xref: /openbmc/linux/crypto/aes_generic.c (revision 89e12654)
1 /*
2  * Cryptographic API.
3  *
4  * AES Cipher Algorithm.
5  *
6  * Based on Brian Gladman's code.
7  *
8  * Linux developers:
9  *  Alexander Kjeldaas <astor@fast.no>
10  *  Herbert Valerio Riedel <hvr@hvrlab.org>
11  *  Kyle McMartin <kyle@debian.org>
12  *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * ---------------------------------------------------------------------------
20  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
21  * All rights reserved.
22  *
23  * LICENSE TERMS
24  *
25  * The free distribution and use of this software in both source and binary
26  * form is allowed (with or without changes) provided that:
27  *
28  *   1. distributions of this source code include the above copyright
29  *      notice, this list of conditions and the following disclaimer;
30  *
31  *   2. distributions in binary form include the above copyright
32  *      notice, this list of conditions and the following disclaimer
33  *      in the documentation and/or other associated materials;
34  *
35  *   3. the copyright holder's name is not used to endorse products
36  *      built using this software without specific written permission.
37  *
38  * ALTERNATIVELY, provided that this notice is retained in full, this product
39  * may be distributed under the terms of the GNU General Public License (GPL),
40  * in which case the provisions of the GPL apply INSTEAD OF those given above.
41  *
42  * DISCLAIMER
43  *
44  * This software is provided 'as is' with no explicit or implied warranties
45  * in respect of its properties, including, but not limited to, correctness
46  * and/or fitness for purpose.
47  * ---------------------------------------------------------------------------
48  */
49 
50 /* Some changes from the Gladman version:
51     s/RIJNDAEL(e_key)/E_KEY/g
52     s/RIJNDAEL(d_key)/D_KEY/g
53 */
54 
55 #include <crypto/aes.h>
56 #include <linux/module.h>
57 #include <linux/init.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/crypto.h>
61 #include <asm/byteorder.h>
62 
63 /*
64  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
65  */
66 static inline u8
67 byte(const u32 x, const unsigned n)
68 {
69 	return x >> (n << 3);
70 }
71 
72 struct aes_ctx {
73 	int key_length;
74 	u32 buf[120];
75 };
76 
77 #define E_KEY (&ctx->buf[0])
78 #define D_KEY (&ctx->buf[60])
79 
80 static u8 pow_tab[256] __initdata;
81 static u8 log_tab[256] __initdata;
82 static u8 sbx_tab[256] __initdata;
83 static u8 isb_tab[256] __initdata;
84 static u32 rco_tab[10];
85 static u32 ft_tab[4][256];
86 static u32 it_tab[4][256];
87 
88 static u32 fl_tab[4][256];
89 static u32 il_tab[4][256];
90 
91 static inline u8 __init
92 f_mult (u8 a, u8 b)
93 {
94 	u8 aa = log_tab[a], cc = aa + log_tab[b];
95 
96 	return pow_tab[cc + (cc < aa ? 1 : 0)];
97 }
98 
99 #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
100 
101 #define f_rn(bo, bi, n, k)					\
102     bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
103              ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
104              ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
105              ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
106 
107 #define i_rn(bo, bi, n, k)					\
108     bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
109              it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
110              it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
111              it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
112 
113 #define ls_box(x)				\
114     ( fl_tab[0][byte(x, 0)] ^			\
115       fl_tab[1][byte(x, 1)] ^			\
116       fl_tab[2][byte(x, 2)] ^			\
117       fl_tab[3][byte(x, 3)] )
118 
119 #define f_rl(bo, bi, n, k)					\
120     bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
121              fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
122              fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
123              fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
124 
125 #define i_rl(bo, bi, n, k)					\
126     bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
127              il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
128              il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
129              il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
130 
131 static void __init
132 gen_tabs (void)
133 {
134 	u32 i, t;
135 	u8 p, q;
136 
137 	/* log and power tables for GF(2**8) finite field with
138 	   0x011b as modular polynomial - the simplest primitive
