xref: /openbmc/linux/crypto/algif_aead.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * algif_aead: User-space interface for AEAD algorithms
3  *
4  * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
5  *
6  * This file provides the user-space API for AEAD ciphers.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * The following concept of the memory management is used:
14  *
15  * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
16  * filled by user space with the data submitted via sendpage/sendmsg. Filling
17  * up the TX SGL does not cause a crypto operation -- the data will only be
18  * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
19  * provide a buffer which is tracked with the RX SGL.
20  *
21  * During the processing of the recvmsg operation, the cipher request is
22  * allocated and prepared. As part of the recvmsg operation, the processed
23  * TX buffers are extracted from the TX SGL into a separate SGL.
24  *
25  * After the completion of the crypto operation, the RX SGL and the cipher
26  * request is released. The extracted TX SGL parts are released together with
27  * the RX SGL release.
28  */
29 
30 #include <crypto/internal/aead.h>
31 #include <crypto/scatterwalk.h>
32 #include <crypto/if_alg.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/null.h>
35 #include <linux/init.h>
36 #include <linux/list.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/module.h>
40 #include <linux/net.h>
41 #include <net/sock.h>
42 
43 struct aead_tfm {
44 	struct crypto_aead *aead;
45 	bool has_key;
46 	struct crypto_skcipher *null_tfm;
47 };
48 
49 static inline bool aead_sufficient_data(struct sock *sk)
50 {
51 	struct alg_sock *ask = alg_sk(sk);
52 	struct sock *psk = ask->parent;
53 	struct alg_sock *pask = alg_sk(psk);
54 	struct af_alg_ctx *ctx = ask->private;
55 	struct aead_tfm *aeadc = pask->private;
56 	struct crypto_aead *tfm = aeadc->aead;
57 	unsigned int as = crypto_aead_authsize(tfm);
58 
59 	/*
60 	 * The minimum amount of memory needed for an AEAD cipher is
61 	 * the AAD and in case of decryption the tag.
62 	 */
63 	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
64 }
65 
66 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
67 {
68 	struct sock *sk = sock->sk;
69 	struct alg_sock *ask = alg_sk(sk);
70 	struct sock *psk = ask->parent;
71 	struct alg_sock *pask = alg_sk(psk);
72 	struct aead_tfm *aeadc = pask->private;
73 	struct crypto_aead *tfm = aeadc->aead;
74 	unsigned int ivsize = crypto_aead_ivsize(tfm);
75 
76 	return af_alg_sendmsg(sock, msg, size, ivsize);
77 }
78 
79 static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm,
80 				struct scatterlist *src,
81 				struct scatterlist *dst, unsigned int len)
82 {
83 	SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
84 
85 	skcipher_request_set_tfm(skreq, null_tfm);
86 	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG,
87 				      NULL, NULL);
88 	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
89 
90 	return crypto_skcipher_encrypt(skreq);
91 }
92 
93 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
94 			 size_t ignored, int flags)
95 {
96 	struct sock *sk = sock->sk;
97 	struct alg_sock *ask = alg_sk(sk);
98 	struct sock *psk = ask->parent;
99 	struct alg_sock *pask = alg_sk(psk);
100 	struct af_alg_ctx *ctx = ask->private;
101 	struct aead_tfm *aeadc = pask->private;
102 	struct crypto_aead *tfm = aeadc->aead;
103 	struct crypto_skcipher *null_tfm = aeadc->null_tfm;
104 	unsigned int i, as = crypto_aead_authsize(tfm);
105 	struct af_alg_async_req *areq;
106 	struct af_alg_tsgl *tsgl, *tmp;
107 	struct scatterlist *rsgl_src, *tsgl_src = NULL;
108 	int err = 0;
109 	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
110 	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
111 	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
112 	size_t processed = 0;		/* [in]  TX bufs to be consumed */
113 
114 	if (!ctx->used) {
115 		err = af_alg_wait_for_data(sk, flags);
116 		if (err)
117 			return err;
118 	}
119 
120 	/*
121 	 * Data length provided by caller via sendmsg/sendpage that has not
122 	 * yet been processed.
