1 /* 2 * algif_aead: User-space interface for AEAD algorithms 3 * 4 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de> 5 * 6 * This file provides the user-space API for AEAD ciphers. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 * The following concept of the memory management is used: 14 * 15 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is 16 * filled by user space with the data submitted via sendpage/sendmsg. Filling 17 * up the TX SGL does not cause a crypto operation -- the data will only be 18 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must 19 * provide a buffer which is tracked with the RX SGL. 20 * 21 * During the processing of the recvmsg operation, the cipher request is 22 * allocated and prepared. As part of the recvmsg operation, the processed 23 * TX buffers are extracted from the TX SGL into a separate SGL. 24 * 25 * After the completion of the crypto operation, the RX SGL and the cipher 26 * request is released. The extracted TX SGL parts are released together with 27 * the RX SGL release. 28 */ 29 30 #include <crypto/internal/aead.h> 31 #include <crypto/scatterwalk.h> 32 #include <crypto/if_alg.h> 33 #include <crypto/skcipher.h> 34 #include <crypto/null.h> 35 #include <linux/init.h> 36 #include <linux/list.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/module.h> 40 #include <linux/net.h> 41 #include <net/sock.h> 42 43 struct aead_tfm { 44 struct crypto_aead *aead; 45 bool has_key; 46 struct crypto_skcipher *null_tfm; 47 }; 48 49 static inline bool aead_sufficient_data(struct sock *sk) 50 { 51 struct alg_sock *ask = alg_sk(sk); 52 struct sock *psk = ask->parent; 53 struct alg_sock *pask = alg_sk(psk); 54 struct af_alg_ctx *ctx = ask->private; 55 struct aead_tfm *aeadc = pask->private; 56 struct crypto_aead *tfm = aeadc->aead; 57 unsigned int as = crypto_aead_authsize(tfm); 58 59 /* 60 * The minimum amount of memory needed for an AEAD cipher is 61 * the AAD and in case of decryption the tag. 62 */ 63 return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as); 64 } 65 66 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 67 { 68 struct sock *sk = sock->sk; 69 struct alg_sock *ask = alg_sk(sk); 70 struct sock *psk = ask->parent; 71 struct alg_sock *pask = alg_sk(psk); 72 struct aead_tfm *aeadc = pask->private; 73 struct crypto_aead *tfm = aeadc->aead; 74 unsigned int ivsize = crypto_aead_ivsize(tfm); 75 76 return af_alg_sendmsg(sock, msg, size, ivsize); 77 } 78 79 static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm, 80 struct scatterlist *src, 81 struct scatterlist *dst, unsigned int len) 82 { 83 SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm); 84 85 skcipher_request_set_tfm(skreq, null_tfm); 86 skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_BACKLOG, 87 NULL, NULL); 88 skcipher_request_set_crypt(skreq, src, dst, len, NULL); 89 90 return crypto_skcipher_encrypt(skreq); 91 } 92 93 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg, 94 size_t ignored, int flags) 95 { 96 struct sock *sk = sock->sk; 97 struct alg_sock *ask = alg_sk(sk); 98 struct sock *psk = ask->parent; 99 struct alg_sock *pask = alg_sk(psk); 100 struct af_alg_ctx *ctx = ask->private; 101 struct aead_tfm *aeadc = pask->private; 102 struct crypto_aead *tfm = aeadc->aead; 103 struct crypto_skcipher *null_tfm = aeadc->null_tfm; 104 unsigned int as = crypto_aead_authsize(tfm); 105 struct af_alg_async_req *areq; 106 struct af_alg_tsgl *tsgl; 107 struct scatterlist *src; 108 int err = 0; 109 size_t used = 0; /* [in] TX bufs to be en/decrypted */ 110 size_t outlen = 0; /* [out] RX bufs produced by kernel */ 111 size_t usedpages = 0; /* [in] RX bufs to be used from user */ 112 size_t processed = 0; /* [in] TX bufs to be consumed */ 113 114 /* 115 * Data length provided by caller via sendmsg/sendpage that has not 116 * yet been processed. 