_register_type(&algif_type_aead); 598 } 599 600 static void __exit algif_aead_exit(void) 601 { 602 int err = af_alg_unregister_type(&algif_type_aead); 603 BUG_ON(err); 604 } 605 606 module_init(algif_aead_init); 607 module_exit(algif_aead_exit); 608 MODULE_LICENSE("GPL"); 609 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); 610 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface"); 611