123 	 */
124 	used = ctx->used;
125 
126 	/*
127 	 * Make sure sufficient data is present -- note, the same check is
128 	 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
129 	 * shall provide an information to the data sender that something is
130 	 * wrong, but they are irrelevant to maintain the kernel integrity.
131 	 * We need this check here too in case user space decides to not honor
132 	 * the error message in sendmsg/sendpage and still call recvmsg. This
133 	 * check here protects the kernel integrity.
134 	 */
135 	if (!aead_sufficient_data(sk))
136 		return -EINVAL;
137 
138 	/*
139 	 * Calculate the minimum output buffer size holding the result of the
140 	 * cipher operation. When encrypting data, the receiving buffer is
141 	 * larger by the tag length compared to the input buffer as the
142 	 * encryption operation generates the tag. For decryption, the input
143 	 * buffer provides the tag which is consumed resulting in only the
144 	 * plaintext without a buffer for the tag returned to the caller.
145 	 */
146 	if (ctx->enc)
147 		outlen = used + as;
148 	else
149 		outlen = used - as;
150 
151 	/*
152 	 * The cipher operation input data is reduced by the associated data
153 	 * length as this data is processed separately later on.
154 	 */
155 	used -= ctx->aead_assoclen;
156 
157 	/* Allocate cipher request for current operation. */
158 	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
159 				     crypto_aead_reqsize(tfm));
160 	if (IS_ERR(areq))
161 		return PTR_ERR(areq);
162 
163 	/* convert iovecs of output buffers into RX SGL */
164 	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
165 	if (err)
166 		goto free;
167 
168 	/*
169 	 * Ensure output buffer is sufficiently large. If the caller provides
170 	 * less buffer space, only use the relative required input size. This
171 	 * allows AIO operation where the caller sent all data to be processed
172 	 * and the AIO operation performs the operation on the different chunks
173 	 * of the input data.
174 	 */
175 	if (usedpages < outlen) {
176 		size_t less = outlen - usedpages;
177 
178 		if (used < less) {
179 			err = -EINVAL;
180 			goto free;
181 		}
182 		used -= less;
183 		outlen -= less;
184 	}
185 
186 	processed = used + ctx->aead_assoclen;
187 	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
188 		for (i = 0; i < tsgl->cur; i++) {
189 			struct scatterlist *process_sg = tsgl->sg + i;
190 
191 			if (!(process_sg->length) || !sg_page(process_sg))
192 				continue;
193 			tsgl_src = process_sg;
194 			break;
195 		}
196 		if (tsgl_src)
197 			break;
198 	}
199 	if (processed && !tsgl_src) {
200 		err = -EFAULT;
201 		goto free;
202 	}
203 
204 	/*
205 	 * Copy of AAD from source to destination
206 	 *
207 	 * The AAD is copied to the destination buffer without change. Even
208 	 * when user space uses an in-place cipher operation, the kernel
209 	 * will copy the data as it does not see whether such in-place operation
210 	 * is initiated.
211 	 *
212 	 * To ensure efficiency, the following implementation ensure that the
213 	 * ciphers are invoked to perform a crypto operation in-place. This
214 	 * is achieved by memory management specified as follows.
215 	 */
216 
217 	/* Use the RX SGL as source (and destination) for crypto op. */
218 	rsgl_src = areq->first_rsgl.sgl.sg;
219 
220 	if (ctx->enc) {
221 		/*
222 		 * Encryption operation - The in-place cipher operation is
223 		 * achieved by the following operation:
224 		 *
225 		 * TX SGL: AAD || PT
226 		 *	    |	   |
227 		 *	    | copy |
228 		 *	    v	   v
229 		 * RX SGL: AAD || PT || Tag
230 		 */
231 		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
232 					   areq->first_rsgl.sgl.sg, processed);
233 		if (err)
234 			goto free;
235 		af_alg_pull_tsgl(sk, processed, NULL, 0);
236 	} else {
237 		/*
238 		 * Decryption operation - To achieve an in-place cipher
239 		 * operation, the following  SGL structure is used:
240 		 *
241 		 * TX SGL: AAD || CT || Tag
242 		 *	    |	   |	 ^
243 		 *	    | copy |	 | Create SGL link.
