xref: /openbmc/linux/crypto/ahash.c (revision 2aa4d498)
1 /*
2  * Asynchronous Cryptographic Hash operations.
3  *
4  * This is the asynchronous version of hash.c with notification of
5  * completion via a callback.
6  *
7  * Copyright (c) 2008 Loc Ho <lho@amcc.com>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  */
15 
16 #include <crypto/internal/hash.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/bug.h>
19 #include <linux/err.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/seq_file.h>
25 #include <linux/cryptouser.h>
26 #include <linux/compiler.h>
27 #include <net/netlink.h>
28 
29 #include "internal.h"
30 
31 struct ahash_request_priv {
32 	crypto_completion_t complete;
33 	void *data;
34 	u8 *result;
35 	u32 flags;
36 	void *ubuf[] CRYPTO_MINALIGN_ATTR;
37 };
38 
39 static inline struct ahash_alg *crypto_ahash_alg(struct crypto_ahash *hash)
40 {
41 	return container_of(crypto_hash_alg_common(hash), struct ahash_alg,
42 			    halg);
43 }
44 
45 static int hash_walk_next(struct crypto_hash_walk *walk)
46 {
47 	unsigned int alignmask = walk->alignmask;
48 	unsigned int offset = walk->offset;
49 	unsigned int nbytes = min(walk->entrylen,
50 				  ((unsigned int)(PAGE_SIZE)) - offset);
51 
52 	if (walk->flags & CRYPTO_ALG_ASYNC)
53 		walk->data = kmap(walk->pg);
54 	else
55 		walk->data = kmap_atomic(walk->pg);
56 	walk->data += offset;
57 
58 	if (offset & alignmask) {
59 		unsigned int unaligned = alignmask + 1 - (offset & alignmask);
60 
61 		if (nbytes > unaligned)
62 			nbytes = unaligned;
63 	}
64 
65 	walk->entrylen -= nbytes;
66 	return nbytes;
67 }
68 
69 static int hash_walk_new_entry(struct crypto_hash_walk *walk)
70 {
71 	struct scatterlist *sg;
72 
73 	sg = walk->sg;
74 	walk->offset = sg->offset;
75 	walk->pg = sg_page(walk->sg) + (walk->offset >> PAGE_SHIFT);
76 	walk->offset = offset_in_page(walk->offset);
77 	walk->entrylen = sg->length;
78 
79 	if (walk->entrylen > walk->total)
80 		walk->entrylen = walk->total;
81 	walk->total -= walk->entrylen;
82 
83 	return hash_walk_next(walk);
84 }
85 
86 int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err)
87 {
88 	unsigned int alignmask = walk->alignmask;
89 	unsigned int nbytes = walk->entrylen;
90 
91 	walk->data -= walk->offset;
92 
93 	if (nbytes && walk->offset & alignmask && !err) {
94 		walk->offset = ALIGN(walk->offset, alignmask + 1);
95 		walk->data += walk->offset;
96 
97 		nbytes = min(nbytes,
98 			     ((unsigned int)(PAGE_SIZE)) - walk->offset);
99 		walk->entrylen -= nbytes;
100 
101 		return nbytes;
102 	}
103 
104 	if (walk->flags & CRYPTO_ALG_ASYNC)
105 		kunmap(walk->pg);
106 	else {
107 		kunmap_atomic(walk->data);
108 		/*
109 		 * The may sleep test only makes sense for sync users.
110 		 * Async users don't need to sleep here anyway.
