xref: /openbmc/linux/crypto/algif_aead.c (revision 4c1ca831)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * algif_aead: User-space interface for AEAD algorithms
4  *
5  * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
6  *
7  * This file provides the user-space API for AEAD ciphers.
8  *
9  * The following concept of the memory management is used:
10  *
11  * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
12  * filled by user space with the data submitted via sendpage/sendmsg. Filling
13  * up the TX SGL does not cause a crypto operation -- the data will only be
14  * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
15  * provide a buffer which is tracked with the RX SGL.
16  *
17  * During the processing of the recvmsg operation, the cipher request is
18  * allocated and prepared. As part of the recvmsg operation, the processed
19  * TX buffers are extracted from the TX SGL into a separate SGL.
20  *
21  * After the completion of the crypto operation, the RX SGL and the cipher
22  * request is released. The extracted TX SGL parts are released together with
23  * the RX SGL release.
24  */
25 
26 #include <crypto/internal/aead.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/if_alg.h>
29 #include <crypto/skcipher.h>
30 #include <crypto/null.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/net.h>
37 #include <net/sock.h>
38 
39 struct aead_tfm {
40 	struct crypto_aead *aead;
41 	struct crypto_sync_skcipher *null_tfm;
42 };
43 
44 static inline bool aead_sufficient_data(struct sock *sk)
45 {
46 	struct alg_sock *ask = alg_sk(sk);
47 	struct sock *psk = ask->parent;
48 	struct alg_sock *pask = alg_sk(psk);
49 	struct af_alg_ctx *ctx = ask->private;
50 	struct aead_tfm *aeadc = pask->private;
51 	struct crypto_aead *tfm = aeadc->aead;
52 	unsigned int as = crypto_aead_authsize(tfm);
53 
54 	/*
55 	 * The minimum amount of memory needed for an AEAD cipher is
56 	 * the AAD and in case of decryption the tag.
57 	 */
58 	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
59 }
60 
61 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
62 {
63 	struct sock *sk = sock->sk;
64 	struct alg_sock *ask = alg_sk(sk);
65 	struct sock *psk = ask->parent;
66 	struct alg_sock *pask = alg_sk(psk);
67 	struct aead_tfm *aeadc = pask->private;
68 	struct crypto_aead *tfm = aeadc->aead;
69 	unsigned int ivsize = crypto_aead_ivsize(tfm);
70 
71 	return af_alg_sendmsg(sock, msg, size, ivsize);
72 }
73 
74 static int crypto_aead_copy_sgl(struct crypto_sync_skcipher *null_tfm,
75 				struct scatterlist *src,
76 				struct scatterlist *dst, unsigned int len)
77 {
78 	SYNC_SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
79 
80 	skcipher_request_set_sync_tfm(skreq, null_tfm);
81 	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_SLEEP,
82 				      NULL, NULL);
83 	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
84 
85 	return crypto_skcipher_encrypt(skreq);
86 }
87 
88 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
89 			 size_t ignored, int flags)
90 {
91 	struct sock *sk = sock->sk;
92 	struct alg_sock *ask = alg_sk(sk);
93 	struct sock *psk = ask->parent;
94 	struct alg_sock *pask = alg_sk(psk);
95 	struct af_alg_ctx *ctx = ask->private;
96 	struct aead_tfm *aeadc = pask->private;
97 	struct crypto_aead *tfm = aeadc->aead;
98 	struct crypto_sync_skcipher *null_tfm = aeadc->null_tfm;
99 	unsigned int i, as = crypto_aead_authsize(tfm);
100 	struct af_alg_async_req *areq;
101 	struct af_alg_tsgl *tsgl, *tmp;
102 	struct scatterlist *rsgl_src, *tsgl_src = NULL;
103 	int err = 0;
104 	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
105 	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
106 	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
107 	size_t processed = 0;		/* [in]  TX bufs to be consumed */
108 
109 	if (!ctx->init || ctx->more) {
110 		err = af_alg_wait_for_data(sk, flags, 0);
111 		if (err)
112 			return err;
113 	}
114 
115 	/*
116 	 * Data length provided by caller via sendmsg/sendpage that has not
117 	 * yet been processed.