244 		 *	    v	   v	 |
245 		 * RX SGL: AAD || CT ----+
246 		 */
247 
248 		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
249 		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
250 					   areq->first_rsgl.sgl.sg, outlen);
251 		if (err)
252 			goto free;
253 
254 		/* Create TX SGL for tag and chain it to RX SGL. */
255 		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
256 						       processed - as);
257 		if (!areq->tsgl_entries)
258 			areq->tsgl_entries = 1;
259 		areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) *
260 					      areq->tsgl_entries,
261 					  GFP_KERNEL);
262 		if (!areq->tsgl) {
263 			err = -ENOMEM;
264 			goto free;
265 		}
266 		sg_init_table(areq->tsgl, areq->tsgl_entries);
267 
268 		/* Release TX SGL, except for tag data and reassign tag data. */
269 		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
270 
271 		/* chain the areq TX SGL holding the tag with RX SGL */
272 		if (usedpages) {
273 			/* RX SGL present */
274 			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
275 
276 			sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
277 			sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
278 				 areq->tsgl);
279 		} else
280 			/* no RX SGL present (e.g. authentication only) */
281 			rsgl_src = areq->tsgl;
282 	}
283 
284 	/* Initialize the crypto operation */
285 	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
286 			       areq->first_rsgl.sgl.sg, used, ctx->iv);
287 	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
288 	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
289 
290 	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
291 		/* AIO operation */
292 		sock_hold(sk);
293 		areq->iocb = msg->msg_iocb;
294 
295 		/* Remember output size that will be generated. */
296 		areq->outlen = outlen;
297 
298 		aead_request_set_callback(&areq->cra_u.aead_req,
299 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
300 					  af_alg_async_cb, areq);
301 		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
302 				 crypto_aead_decrypt(&areq->cra_u.aead_req);
303 
304 		/* AIO operation in progress */
305 		if (err == -EINPROGRESS || err == -EBUSY)
306 			return -EIOCBQUEUED;
307 
308 		sock_put(sk);
309 	} else {
310 		/* Synchronous operation */
311 		aead_request_set_callback(&areq->cra_u.aead_req,
312 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
313 					  crypto_req_done, &ctx->wait);
314 		err = crypto_wait_req(ctx->enc ?
315 				crypto_aead_encrypt(&areq->cra_u.aead_req) :
316 				crypto_aead_decrypt(&areq->cra_u.aead_req),
317 				&ctx->wait);
318 	}
319 
320 
321 free:
322 	af_alg_free_resources(areq);
323 
324 	return err ? err : outlen;
325 }
326 
327 static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
328 			size_t ignored, int flags)
329 {
330 	struct sock *sk = sock->sk;
331 	int ret = 0;
332 
333 	lock_sock(sk);
334 	while (msg_data_left(msg)) {
335 		int err = _aead_recvmsg(sock, msg, ignored, flags);
336 
337 		/*
338 		 * This error covers -EIOCBQUEUED which implies that we can
339 		 * only handle one AIO request. If the caller wants to have
340 		 * multiple AIO requests in parallel, he must make multiple
341 		 * separate AIO calls.
342 		 *
343 		 * Also return the error if no data has been processed so far.