111 		 */
112 		crypto_yield(walk->flags);
113 	}
114 
115 	if (err)
116 		return err;
117 
118 	if (nbytes) {
119 		walk->offset = 0;
120 		walk->pg++;
121 		return hash_walk_next(walk);
122 	}
123 
124 	if (!walk->total)
125 		return 0;
126 
127 	walk->sg = sg_next(walk->sg);
128 
129 	return hash_walk_new_entry(walk);
130 }
131 EXPORT_SYMBOL_GPL(crypto_hash_walk_done);
132 
133 int crypto_hash_walk_first(struct ahash_request *req,
134 			   struct crypto_hash_walk *walk)
135 {
136 	walk->total = req->nbytes;
137 
138 	if (!walk->total) {
139 		walk->entrylen = 0;
140 		return 0;
141 	}
142 
143 	walk->alignmask = crypto_ahash_alignmask(crypto_ahash_reqtfm(req));
144 	walk->sg = req->src;
145 	walk->flags = req->base.flags & CRYPTO_TFM_REQ_MASK;
146 
147 	return hash_walk_new_entry(walk);
148 }
149 EXPORT_SYMBOL_GPL(crypto_hash_walk_first);
150 
151 int crypto_ahash_walk_first(struct ahash_request *req,
152 			    struct crypto_hash_walk *walk)
153 {
154 	walk->total = req->nbytes;
155 
156 	if (!walk->total) {
157 		walk->entrylen = 0;
158 		return 0;
159 	}
160 
161 	walk->alignmask = crypto_ahash_alignmask(crypto_ahash_reqtfm(req));
162 	walk->sg = req->src;
163 	walk->flags = req->base.flags & CRYPTO_TFM_REQ_MASK;
164 	walk->flags |= CRYPTO_ALG_ASYNC;
165 
166 	BUILD_BUG_ON(CRYPTO_TFM_REQ_MASK & CRYPTO_ALG_ASYNC);
167 
168 	return hash_walk_new_entry(walk);
169 }
170 EXPORT_SYMBOL_GPL(crypto_ahash_walk_first);
171 
172 static int ahash_setkey_unaligned(struct crypto_ahash *tfm, const u8 *key,
173 				unsigned int keylen)
174 {
175 	unsigned long alignmask = crypto_ahash_alignmask(tfm);
176 	int ret;
177 	u8 *buffer, *alignbuffer;
178 	unsigned long absize;
179 
180 	absize = keylen + alignmask;
181 	buffer = kmalloc(absize, GFP_KERNEL);
182 	if (!buffer)
183 		return -ENOMEM;
184 
185 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
186 	memcpy(alignbuffer, key, keylen);
187 	ret = tfm->setkey(tfm, alignbuffer, keylen);
188 	kzfree(buffer);
189 	return ret;
190 }
191 
192 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
193 			unsigned int keylen)
194 {
195 	unsigned long alignmask = crypto_ahash_alignmask(tfm);
196 
197 	if ((unsigned long)key & alignmask)
198 		return ahash_setkey_unaligned(tfm, key, keylen);
199 
200 	return tfm->setkey(tfm, key, keylen);
201 }
202 EXPORT_SYMBOL_GPL(crypto_ahash_setkey);
203 
204 static int ahash_nosetkey(struct crypto_ahash *tfm, const u8 *key,
205 			  unsigned int keylen)
206 {
207 	return -ENOSYS;
208 }
209 
210 static inline unsigned int ahash_align_buffer_size(unsigned len,
211 						   unsigned long mask)
212 {
213 	return len + (mask & ~(crypto_tfm_ctx_alignment() - 1));
214 }
215 
216 static int ahash_save_req(struct ahash_request *req, crypto_completion_t cplt)
217 {
218 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
219 	unsigned long alignmask = crypto_ahash_alignmask(tfm);
220 	unsigned int ds = crypto_ahash_digestsize(tfm);
221 	struct ahash_request_priv *priv;
222 
223 	priv = kmalloc(sizeof(*priv) + ahash_align_buffer_size(ds, alignmask),
224 		       (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
225 		       GFP_KERNEL : GFP_ATOMIC);
226 	if (!priv)
227 		return -ENOMEM;
228 
229 	/*
230 	 * WARNING: Voodoo programming below!
231 	 *
232 	 * The code below is obscure and hard to understand, thus explanation
233 	 * is necessary. See include/crypto/hash.h and include/linux/crypto.h
234 	 * to understand the layout of structures used here!
235 	 *
236 	 * The code here will replace portions of the ORIGINAL request with
237 	 * pointers to new code and buffers so the hashing operation can store
238 	 * the result in aligned buffer. We will call the modified request
239 	 * an ADJUSTED request.
240 	 *
241 	 * The newly mangled request will look as such:
242 	 *
243 	 * req {
244 	 *   .result        = ADJUSTED[new aligned buffer]
245 	 *   .base.complete = ADJUSTED[pointer to completion function]
246 	 *   .base.data     = ADJUSTED[*req (pointer to self)]
247 	 *   .priv          = ADJUSTED[new priv] {
248 	 *           .result   = ORIGINAL(result)
249 	 *           .complete = ORIGINAL(base.complete)
250 	 *           .data     = ORIGINAL(base.data)
251 	 *   }
252 	 */
253 
254 	priv->result = req->result;
255 	priv->complete = req->base.complete;
256 	priv->data = req->base.data;
257 	priv->flags = req->base.flags;
258 
259 	/*
260 	 * WARNING: We do not backup req->priv here! The req->priv
261 	 *          is for internal use of the Crypto API and the
262 	 *          user must _NOT_ _EVER_ depend on it's content!