117 */ 118 used = ctx->used; 119 120 /* 121 * Make sure sufficient data is present -- note, the same check is 122 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg 123 * shall provide an information to the data sender that something is 124 * wrong, but they are irrelevant to maintain the kernel integrity. 125 * We need this check here too in case user space decides to not honor 126 * the error message in sendmsg/sendpage and still call recvmsg. This 127 * check here protects the kernel integrity. 128 */ 129 if (!aead_sufficient_data(sk)) 130 return -EINVAL; 131 132 /* 133 * Calculate the minimum output buffer size holding the result of the 134 * cipher operation. When encrypting data, the receiving buffer is 135 * larger by the tag length compared to the input buffer as the 136 * encryption operation generates the tag. For decryption, the input 137 * buffer provides the tag which is consumed resulting in only the 138 * plaintext without a buffer for the tag returned to the caller. 139 */ 140 if (ctx->enc) 141 outlen = used + as; 142 else 143 outlen = used - as; 144 145 /* 146 * The cipher operation input data is reduced by the associated data 147 * length as this data is processed separately later on. 148 */ 149 used -= ctx->aead_assoclen; 150 151 /* Allocate cipher request for current operation. */ 152 areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) + 153 crypto_aead_reqsize(tfm)); 154 if (IS_ERR(areq)) 155 return PTR_ERR(areq); 156 157 /* convert iovecs of output buffers into RX SGL */ 158 err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages); 159 if (err) 160 goto free; 161 162 /* 163 * Ensure output buffer is sufficiently large. If the caller provides 164 * less buffer space, only use the relative required input size. This 165 * allows AIO operation where the caller sent all data to be processed 166 * and the AIO operation performs the operation on the different chunks 167 * of the input data. 168 */ 169 if (usedpages < outlen) { 170 size_t less = outlen - usedpages; 171 172 if (used < less) { 173 err = -EINVAL; 174 goto free; 175 } 176 used -= less; 177 outlen -= less; 178 } 179 180 processed = used + ctx->aead_assoclen; 181 tsgl = list_first_entry(&ctx->tsgl_list, struct af_alg_tsgl, list); 182 183 /* 184 * Copy of AAD from source to destination 185 * 186 * The AAD is copied to the destination buffer without change. Even 187 * when user space uses an in-place cipher operation, the kernel 188 * will copy the data as it does not see whether such in-place operation 189 * is initiated. 190 * 191 * To ensure efficiency, the following implementation ensure that the 192 * ciphers are invoked to perform a crypto operation in-place. This 193 * is achieved by memory management specified as follows. 