118 	 */
119 	used = ctx->used;
120 
121 	/*
122 	 * Make sure sufficient data is present -- note, the same check is
123 	 * also present in sendmsg/sendpage. The checks in sendpage/sendmsg
124 	 * shall provide an information to the data sender that something is
125 	 * wrong, but they are irrelevant to maintain the kernel integrity.
126 	 * We need this check here too in case user space decides to not honor
127 	 * the error message in sendmsg/sendpage and still call recvmsg. This
128 	 * check here protects the kernel integrity.
129 	 */
130 	if (!aead_sufficient_data(sk))
131 		return -EINVAL;
132 
133 	/*
134 	 * Calculate the minimum output buffer size holding the result of the
135 	 * cipher operation. When encrypting data, the receiving buffer is
136 	 * larger by the tag length compared to the input buffer as the
137 	 * encryption operation generates the tag. For decryption, the input
138 	 * buffer provides the tag which is consumed resulting in only the
139 	 * plaintext without a buffer for the tag returned to the caller.
140 	 */
141 	if (ctx->enc)
142 		outlen = used + as;
143 	else
144 		outlen = used - as;
145 
146 	/*
147 	 * The cipher operation input data is reduced by the associated data
148 	 * length as this data is processed separately later on.
149 	 */
150 	used -= ctx->aead_assoclen;
151 
152 	/* Allocate cipher request for current operation. */
153 	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
154 				     crypto_aead_reqsize(tfm));
155 	if (IS_ERR(areq))
156 		return PTR_ERR(areq);
157 
158 	/* convert iovecs of output buffers into RX SGL */
159 	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
160 	if (err)
161 		goto free;
162 
163 	/*
164 	 * Ensure output buffer is sufficiently large. If the caller provides
165 	 * less buffer space, only use the relative required input size. This
166 	 * allows AIO operation where the caller sent all data to be processed
167 	 * and the AIO operation performs the operation on the different chunks
168 	 * of the input data.
169 	 */
170 	if (usedpages < outlen) {
171 		size_t less = outlen - usedpages;
172 
173 		if (used < less) {
174 			err = -EINVAL;
175 			goto free;
176 		}
177 		used -= less;
178 		outlen -= less;
179 	}
180 
181 	processed = used + ctx->aead_assoclen;
182 	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
183 		for (i = 0; i < tsgl->cur; i++) {
184 			struct scatterlist *process_sg = tsgl->sg + i;
185 
186 			if (!(process_sg->length) || !sg_page(process_sg))
187 				continue;
188 			tsgl_src = process_sg;
189 			break;
190 		}
191 		if (tsgl_src)
192 			break;
193 	}
194 	if (processed && !tsgl_src) {
195 		err = -EFAULT;
196 		goto free;
197 	}
198 
199 	/*
200 	 * Copy of AAD from source to destination
201 	 *
202 	 * The AAD is copied to the destination buffer without change. Even
203 	 * when user space uses an in-place cipher operation, the kernel
204 	 * will copy the data as it does not see whether such in-place operation
205 	 * is initiated.
206 	 *
207 	 * To ensure efficiency, the following implementation ensure that the
208 	 * ciphers are invoked to perform a crypto operation in-place. This
209 	 * is achieved by memory management specified as follows.
210 	 */
211 
212 	/* Use the RX SGL as source (and destination) for crypto op. */
213 	rsgl_src = areq->first_rsgl.sgl.sg;
214 
215 	if (ctx->enc) {
216 		/*
217 		 * Encryption operation - The in-place cipher operation is
218 		 * achieved by the following operation:
219 		 *
220 		 * TX SGL: AAD || PT
221 		 *	    |	   |
222 		 *	    | copy |
223 		 *	    v	   v
224 		 * RX SGL: AAD || PT || Tag
225 		 */
226 		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
227 					   areq->first_rsgl.sgl.sg, processed);
228 		if (err)
229 			goto free;
230 		af_alg_pull_tsgl(sk, processed, NULL, 0);
231 	} else {
232 		/*
233 		 * Decryption operation - To achieve an in-place cipher
234 		 * operation, the following  SGL structure is used:
235 		 *
236 		 * TX SGL: AAD || CT || Tag
237 		 *	    |	   |	 ^
238 		 *	    | copy |	 | Create SGL link.