263 	 */
264 
265 	req->result = PTR_ALIGN((u8 *)priv->ubuf, alignmask + 1);
266 	req->base.complete = cplt;
267 	req->base.data = req;
268 	req->priv = priv;
269 
270 	return 0;
271 }
272 
273 static void ahash_restore_req(struct ahash_request *req, int err)
274 {
275 	struct ahash_request_priv *priv = req->priv;
276 
277 	if (!err)
278 		memcpy(priv->result, req->result,
279 		       crypto_ahash_digestsize(crypto_ahash_reqtfm(req)));
280 
281 	/* Restore the original crypto request. */
282 	req->result = priv->result;
283 
284 	ahash_request_set_callback(req, priv->flags,
285 				   priv->complete, priv->data);
286 	req->priv = NULL;
287 
288 	/* Free the req->priv.priv from the ADJUSTED request. */
289 	kzfree(priv);
290 }
291 
292 static void ahash_notify_einprogress(struct ahash_request *req)
293 {
294 	struct ahash_request_priv *priv = req->priv;
295 	struct crypto_async_request oreq;
296 
297 	oreq.data = priv->data;
298 
299 	priv->complete(&oreq, -EINPROGRESS);
300 }
301 
302 static void ahash_op_unaligned_done(struct crypto_async_request *req, int err)
303 {
304 	struct ahash_request *areq = req->data;
305 
306 	if (err == -EINPROGRESS) {
307 		ahash_notify_einprogress(areq);
308 		return;
309 	}
310 
311 	/*
312 	 * Restore the original request, see ahash_op_unaligned() for what
313 	 * goes where.
314 	 *
315 	 * The "struct ahash_request *req" here is in fact the "req.base"
316 	 * from the ADJUSTED request from ahash_op_unaligned(), thus as it
317 	 * is a pointer to self, it is also the ADJUSTED "req" .
318 	 */
319 
320 	/* First copy req->result into req->priv.result */
321 	ahash_restore_req(areq, err);
322 
323 	/* Complete the ORIGINAL request. */
324 	areq->base.complete(&areq->base, err);
325 }
326 
327 static int ahash_op_unaligned(struct ahash_request *req,
328 			      int (*op)(struct ahash_request *))
329 {
330 	int err;
331 
332 	err = ahash_save_req(req, ahash_op_unaligned_done);
333 	if (err)
334 		return err;
335 
336 	err = op(req);
337 	if (err == -EINPROGRESS || err == -EBUSY)
338 		return err;
339 
340 	ahash_restore_req(req, err);
341 
342 	return err;
343 }
344 
345 static int crypto_ahash_op(struct ahash_request *req,
346 			   int (*op)(struct ahash_request *))
347 {
348 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
349 	unsigned long alignmask = crypto_ahash_alignmask(tfm);
350 
351 	if ((unsigned long)req->result & alignmask)
352 		return ahash_op_unaligned(req, op);
353 
354 	return op(req);
355 }
356 
357 int crypto_ahash_final(struct ahash_request *req)
358 {
359 	return crypto_ahash_op(req, crypto_ahash_reqtfm(req)->final);
360 }
361 EXPORT_SYMBOL_GPL(crypto_ahash_final);
362 
363 int crypto_ahash_finup(struct ahash_request *req)
364 {
365 	return crypto_ahash_op(req, crypto_ahash_reqtfm(req)->finup);
366 }
367 EXPORT_SYMBOL_GPL(crypto_ahash_finup);
368 
369 int crypto_ahash_digest(struct ahash_request *req)
370 {
371 	return crypto_ahash_op(req, crypto_ahash_reqtfm(req)->digest);
372 }
373 EXPORT_SYMBOL_GPL(crypto_ahash_digest);
374 
375 static void ahash_def_finup_done2(struct crypto_async_request *req, int err)
376 {
377 	struct ahash_request *areq = req->data;
378 
379 	if (err == -EINPROGRESS)
380 		return;
381 
382 	ahash_restore_req(areq, err);
383 
384 	areq->base.complete(&areq->base, err);
385 }
386 
387 static int ahash_def_finup_finish1(struct ahash_request *req, int err)
388 {
389 	if (err)
390 		goto out;
391 
392 	req->base.complete = ahash_def_finup_done2;
393 
394 	err = crypto_ahash_reqtfm(req)->final(req);