344 		 */
345 		if (err <= 0) {
346 			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
347 				ret = err;
348 			goto out;
349 		}
350 
351 		ret += err;
352 	}
353 
354 out:
355 	af_alg_wmem_wakeup(sk);
356 	release_sock(sk);
357 	return ret;
358 }
359 
360 static struct proto_ops algif_aead_ops = {
361 	.family		=	PF_ALG,
362 
363 	.connect	=	sock_no_connect,
364 	.socketpair	=	sock_no_socketpair,
365 	.getname	=	sock_no_getname,
366 	.ioctl		=	sock_no_ioctl,
367 	.listen		=	sock_no_listen,
368 	.shutdown	=	sock_no_shutdown,
369 	.getsockopt	=	sock_no_getsockopt,
370 	.mmap		=	sock_no_mmap,
371 	.bind		=	sock_no_bind,
372 	.accept		=	sock_no_accept,
373 	.setsockopt	=	sock_no_setsockopt,
374 
375 	.release	=	af_alg_release,
376 	.sendmsg	=	aead_sendmsg,
377 	.sendpage	=	af_alg_sendpage,
378 	.recvmsg	=	aead_recvmsg,
379 	.poll		=	af_alg_poll,
380 };
381 
382 static int aead_check_key(struct socket *sock)
383 {
384 	int err = 0;
385 	struct sock *psk;
386 	struct alg_sock *pask;
387 	struct aead_tfm *tfm;
388 	struct sock *sk = sock->sk;
389 	struct alg_sock *ask = alg_sk(sk);
390 
391 	lock_sock(sk);
392 	if (ask->refcnt)
393 		goto unlock_child;
394 
395 	psk = ask->parent;
396 	pask = alg_sk(ask->parent);
397 	tfm = pask->private;
398 
399 	err = -ENOKEY;
400 	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
401 	if (!tfm->has_key)
402 		goto unlock;
403 
404 	if (!pask->refcnt++)
405 		sock_hold(psk);
406 
407 	ask->refcnt = 1;
408 	sock_put(psk);
409 
410 	err = 0;
411 
412 unlock:
413 	release_sock(psk);
414 unlock_child:
415 	release_sock(sk);
416 
417 	return err;
418 }
419 
420 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
421 				  size_t size)
422 {
423 	int err;
424 
425 	err = aead_check_key(sock);
426 	if (err)
427 		return err;
428 
429 	return aead_sendmsg(sock, msg, size);
430 }
431 
432 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
433 				       int offset, size_t size, int flags)
434 {
435 	int err;
436 
437 	err = aead_check_key(sock);
438 	if (err)
439 		return err;
440 
441 	return af_alg_sendpage(sock, page, offset, size, flags);
442 }
443 
444 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
445 				  size_t ignored, int flags)
446 {
447 	int err;
448 
449 	err = aead_check_key(sock);
450 	if (err)
451 		return err;
452 
453 	return aead_recvmsg(sock, msg, ignored, flags);
454 }
455 
456 static struct proto_ops algif_aead_ops_nokey = {
457 	.family		=	PF_ALG,
458 
459 	.connect	=	sock_no_connect,
460 	.socketpair	=	sock_no_socketpair,
461 	.getname	=	sock_no_getname,
462 	.ioctl		=	sock_no_ioctl,
463 	.listen		=	sock_no_listen,
464 	.shutdown	=	sock_no_shutdown,
465 	.getsockopt	=	sock_no_getsockopt,
466 	.mmap		=	sock_no_mmap,
467 	.bind		=	sock_no_bind,
468 	.accept		=	sock_no_accept,
469 	.setsockopt	=	sock_no_setsockopt,
470 
471 	.release	=	af_alg_release,
472 	.sendmsg	=	aead_sendmsg_nokey,
473 	.sendpage	=	aead_sendpage_nokey,
474 	.recvmsg	=	aead_recvmsg_nokey,
475 	.poll		=	af_alg_poll,
476 };
477 
478 static void *aead_bind(const char *name, u32 type, u32 mask)
479 {
480 	struct aead_tfm *tfm;
481 	struct crypto_aead *aead;
482 	struct crypto_skcipher *null_tfm;
483 
484 	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
485 	if (!tfm)
486 		return ERR_PTR(-ENOMEM);
487 
488 	aead = crypto_alloc_aead(name, type, mask);
489 	if (IS_ERR(aead)) {
490 		kfree(tfm);
491 		return ERR_CAST(aead);
492 	}
493 