194 */ 195 196 /* Use the RX SGL as source (and destination) for crypto op. */ 197 src = areq->first_rsgl.sgl.sg; 198 199 if (ctx->enc) { 200 /* 201 * Encryption operation - The in-place cipher operation is 202 * achieved by the following operation: 203 * 204 * TX SGL: AAD || PT 205 * | | 206 * | copy | 207 * v v 208 * RX SGL: AAD || PT || Tag 209 */ 210 err = crypto_aead_copy_sgl(null_tfm, tsgl->sg, 211 areq->first_rsgl.sgl.sg, processed); 212 if (err) 213 goto free; 214 af_alg_pull_tsgl(sk, processed, NULL, 0); 215 } else { 216 /* 217 * Decryption operation - To achieve an in-place cipher 218 * operation, the following SGL structure is used: 219 * 220 * TX SGL: AAD || CT || Tag 221 * | | ^ 222 * | copy | | Create SGL link. 223 * v v | 224 * RX SGL: AAD || CT ----+ 225 */ 226 227 /* Copy AAD || CT to RX SGL buffer for in-place operation. */ 228 err = crypto_aead_copy_sgl(null_tfm, tsgl->sg, 229 areq->first_rsgl.sgl.sg, outlen); 230 if (err) 231 goto free; 232 233 /* Create TX SGL for tag and chain it to RX SGL. */ 234 areq->tsgl_entries = af_alg_count_tsgl(sk, processed, 235 processed - as); 236 if (!areq->tsgl_entries) 237 areq->tsgl_entries = 1; 238 areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) * 239 areq->tsgl_entries, 240 GFP_KERNEL); 241 if (!areq->tsgl) { 242 err = -ENOMEM; 243 goto free; 244 } 245 sg_init_table(areq->tsgl, areq->tsgl_entries); 246 247 /* Release TX SGL, except for tag data and reassign tag data. */ 248 af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as); 249 250 /* chain the areq TX SGL holding the tag with RX SGL */ 251 if (usedpages) { 252 /* RX SGL present */ 253 struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl; 254 255 sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1); 256 sg_chain(sgl_prev->sg, sgl_prev->npages + 1, 257 areq->tsgl); 258 } else 259 /* no RX SGL present (e.g. authentication only) */ 260 src = areq->tsgl; 261 } 262 263 /* Initialize the crypto operation */ 264 aead_request_set_crypt(&areq->cra_u.aead_req, src, 265 areq->first_rsgl.sgl.sg, used, ctx->iv); 266 aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen); 267 aead_request_set_tfm(&areq->cra_u.aead_req, tfm); 268 269 if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) { 270 /* AIO operation */ 271 areq->iocb = msg->msg_iocb; 272 aead_request_set_callback(&areq->cra_u.aead_req, 273 CRYPTO_TFM_REQ_MAY_BACKLOG, 274 af_alg_async_cb, areq); 275 err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) : 276 crypto_aead_decrypt(&areq->cra_u.aead_req); 277 } else { 278 /* Synchronous operation */ 279 aead_request_set_callback(&areq->cra_u.aead_req, 280 CRYPTO_TFM_REQ_MAY_BACKLOG, 281 crypto_req_done, &ctx->wait); 282 err = crypto_wait_req(ctx->enc ? 283 crypto_aead_encrypt(&areq->cra_u.aead_req) : 284 crypto_aead_decrypt(&areq->cra_u.aead_req), 285 &ctx->wait); 286 } 287 288 /* AIO operation in progress */ 289 if (err == -EINPROGRESS) { 290 sock_hold(sk); 291 292 /* Remember output size that will be generated. */ 293 areq->outlen = outlen; 294 295 return -EIOCBQUEUED; 296 } 297 298 free: 299 af_alg_free_areq_sgls(areq); 300 sock_kfree_s(sk, areq, areq->areqlen); 301 302 return err ? err : outlen; 303 } 304 305 static int aead_recvmsg(struct socket *sock, struct msghdr *msg, 306 size_t ignored, int flags) 307 { 308 struct sock *sk = sock->sk; 309 int ret = 0; 310 311 lock_sock(sk); 312 while (msg_data_left(msg)) { 313 int err = _aead_recvmsg(sock, msg, ignored, flags); 314 315 /* 316 * This error covers -EIOCBQUEUED which implies that we can 317 * only handle one AIO request. If the caller wants to have 318 * multiple AIO requests in parallel, he must make multiple 319 * separate AIO calls. 