395 	if (err == -EINPROGRESS || err == -EBUSY)
396 		return err;
397 
398 out:
399 	ahash_restore_req(req, err);
400 	return err;
401 }
402 
403 static void ahash_def_finup_done1(struct crypto_async_request *req, int err)
404 {
405 	struct ahash_request *areq = req->data;
406 
407 	if (err == -EINPROGRESS) {
408 		ahash_notify_einprogress(areq);
409 		return;
410 	}
411 
412 	areq->base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
413 
414 	err = ahash_def_finup_finish1(areq, err);
415 	if (areq->priv)
416 		return;
417 
418 	areq->base.complete(&areq->base, err);
419 }
420 
421 static int ahash_def_finup(struct ahash_request *req)
422 {
423 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
424 	int err;
425 
426 	err = ahash_save_req(req, ahash_def_finup_done1);
427 	if (err)
428 		return err;
429 
430 	err = tfm->update(req);
431 	if (err == -EINPROGRESS || err == -EBUSY)
432 		return err;
433 
434 	return ahash_def_finup_finish1(req, err);
435 }
436 
437 static int ahash_no_export(struct ahash_request *req, void *out)
438 {
439 	return -ENOSYS;
440 }
441 
442 static int ahash_no_import(struct ahash_request *req, const void *in)
443 {
444 	return -ENOSYS;
445 }
446 
447 static int crypto_ahash_init_tfm(struct crypto_tfm *tfm)
448 {
449 	struct crypto_ahash *hash = __crypto_ahash_cast(tfm);
450 	struct ahash_alg *alg = crypto_ahash_alg(hash);
451 
452 	hash->setkey = ahash_nosetkey;
453 	hash->has_setkey = false;
454 	hash->export = ahash_no_export;
455 	hash->import = ahash_no_import;
456 
457 	if (tfm->__crt_alg->cra_type != &crypto_ahash_type)
458 		return crypto_init_shash_ops_async(tfm);
459 
460 	hash->init = alg->init;
461 	hash->update = alg->update;
462 	hash->final = alg->final;
463 	hash->finup = alg->finup ?: ahash_def_finup;
464 	hash->digest = alg->digest;
465 
466 	if (alg->setkey) {
467 		hash->setkey = alg->setkey;
468 		hash->has_setkey = true;
469 	}
470 	if (alg->export)
471 		hash->export = alg->export;
472 	if (alg->import)
473 		hash->import = alg->import;
474 
475 	return 0;
476 }
477 
478 static unsigned int crypto_ahash_extsize(struct crypto_alg *alg)
479 {
480 	if (alg->cra_type != &crypto_ahash_type)
481 		return sizeof(struct crypto_shash *);
482 
483 	return crypto_alg_extsize(alg);
484 }
485 
486 #ifdef CONFIG_NET
487 static int crypto_ahash_report(struct sk_buff *skb, struct crypto_alg *alg)
488 {
489 	struct crypto_report_hash rhash;
490 
491 	strncpy(rhash.type, "ahash", sizeof(rhash.type));
492 
493 	rhash.blocksize = alg->cra_blocksize;
494 	rhash.digestsize = __crypto_hash_alg_common(alg)->digestsize;
495 
496 	if (nla_put(skb, CRYPTOCFGA_REPORT_HASH,
497 		    sizeof(struct crypto_report_hash), &rhash))
498 		goto nla_put_failure;
499 	return 0;
500 
501 nla_put_failure:
502 	return -EMSGSIZE;
503 }
504 #else
505 static int crypto_ahash_report(struct sk_buff *skb, struct crypto_alg *alg)
506 {
507 	return -ENOSYS;
508 }
509 #endif
510 
511 static void crypto_ahash_show(struct seq_file *m, struct crypto_alg *alg)
512 	__maybe_unused;
513 static void crypto_ahash_show(struct seq_file *m, struct crypto_alg *alg)
514 {
515 	seq_printf(m, "type         : ahash\n");
516 	seq_printf(m, "async        : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
517 					     "yes" : "no");
518 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
519 	seq_printf(m, "digestsize   : %u\n",
520 		   __crypto_hash_alg_common(alg)->digestsize);
521 }
522 
523 const struct crypto_type crypto_ahash_type = {
524 	.extsize = crypto_ahash_extsize,
525 	.init_tfm = crypto_ahash_init_tfm,