494 	null_tfm = crypto_get_default_null_skcipher2();
495 	if (IS_ERR(null_tfm)) {
496 		crypto_free_aead(aead);
497 		kfree(tfm);
498 		return ERR_CAST(null_tfm);
499 	}
500 
501 	tfm->aead = aead;
502 	tfm->null_tfm = null_tfm;
503 
504 	return tfm;
505 }
506 
507 static void aead_release(void *private)
508 {
509 	struct aead_tfm *tfm = private;
510 
511 	crypto_free_aead(tfm->aead);
512 	crypto_put_default_null_skcipher2();
513 	kfree(tfm);
514 }
515 
516 static int aead_setauthsize(void *private, unsigned int authsize)
517 {
518 	struct aead_tfm *tfm = private;
519 
520 	return crypto_aead_setauthsize(tfm->aead, authsize);
521 }
522 
523 static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
524 {
525 	struct aead_tfm *tfm = private;
526 	int err;
527 
528 	err = crypto_aead_setkey(tfm->aead, key, keylen);
529 	tfm->has_key = !err;
530 
531 	return err;
532 }
533 
534 static void aead_sock_destruct(struct sock *sk)
535 {
536 	struct alg_sock *ask = alg_sk(sk);
537 	struct af_alg_ctx *ctx = ask->private;
538 	struct sock *psk = ask->parent;
539 	struct alg_sock *pask = alg_sk(psk);
540 	struct aead_tfm *aeadc = pask->private;
541 	struct crypto_aead *tfm = aeadc->aead;
542 	unsigned int ivlen = crypto_aead_ivsize(tfm);
543 
544 	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
545 	sock_kzfree_s(sk, ctx->iv, ivlen);
546 	sock_kfree_s(sk, ctx, ctx->len);
547 	af_alg_release_parent(sk);
548 }
549 
550 static int aead_accept_parent_nokey(void *private, struct sock *sk)
551 {
552 	struct af_alg_ctx *ctx;
553 	struct alg_sock *ask = alg_sk(sk);
554 	struct aead_tfm *tfm = private;
555 	struct crypto_aead *aead = tfm->aead;
556 	unsigned int len = sizeof(*ctx);
557 	unsigned int ivlen = crypto_aead_ivsize(aead);
558 
559 	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
560 	if (!ctx)
561 		return -ENOMEM;
562 	memset(ctx, 0, len);
563 
564 	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
565 	if (!ctx->iv) {
566 		sock_kfree_s(sk, ctx, len);
567 		return -ENOMEM;
568 	}
569 	memset(ctx->iv, 0, ivlen);
570 
571 	INIT_LIST_HEAD(&ctx->tsgl_list);
572 	ctx->len = len;
573 	ctx->used = 0;
574 	ctx->rcvused = 0;
575 	ctx->more = 0;
576 	ctx->merge = 0;
577 	ctx->enc = 0;
578 	ctx->aead_assoclen = 0;
579 	crypto_init_wait(&ctx->wait);
580 
581 	ask->private = ctx;
582 
583 	sk->sk_destruct = aead_sock_destruct;
584 
585 	return 0;
586 }
587 
588 static int aead_accept_parent(void *private, struct sock *sk)
589 {
590 	struct aead_tfm *tfm = private;
591 
592 	if (!tfm->has_key)
593 		return -ENOKEY;
594 
595 	return aead_accept_parent_nokey(private, sk);
596 }
597 
598 static const struct af_alg_type algif_type_aead = {
599 	.bind		=	aead_bind,
600 	.release	=	aead_release,
601 	.setkey		=	aead_setkey,
602 	.setauthsize	=	aead_setauthsize,
603 	.accept		=	aead_accept_parent,
604 	.accept_nokey	=	aead_accept_parent_nokey,
605 	.ops		=	&algif_aead_ops,
606 	.ops_nokey	=	&algif_aead_ops_nokey,
607 	.name		=	"aead",
608 	.owner		=	THIS_MODULE
609 };
610 
611 static int __init algif_aead_init(void)
612 {
613 	return af_alg_register_type(&algif_type_aead);
614 }
615 
616 static void __exit algif_aead_exit(void)
617 {
618 	int err = af_alg_unregister_type(&algif_type_aead);
619 	BUG_ON(err);
620 }
621 
622 module_init(algif_aead_init);
623 module_exit(algif_aead_exit);
624 MODULE_LICENSE("GPL");
625 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
626 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");
627