320 * 321 * Also return the error if no data has been processed so far. 322 */ 323 if (err <= 0) { 324 if (err == -EIOCBQUEUED || err == -EBADMSG || !ret) 325 ret = err; 326 goto out; 327 } 328 329 ret += err; 330 } 331 332 out: 333 af_alg_wmem_wakeup(sk); 334 release_sock(sk); 335 return ret; 336 } 337 338 static struct proto_ops algif_aead_ops = { 339 .family = PF_ALG, 340 341 .connect = sock_no_connect, 342 .socketpair = sock_no_socketpair, 343 .getname = sock_no_getname, 344 .ioctl = sock_no_ioctl, 345 .listen = sock_no_listen, 346 .shutdown = sock_no_shutdown, 347 .getsockopt = sock_no_getsockopt, 348 .mmap = sock_no_mmap, 349 .bind = sock_no_bind, 350 .accept = sock_no_accept, 351 .setsockopt = sock_no_setsockopt, 352 353 .release = af_alg_release, 354 .sendmsg = aead_sendmsg, 355 .sendpage = af_alg_sendpage, 356 .recvmsg = aead_recvmsg, 357 .poll = af_alg_poll, 358 }; 359 360 static int aead_check_key(struct socket *sock) 361 { 362 int err = 0; 363 struct sock *psk; 364 struct alg_sock *pask; 365 struct aead_tfm *tfm; 366 struct sock *sk = sock->sk; 367 struct alg_sock *ask = alg_sk(sk); 368 369 lock_sock(sk); 370 if (ask->refcnt) 371 goto unlock_child; 372 373 psk = ask->parent; 374 pask = alg_sk(ask->parent); 375 tfm = pask->private; 376 377 err = -ENOKEY; 378 lock_sock_nested(psk, SINGLE_DEPTH_NESTING); 379 if (!tfm->has_key) 380 goto unlock; 381 382 if (!pask->refcnt++) 383 sock_hold(psk); 384 385 ask->refcnt = 1; 386 sock_put(psk); 387 388 err = 0; 389 390 unlock: 391 release_sock(psk); 392 unlock_child: 393 release_sock(sk); 394 395 return err; 396 } 397 398 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg, 399 size_t size) 400 { 401 int err; 402 403 err = aead_check_key(sock); 404 if (err) 405 return err; 406 407 return aead_sendmsg(sock, msg, size); 408 } 409 410 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page, 411 int offset, size_t size, int flags) 412 { 413 int err; 414 415 err = aead_check_key(sock); 416 if (err) 417 return err; 418 419 return af_alg_sendpage(sock, page, offset, size, flags); 420 } 421 422 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg, 423 size_t ignored, int flags) 424 { 425 int err; 426 427 err = aead_check_key(sock); 428 if (err) 429 return err; 430 431 return aead_recvmsg(sock, msg, ignored, flags); 432 } 433 434 static struct proto_ops algif_aead_ops_nokey = { 435 .family = PF_ALG, 436 437 .connect = sock_no_connect, 438 .socketpair = sock_no_socketpair, 439 .getname = sock_no_getname, 440 .ioctl = sock_no_ioctl, 441 .listen = sock_no_listen, 442 .shutdown = sock_no_shutdown, 443 .getsockopt = sock_no_getsockopt, 444 .mmap = sock_no_mmap, 445 .bind = sock_no_bind, 446 .accept = sock_no_accept, 447 .setsockopt = sock_no_setsockopt, 448 449 .release = af_alg_release, 450 .sendmsg = aead_sendmsg_nokey, 451 .sendpage = aead_sendpage_nokey, 452 .recvmsg = aead_recvmsg_nokey, 453 .poll = af_alg_poll, 454 }; 455 456 static void *aead_bind(const char *name, u32 type, u32 mask) 457 { 458 struct aead_tfm *tfm; 459 struct crypto_aead *aead; 460 struct crypto_skcipher *null_tfm; 461 462 tfm = kzalloc(sizeof(*tfm), GFP_KERNEL); 463 if (!tfm) 464 return ERR_PTR(-ENOMEM); 465 466 aead = crypto_alloc_aead(name, type, mask); 467 if (IS_ERR(aead)) { 468 kfree(tfm); 469 