239 		 *	    v	   v	 |
240 		 * RX SGL: AAD || CT ----+
241 		 */
242 
243 		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
244 		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
245 					   areq->first_rsgl.sgl.sg, outlen);
246 		if (err)
247 			goto free;
248 
249 		/* Create TX SGL for tag and chain it to RX SGL. */
250 		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
251 						       processed - as);
252 		if (!areq->tsgl_entries)
253 			areq->tsgl_entries = 1;
254 		areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
255 							 areq->tsgl_entries),
256 					  GFP_KERNEL);
257 		if (!areq->tsgl) {
258 			err = -ENOMEM;
259 			goto free;
260 		}
261 		sg_init_table(areq->tsgl, areq->tsgl_entries);
262 
263 		/* Release TX SGL, except for tag data and reassign tag data. */
264 		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
265 
266 		/* chain the areq TX SGL holding the tag with RX SGL */
267 		if (usedpages) {
268 			/* RX SGL present */
269 			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
270 
271 			sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
272 			sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
273 				 areq->tsgl);
274 		} else
275 			/* no RX SGL present (e.g. authentication only) */
276 			rsgl_src = areq->tsgl;
277 	}
278 
279 	/* Initialize the crypto operation */
280 	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
281 			       areq->first_rsgl.sgl.sg, used, ctx->iv);
282 	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
283 	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
284 
285 	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
286 		/* AIO operation */
287 		sock_hold(sk);
288 		areq->iocb = msg->msg_iocb;
289 
290 		/* Remember output size that will be generated. */
291 		areq->outlen = outlen;
292 
293 		aead_request_set_callback(&areq->cra_u.aead_req,
294 					  CRYPTO_TFM_REQ_MAY_SLEEP,
295 					  af_alg_async_cb, areq);
296 		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
297 				 crypto_aead_decrypt(&areq->cra_u.aead_req);
298 
299 		/* AIO operation in progress */
300 		if (err == -EINPROGRESS)
301 			return -EIOCBQUEUED;
302 
303 		sock_put(sk);
304 	} else {
305 		/* Synchronous operation */
306 		aead_request_set_callback(&areq->cra_u.aead_req,
307 					  CRYPTO_TFM_REQ_MAY_SLEEP |
308 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
309 					  crypto_req_done, &ctx->wait);
310 		err = crypto_wait_req(ctx->enc ?
311 				crypto_aead_encrypt(&areq->cra_u.aead_req) :
312 				crypto_aead_decrypt(&areq->cra_u.aead_req),
313 				&ctx->wait);
314 	}
315 
316 
317 free:
318 	af_alg_free_resources(areq);
319 
320 	return err ? err : outlen;
321 }
322 
323 static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
324 			size_t ignored, int flags)
325 {
326 	struct sock *sk = sock->sk;
327 	int ret = 0;
328 
329 	lock_sock(sk);
330 	while (msg_data_left(msg)) {
331 		int err = _aead_recvmsg(sock, msg, ignored, flags);
332 
333 		/*
334 		 * This error covers -EIOCBQUEUED which implies that we can
335 		 * only handle one AIO request. If the caller wants to have
336 		 * multiple AIO requests in parallel, he must make multiple
337 		 * separate AIO calls.
338 		 *
339 		 * Also return the error if no data has been processed so far.