139 	   root is 0x03, used here to generate the tables */
140 
141 	for (i = 0, p = 1; i < 256; ++i) {
142 		pow_tab[i] = (u8) p;
143 		log_tab[p] = (u8) i;
144 
145 		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
146 	}
147 
148 	log_tab[1] = 0;
149 
150 	for (i = 0, p = 1; i < 10; ++i) {
151 		rco_tab[i] = p;
152 
153 		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
154 	}
155 
156 	for (i = 0; i < 256; ++i) {
157 		p = (i ? pow_tab[255 - log_tab[i]] : 0);
158 		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
159 		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
160 		sbx_tab[i] = p;
161 		isb_tab[p] = (u8) i;
162 	}
163 
164 	for (i = 0; i < 256; ++i) {
165 		p = sbx_tab[i];
166 
167 		t = p;
168 		fl_tab[0][i] = t;
169 		fl_tab[1][i] = rol32(t, 8);
170 		fl_tab[2][i] = rol32(t, 16);
171 		fl_tab[3][i] = rol32(t, 24);
172 
173 		t = ((u32) ff_mult (2, p)) |
174 		    ((u32) p << 8) |
175 		    ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
176 
177 		ft_tab[0][i] = t;
178 		ft_tab[1][i] = rol32(t, 8);
179 		ft_tab[2][i] = rol32(t, 16);
180 		ft_tab[3][i] = rol32(t, 24);
181 
182 		p = isb_tab[i];
183 
184 		t = p;
185 		il_tab[0][i] = t;
186 		il_tab[1][i] = rol32(t, 8);
187 		il_tab[2][i] = rol32(t, 16);
188 		il_tab[3][i] = rol32(t, 24);
189 
190 		t = ((u32) ff_mult (14, p)) |
191 		    ((u32) ff_mult (9, p) << 8) |
192 		    ((u32) ff_mult (13, p) << 16) |
193 		    ((u32) ff_mult (11, p) << 24);
194 
195 		it_tab[0][i] = t;
196 		it_tab[1][i] = rol32(t, 8);
197 		it_tab[2][i] = rol32(t, 16);
198 		it_tab[3][i] = rol32(t, 24);
199 	}
200 }
201 
202 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
203 
204 #define imix_col(y,x)       \
205     u   = star_x(x);        \
206     v   = star_x(u);        \
207     w   = star_x(v);        \
208     t   = w ^ (x);          \
209    (y)  = u ^ v ^ w;        \
210    (y) ^= ror32(u ^ t,  8) ^ \
211           ror32(v ^ t, 16) ^ \
212           ror32(t,24)
213 
214 /* initialise the key schedule from the user supplied key */
215 
216 #define loop4(i)                                    \
217 {   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
218     t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
219     t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
220     t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
221     t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
222 }
223 
224 #define loop6(i)                                    \
225 {   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
226     t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
227     t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
228     t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
229     t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
230     t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
231     t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
232 }
233 
234 #define loop8(i)                                    \
235 {   t = ror32(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
236     t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
237     t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
238     t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
239     t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
240     t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
241     E_KEY[8 * i + 12] = t;                \
242     t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
243     t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
244     t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
245 }
246 
247 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
248 		       unsigned int key_len)
249 {
250 	struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
251 	const __le32 *key = (const __le32 *)in_key;
252 	u32 *flags = &tfm->crt_flags;
253 	u32 i, t, u, v, w;
254 
255 	if (key_len % 8) {
256 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
257 		return -EINVAL;
258 	}
259 
260 	ctx->key_length = key_len;
261 
262 	E_KEY[0] = le32_to_cpu(key[0]);
263 	E_KEY[1] = le32_to_cpu(key[1]);
264 	E_KEY[2] = le32_to_cpu(key[2]);
265 	E_KEY[3] = le32_to_cpu(key[3]);
266 
267 	switch (key_len) {
268 	case 16:
269 		t = E_KEY[3];
270 		for (i = 0; i < 10; ++i)
271 			loop4 (i);
272 		break;
273 
274 	case 24:
275 		E_KEY[4] = le32_to_cpu(key[4]);
276 		t = E_KEY[5] = le32_to_cpu(key[5]);
277 		for (i = 0; i < 8; ++i)
278 			loop6 (i);
279 		break;
280 
281 	case 32:
282 		E_KEY[4] = le32_to_cpu(key[4]);
283 		E_KEY[5] = le32_to_cpu(key[5]);