return ERR_CAST(aead); 470 } 471 472 null_tfm = crypto_get_default_null_skcipher(); 473 if (IS_ERR(null_tfm)) { 474 crypto_free_aead(aead); 475 kfree(tfm); 476 return ERR_CAST(null_tfm); 477 } 478 479 tfm->aead = aead; 480 tfm->null_tfm = null_tfm; 481 482 return tfm; 483 } 484 485 static void aead_release(void *private) 486 { 487 struct aead_tfm *tfm = private; 488 489 crypto_free_aead(tfm->aead); 490 crypto_put_default_null_skcipher(); 491 kfree(tfm); 492 } 493 494 static int aead_setauthsize(void *private, unsigned int authsize) 495 { 496 struct aead_tfm *tfm = private; 497 498 return crypto_aead_setauthsize(tfm->aead, authsize); 499 } 500 501 static int aead_setkey(void *private, const u8 *key, unsigned int keylen) 502 { 503 struct aead_tfm *tfm = private; 504 int err; 505 506 err = crypto_aead_setkey(tfm->aead, key, keylen); 507 tfm->has_key = !err; 508 509 return err; 510 } 511 512 static void aead_sock_destruct(struct sock *sk) 513 { 514 struct alg_sock *ask = alg_sk(sk); 515 struct af_alg_ctx *ctx = ask->private; 516 struct sock *psk = ask->parent; 517 struct alg_sock *pask = alg_sk(psk); 518 struct aead_tfm *aeadc = pask->private; 519 struct crypto_aead *tfm = aeadc->aead; 520 unsigned int ivlen = crypto_aead_ivsize(tfm); 521 522 af_alg_pull_tsgl(sk, ctx->used, NULL, 0); 523 sock_kzfree_s(sk, ctx->iv, ivlen); 524 sock_kfree_s(sk, ctx, ctx->len); 525 af_alg_release_parent(sk); 526 } 527 528 static int aead_accept_parent_nokey(void *private, struct sock *sk) 529 { 530 struct af_alg_ctx *ctx; 531 struct alg_sock *ask = alg_sk(sk); 532 struct aead_tfm *tfm = private; 533 struct crypto_aead *aead = tfm->aead; 534 unsigned int len = sizeof(*ctx); 535 unsigned int ivlen = crypto_aead_ivsize(aead); 536 537 ctx = sock_kmalloc(sk, len, GFP_KERNEL); 538 if (!ctx) 539 return -ENOMEM; 540 memset(ctx, 0, len); 541 542 ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL); 543 if (!ctx->iv) { 544 sock_kfree_s(sk, ctx, len); 545 return -ENOMEM; 546 } 547 memset(ctx->iv, 0, ivlen); 548 549 INIT_LIST_HEAD(&ctx->tsgl_list); 550 ctx->len = len; 551 ctx->used = 0; 552 ctx->rcvused = 0; 553 ctx->more = 0; 554 ctx->merge = 0; 555 ctx->enc = 0; 556 ctx->aead_assoclen = 0; 557 crypto_init_wait(&ctx->wait); 558 559 ask->private = ctx; 560 561 sk->sk_destruct = aead_sock_destruct; 562 563 return 0; 564 } 565 566 static int aead_accept_parent(void *private, struct sock *sk) 567 { 568 struct aead_tfm *tfm = private; 569 570 if (!tfm->has_key) 571 return -ENOKEY; 572 573 return aead_accept_parent_nokey(private, sk); 574 } 575 576 static const struct af_alg_type algif_type_aead = { 577 .bind = aead_bind, 578 .release = aead_release, 579 .setkey = aead_setkey, 580 .setauthsize = aead_setauthsize, 581 .accept = aead_accept_parent, 582 .accept_nokey = aead_accept_parent_nokey, 583 .ops = &algif_aead_ops, 584 .ops_nokey = &algif_aead_ops_nokey, 585 .name = "aead", 586 .owner = THIS_MODULE 587 }; 588 589 static int __init algif_aead_init(void) 590 { 591 return af_alg_register_type(&algif_type_aead); 592 } 593 594 static void __exit algif_aead_exit(void) 595 { 596 int err = af_alg_unregister_type(&algif_type_aead); 597 BUG_ON(err); 598 } 599 600 module_init(algif_aead_init); 601 module_exit(algif_aead_exit); 602 MODULE_LICENSE("GPL"); 603 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); 604 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface"); 605