340 		 */
341 		if (err <= 0) {
342 			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
343 				ret = err;
344 			goto out;
345 		}
346 
347 		ret += err;
348 	}
349 
350 out:
351 	af_alg_wmem_wakeup(sk);
352 	release_sock(sk);
353 	return ret;
354 }
355 
356 static struct proto_ops algif_aead_ops = {
357 	.family		=	PF_ALG,
358 
359 	.connect	=	sock_no_connect,
360 	.socketpair	=	sock_no_socketpair,
361 	.getname	=	sock_no_getname,
362 	.ioctl		=	sock_no_ioctl,
363 	.listen		=	sock_no_listen,
364 	.shutdown	=	sock_no_shutdown,
365 	.mmap		=	sock_no_mmap,
366 	.bind		=	sock_no_bind,
367 	.accept		=	sock_no_accept,
368 
369 	.release	=	af_alg_release,
370 	.sendmsg	=	aead_sendmsg,
371 	.sendpage	=	af_alg_sendpage,
372 	.recvmsg	=	aead_recvmsg,
373 	.poll		=	af_alg_poll,
374 };
375 
376 static int aead_check_key(struct socket *sock)
377 {
378 	int err = 0;
379 	struct sock *psk;
380 	struct alg_sock *pask;
381 	struct aead_tfm *tfm;
382 	struct sock *sk = sock->sk;
383 	struct alg_sock *ask = alg_sk(sk);
384 
385 	lock_sock(sk);
386 	if (!atomic_read(&ask->nokey_refcnt))
387 		goto unlock_child;
388 
389 	psk = ask->parent;
390 	pask = alg_sk(ask->parent);
391 	tfm = pask->private;
392 
393 	err = -ENOKEY;
394 	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
395 	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
396 		goto unlock;
397 
398 	atomic_dec(&pask->nokey_refcnt);
399 	atomic_set(&ask->nokey_refcnt, 0);
400 
401 	err = 0;
402 
403 unlock:
404 	release_sock(psk);
405 unlock_child:
406 	release_sock(sk);
407 
408 	return err;
409 }
410 
411 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
412 				  size_t size)
413 {
414 	int err;
415 
416 	err = aead_check_key(sock);
417 	if (err)
418 		return err;
419 
420 	return aead_sendmsg(sock, msg, size);
421 }
422 
423 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
424 				       int offset, size_t size, int flags)
425 {
426 	int err;
427 
428 	err = aead_check_key(sock);
429 	if (err)
430 		return err;
431 
432 	return af_alg_sendpage(sock, page, offset, size, flags);
433 }
434 
435 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
436 				  size_t ignored, int flags)
437 {
438 	int err;
439 
440 	err = aead_check_key(sock);
441 	if (err)
442 		return err;
443 
444 	return aead_recvmsg(sock, msg, ignored, flags);
445 }
446 
447 static struct proto_ops algif_aead_ops_nokey = {
448 	.family		=	PF_ALG,
449 
450 	.connect	=	sock_no_connect,
451 	.socketpair	=	sock_no_socketpair,
452 	.getname	=	sock_no_getname,
453 	.ioctl		=	sock_no_ioctl,
454 	.listen		=	sock_no_listen,
455 	.shutdown	=	sock_no_shutdown,
456 	.mmap		=	sock_no_mmap,
457 	.bind		=	sock_no_bind,
458 	.accept		=	sock_no_accept,
459 
460 	.release	=	af_alg_release,
461 	.sendmsg	=	aead_sendmsg_nokey,
462 	.sendpage	=	aead_sendpage_nokey,
463 	.recvmsg	=	aead_recvmsg_nokey,
464 	.poll		=	af_alg_poll,
465 };
466 
467 static void *aead_bind(const char *name, u32 type, u32 mask)
468 {
469 	struct aead_tfm *tfm;
470 	struct crypto_aead *aead;
471 	struct crypto_sync_skcipher *null_tfm;
472 
473 	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
474 	if (!tfm)
475 		return ERR_PTR(-ENOMEM);
476 
477 	aead = crypto_alloc_aead(name, type, mask);
478 	if (IS_ERR(aead)) {
479 		kfree(tfm);
480 		return ERR_CAST(aead);
481 	}
482 