526 #ifdef CONFIG_PROC_FS
527 	.show = crypto_ahash_show,
528 #endif
529 	.report = crypto_ahash_report,
530 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
531 	.maskset = CRYPTO_ALG_TYPE_AHASH_MASK,
532 	.type = CRYPTO_ALG_TYPE_AHASH,
533 	.tfmsize = offsetof(struct crypto_ahash, base),
534 };
535 EXPORT_SYMBOL_GPL(crypto_ahash_type);
536 
537 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
538 					u32 mask)
539 {
540 	return crypto_alloc_tfm(alg_name, &crypto_ahash_type, type, mask);
541 }
542 EXPORT_SYMBOL_GPL(crypto_alloc_ahash);
543 
544 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask)
545 {
546 	return crypto_type_has_alg(alg_name, &crypto_ahash_type, type, mask);
547 }
548 EXPORT_SYMBOL_GPL(crypto_has_ahash);
549 
550 static int ahash_prepare_alg(struct ahash_alg *alg)
551 {
552 	struct crypto_alg *base = &alg->halg.base;
553 
554 	if (alg->halg.digestsize > PAGE_SIZE / 8 ||
555 	    alg->halg.statesize > PAGE_SIZE / 8 ||
556 	    alg->halg.statesize == 0)
557 		return -EINVAL;
558 
559 	base->cra_type = &crypto_ahash_type;
560 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
561 	base->cra_flags |= CRYPTO_ALG_TYPE_AHASH;
562 
563 	return 0;
564 }
565 
566 int crypto_register_ahash(struct ahash_alg *alg)
567 {
568 	struct crypto_alg *base = &alg->halg.base;
569 	int err;
570 
571 	err = ahash_prepare_alg(alg);
572 	if (err)
573 		return err;
574 
575 	return crypto_register_alg(base);
576 }
577 EXPORT_SYMBOL_GPL(crypto_register_ahash);
578 
579 int crypto_unregister_ahash(struct ahash_alg *alg)
580 {
581 	return crypto_unregister_alg(&alg->halg.base);
582 }
583 EXPORT_SYMBOL_GPL(crypto_unregister_ahash);
584 
585 int crypto_register_ahashes(struct ahash_alg *algs, int count)
586 {
587 	int i, ret;
588 
589 	for (i = 0; i < count; i++) {
590 		ret = crypto_register_ahash(&algs[i]);
591 		if (ret)
592 			goto err;
593 	}
594 
595 	return 0;
596 
597 err:
598 	for (--i; i >= 0; --i)
599 		crypto_unregister_ahash(&algs[i]);
600 
601 	return ret;
602 }
603 EXPORT_SYMBOL_GPL(crypto_register_ahashes);
604 
605 void crypto_unregister_ahashes(struct ahash_alg *algs, int count)
606 {
607 	int i;
608 
609 	for (i = count - 1; i >= 0; --i)
610 		crypto_unregister_ahash(&algs[i]);
611 }
612 EXPORT_SYMBOL_GPL(crypto_unregister_ahashes);
613 
614 int ahash_register_instance(struct crypto_template *tmpl,
615 			    struct ahash_instance *inst)
616 {
617 	int err;
618 
619 	err = ahash_prepare_alg(&inst->alg);
620 	if (err)
621 		return err;
622 
623 	return crypto_register_instance(tmpl, ahash_crypto_instance(inst));
624 }
625 EXPORT_SYMBOL_GPL(ahash_register_instance);
626 
627 void ahash_free_instance(struct crypto_instance *inst)
628 {
629 	crypto_drop_spawn(crypto_instance_ctx(inst));
630 	kfree(ahash_instance(inst));
631 }
632 EXPORT_SYMBOL_GPL(ahash_free_instance);
633 
634 int crypto_init_ahash_spawn(struct crypto_ahash_spawn *spawn,
635 			    struct hash_alg_common *alg,
636 			    struct crypto_instance *inst)
637 {
638 	return crypto_init_spawn2(&spawn->base, &alg->base, inst,
639 				  &crypto_ahash_type);
640 }
641 EXPORT_SYMBOL_GPL(crypto_init_ahash_spawn);
642 
643 struct hash_alg_common *ahash_attr_alg(struct rtattr *rta, u32 type, u32 mask)
644 {
645 	struct crypto_alg *alg;
646 
647 	alg = crypto_attr_alg2(rta, &crypto_ahash_type, type, mask);
648 	return IS_ERR(alg) ? ERR_CAST(alg) : __crypto_hash_alg_common(alg);
649 }
650 EXPORT_SYMBOL_GPL(ahash_attr_alg);
651 
652 MODULE_LICENSE("GPL");
653 MODULE_DESCRIPTION("Asynchronous cryptographic hash type");
654