284 		E_KEY[6] = le32_to_cpu(key[6]);
285 		t = E_KEY[7] = le32_to_cpu(key[7]);
286 		for (i = 0; i < 7; ++i)
287 			loop8 (i);
288 		break;
289 	}
290 
291 	D_KEY[0] = E_KEY[0];
292 	D_KEY[1] = E_KEY[1];
293 	D_KEY[2] = E_KEY[2];
294 	D_KEY[3] = E_KEY[3];
295 
296 	for (i = 4; i < key_len + 24; ++i) {
297 		imix_col (D_KEY[i], E_KEY[i]);
298 	}
299 
300 	return 0;
301 }
302 
303 /* encrypt a block of text */
304 
305 #define f_nround(bo, bi, k) \
306     f_rn(bo, bi, 0, k);     \
307     f_rn(bo, bi, 1, k);     \
308     f_rn(bo, bi, 2, k);     \
309     f_rn(bo, bi, 3, k);     \
310     k += 4
311 
312 #define f_lround(bo, bi, k) \
313     f_rl(bo, bi, 0, k);     \
314     f_rl(bo, bi, 1, k);     \
315     f_rl(bo, bi, 2, k);     \
316     f_rl(bo, bi, 3, k)
317 
318 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
319 {
320 	const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
321 	const __le32 *src = (const __le32 *)in;
322 	__le32 *dst = (__le32 *)out;
323 	u32 b0[4], b1[4];
324 	const u32 *kp = E_KEY + 4;
325 
326 	b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0];
327 	b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1];
328 	b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2];
329 	b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];
330 
331 	if (ctx->key_length > 24) {
332 		f_nround (b1, b0, kp);
333 		f_nround (b0, b1, kp);
334 	}
335 
336 	if (ctx->key_length > 16) {
337 		f_nround (b1, b0, kp);
338 		f_nround (b0, b1, kp);
339 	}
340 
341 	f_nround (b1, b0, kp);
342 	f_nround (b0, b1, kp);
343 	f_nround (b1, b0, kp);
344 	f_nround (b0, b1, kp);
345 	f_nround (b1, b0, kp);
346 	f_nround (b0, b1, kp);
347 	f_nround (b1, b0, kp);
348 	f_nround (b0, b1, kp);
349 	f_nround (b1, b0, kp);
350 	f_lround (b0, b1, kp);
351 
352 	dst[0] = cpu_to_le32(b0[0]);
353 	dst[1] = cpu_to_le32(b0[1]);
354 	dst[2] = cpu_to_le32(b0[2]);
355 	dst[3] = cpu_to_le32(b0[3]);
356 }
357 
358 /* decrypt a block of text */
359 
360 #define i_nround(bo, bi, k) \
361     i_rn(bo, bi, 0, k);     \
362     i_rn(bo, bi, 1, k);     \
363     i_rn(bo, bi, 2, k);     \
364     i_rn(bo, bi, 3, k);     \
365     k -= 4
366 
367 #define i_lround(bo, bi, k) \
368     i_rl(bo, bi, 0, k);     \
369     i_rl(bo, bi, 1, k);     \
370     i_rl(bo, bi, 2, k);     \
371     i_rl(bo, bi, 3, k)
372 
373 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
374 {
375 	const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
376 	const __le32 *src = (const __le32 *)in;
377 	__le32 *dst = (__le32 *)out;
378 	u32 b0[4], b1[4];
379 	const int key_len = ctx->key_length;
380 	const u32 *kp = D_KEY + key_len + 20;
381 
382 	b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24];
383 	b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25];
384 	b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26];
385 	b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];
386 
387 	if (key_len > 24) {
388 		i_nround (b1, b0, kp);
389 		i_nround (b0, b1, kp);
390 	}
391 
392 	if (key_len > 16) {
393 		i_nround (b1, b0, kp);
394 		i_nround (b0, b1, kp);
395 	}
396 
397 	i_nround (b1, b0, kp);
398 	i_nround (b0, b1, kp);
399 	i_nround (b1, b0, kp);
400 	i_nround (b0, b1, kp);
401 	i_nround (b1, b0, kp);
402 	i_nround (b0, b1, kp);
403 	i_nround (b1, b0, kp);
404 	i_nround (b0, b1, kp);
405 	i_nround (b1, b0, kp);
406 	i_lround (b0, b1, kp);
407 
408 	dst[0] = cpu_to_le32(b0[0]);
409 	dst[1] = cpu_to_le32(b0[1]);
410 	dst[2] = cpu_to_le32(b0[2]);
411 	dst[3] = cpu_to_le32(b0[3]);
412 }
413 
414 
415 static struct crypto_alg aes_alg = {
416 	.cra_name		=	"aes",
417 	.cra_driver_name	=	"aes-generic",
418 	.cra_priority		=	100,
419 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
420 	.cra_blocksize		=	AES_BLOCK_SIZE,
421 	.cra_ctxsize		=	sizeof(struct aes_ctx),
422 	.cra_alignmask		=	3,
423 	.cra_module		=	THIS_MODULE,
424 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
425 	.cra_u			=	{
426 		.cipher = {
427 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
428 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
429 			.cia_setkey	   	= 	aes_set_key,
430 			.cia_encrypt	 	=	aes_encrypt,
431 			.cia_decrypt	  	=	aes_decrypt
432 		}
433 	}
434 };
435 
436 static int __init aes_init(void)
437 {
438 	gen_tabs();
439 	return crypto_register_alg(&aes_alg);
440 }
441 
442 static void __exit aes_fini(void)
443 {
444 	crypto_unregister_alg(&aes_alg);
445 }
446 
447 module_init(aes_init);
448 module_exit(aes_fini);
449 
450 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
451 MODULE_LICENSE("Dual BSD/GPL");
452 MODULE_ALIAS("aes");
453