483 	null_tfm = crypto_get_default_null_skcipher();
484 	if (IS_ERR(null_tfm)) {
485 		crypto_free_aead(aead);
486 		kfree(tfm);
487 		return ERR_CAST(null_tfm);
488 	}
489 
490 	tfm->aead = aead;
491 	tfm->null_tfm = null_tfm;
492 
493 	return tfm;
494 }
495 
496 static void aead_release(void *private)
497 {
498 	struct aead_tfm *tfm = private;
499 
500 	crypto_free_aead(tfm->aead);
501 	crypto_put_default_null_skcipher();
502 	kfree(tfm);
503 }
504 
505 static int aead_setauthsize(void *private, unsigned int authsize)
506 {
507 	struct aead_tfm *tfm = private;
508 
509 	return crypto_aead_setauthsize(tfm->aead, authsize);
510 }
511 
512 static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
513 {
514 	struct aead_tfm *tfm = private;
515 
516 	return crypto_aead_setkey(tfm->aead, key, keylen);
517 }
518 
519 static void aead_sock_destruct(struct sock *sk)
520 {
521 	struct alg_sock *ask = alg_sk(sk);
522 	struct af_alg_ctx *ctx = ask->private;
523 	struct sock *psk = ask->parent;
524 	struct alg_sock *pask = alg_sk(psk);
525 	struct aead_tfm *aeadc = pask->private;
526 	struct crypto_aead *tfm = aeadc->aead;
527 	unsigned int ivlen = crypto_aead_ivsize(tfm);
528 
529 	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
530 	sock_kzfree_s(sk, ctx->iv, ivlen);
531 	sock_kfree_s(sk, ctx, ctx->len);
532 	af_alg_release_parent(sk);
533 }
534 
535 static int aead_accept_parent_nokey(void *private, struct sock *sk)
536 {
537 	struct af_alg_ctx *ctx;
538 	struct alg_sock *ask = alg_sk(sk);
539 	struct aead_tfm *tfm = private;
540 	struct crypto_aead *aead = tfm->aead;
541 	unsigned int len = sizeof(*ctx);
542 	unsigned int ivlen = crypto_aead_ivsize(aead);
543 
544 	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
545 	if (!ctx)
546 		return -ENOMEM;
547 	memset(ctx, 0, len);
548 
549 	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
550 	if (!ctx->iv) {
551 		sock_kfree_s(sk, ctx, len);
552 		return -ENOMEM;
553 	}
554 	memset(ctx->iv, 0, ivlen);
555 
556 	INIT_LIST_HEAD(&ctx->tsgl_list);
557 	ctx->len = len;
558 	crypto_init_wait(&ctx->wait);
559 
560 	ask->private = ctx;
561 
562 	sk->sk_destruct = aead_sock_destruct;
563 
564 	return 0;
565 }
566 
567 static int aead_accept_parent(void *private, struct sock *sk)
568 {
569 	struct aead_tfm *tfm = private;
570 
571 	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
572 		return -ENOKEY;
573 
574 	return aead_accept_parent_nokey(private, sk);
575 }
576 
577 static const struct af_alg_type algif_type_aead = {
578 	.bind		=	aead_bind,
579 	.release	=	aead_release,
580 	.setkey		=	aead_setkey,
581 	.setauthsize	=	aead_setauthsize,
582 	.accept		=	aead_accept_parent,
583 	.accept_nokey	=	aead_accept_parent_nokey,
584 	.ops		=	&algif_aead_ops,
585 	.ops_nokey	=	&algif_aead_ops_nokey,
586 	.name		=	"aead",
587 	.owner		=	THIS_MODULE
588 };
589 
590 static int __init algif_aead_init(void)
591 {
592 	return af_alg_register_type(&algif_type_aead);
593 }
594 
595 static void __exit algif_aead_exit(void)
596 {
597 	int err = af_alg_unregister_type(&algif_type_aead);
598 	BUG_ON(err);
599 }
600 
601 module_init(algif_aead_init);
602 module_exit(algif_aead_exit);
603 MODULE_LICENSE("GPL");
604 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
605 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");
606