1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2019 Linaro, Ltd. <ard.biesheuvel@linaro.org> 4 */ 5 6 #ifdef CONFIG_ARM64 7 #include <asm/neon-intrinsics.h> 8 9 #define AES_ROUND "aese %0.16b, %1.16b \n\t aesmc %0.16b, %0.16b" 10 #else 11 #include <arm_neon.h> 12 13 #define AES_ROUND "aese.8 %q0, %q1 \n\t aesmc.8 %q0, %q0" 14 #endif 15 16 #define AEGIS_BLOCK_SIZE 16 17 18 #include <stddef.h> 19 20 extern int aegis128_have_aes_insn; 21 22 void *memcpy(void *dest, const void *src, size_t n); 23 void *memset(void *s, int c, size_t n); 24 25 struct aegis128_state { 26 uint8x16_t v[5]; 27 }; 28 29 extern const uint8_t crypto_aes_sbox[]; 30 31 static struct aegis128_state aegis128_load_state_neon(const void *state) 32 { 33 return (struct aegis128_state){ { 34 vld1q_u8(state), 35 vld1q_u8(state + 16), 36 vld1q_u8(state + 32), 37 vld1q_u8(state + 48), 38 vld1q_u8(state + 64) 39 } }; 40 } 41 42 static void aegis128_save_state_neon(struct aegis128_state st, void *state) 43 { 44 vst1q_u8(state, st.v[0]); 45 vst1q_u8(state + 16, st.v[1]); 46 vst1q_u8(state + 32, st.v[2]); 47 vst1q_u8(state + 48, st.v[3]); 48 vst1q_u8(state + 64, st.v[4]); 49 } 50 51 static inline __attribute__((always_inline)) 52 uint8x16_t aegis_aes_round(uint8x16_t w) 53 { 54 uint8x16_t z = {}; 55 56 #ifdef CONFIG_ARM64 57 if (!__builtin_expect(aegis128_have_aes_insn, 1)) { 58 static const uint8_t shift_rows[] = { 59 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, 60 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, 61 }; 62 static const uint8_t ror32by8[] = { 63 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, 64 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, 65 }; 66 uint8x16_t v; 67 68 // shift rows 69 w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); 70 71 // sub bytes 72 #ifndef CONFIG_CC_IS_GCC 73 v = vqtbl4q_u8(vld1q_u8_x4(crypto_aes_sbox), w); 74 v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x40), w - 0x40); 75 v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0x80), w - 0x80); 76 v = vqtbx4q_u8(v, vld1q_u8_x4(crypto_aes_sbox + 0xc0), w - 0xc0); 77 #else 78 asm("tbl %0.16b, {v16.16b-v19.16b}, %1.16b" : "=w"(v) : "w"(w)); 79 w -= 0x40; 80 asm("tbx %0.16b, {v20.16b-v23.16b}, %1.16b" : "+w"(v) : "w"(w)); 81 w -= 0x40; 82 asm("tbx %0.16b, {v24.16b-v27.16b}, %1.16b" : "+w"(v) : "w"(w)); 83 w -= 0x40; 84 asm("tbx %0.16b, {v28.16b-v31.16b}, %1.16b" : "+w"(v) : "w"(w)); 85 #endif 86 87 // mix columns 88 w = (v << 1) ^ (uint8x16_t)(((int8x16_t)v >> 7) & 0x1b); 89 w ^= (uint8x16_t)vrev32q_u16((uint16x8_t)v); 90 w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); 91 92 return w; 93 } 94 #endif 95 96 /* 97 * We use inline asm here instead of the vaeseq_u8/vaesmcq_u8 intrinsics 98 * to force the compiler to issue the aese/aesmc instructions in pairs. 99 * This is much faster on many cores, where the instruction pair can 100 * execute in a single cycle. 101 */ 102 asm(AES_ROUND : "+w"(w) : "w"(z)); 103 return w; 104 } 105 106 static inline __attribute__((always_inline)) 107 struct aegis128_state aegis128_update_neon(struct aegis128_state st, 108 uint8x16_t m) 109 { 110 m ^= aegis_aes_round(st.v[4]); 111 st.v[4] ^= aegis_aes_round(st.v[3]); 112 st.v[3] ^= aegis_aes_round(st.v[2]); 113 st.v[2] ^= aegis_aes_round(st.v[1]); 114 st.v[1] ^= aegis_aes_round(st.v[0]); 115 st.v[0] ^= m; 116 117 return st; 118 } 119 120 static inline __attribute__((always_inline)) 121 void preload_sbox(void) 122 { 123 if (!IS_ENABLED(CONFIG_ARM64) || 124 !IS_ENABLED(CONFIG_CC_IS_GCC) || 125 __builtin_expect(aegis128_have_aes_insn, 1)) 126 return; 127 128 asm("ld1 {v16.16b-v19.16b}, [%0], #64 \n\t" 129 "ld1 {v20.16b-v23.16b}, [%0], #64 \n\t" 130 "ld1 {v24.16b-v27.16b}, [%0], #64 \n\t" 131 "ld1 {v28.16b-v31.16b}, [%0] \n\t" 132 :: "r"(crypto_aes_sbox)); 133 } 134 135 void crypto_aegis128_init_neon(void *state, const void *key, const void *iv) 136 { 137 static const uint8_t const0[] = { 138 0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d, 139 0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62, 140 }; 141 static const uint8_t const1[] = { 142 0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1, 143 0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd, 144 }; 145 uint8x16_t k = vld1q_u8(key); 146 uint8x16_t kiv = k ^ vld1q_u8(iv); 147 struct aegis128_state st = {{ 148 kiv, 149 vld1q_u8(const1), 150 vld1q_u8(const0), 151 k ^ vld1q_u8(const0), 152 k ^ vld1q_u8(const1), 153 }}; 154 int i; 155 156 preload_sbox(); 157 158 for (i = 0; i < 5; i++) { 159 st = aegis128_update_neon(st, k); 160 st = aegis128_update_neon(st, kiv); 161 } 162 aegis128_save_state_neon(st, state); 163 } 164 165 void crypto_aegis128_update_neon(void *state, const void *msg) 166 { 167 struct aegis128_state st = aegis128_load_state_neon(state); 168 169 preload_sbox(); 170 171 st = aegis128_update_neon(st, vld1q_u8(msg)); 172 173 aegis128_save_state_neon(st, state); 174 } 175 176 void crypto_aegis128_encrypt_chunk_neon(void *state, void *dst, const void *src, 177 unsigned int size) 178 { 179 struct aegis128_state st = aegis128_load_state_neon(state); 180 uint8x16_t msg; 181 182 preload_sbox(); 183 184 while (size >= AEGIS_BLOCK_SIZE) { 185 uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; 186 187 msg = vld1q_u8(src); 188 st = aegis128_update_neon(st, msg); 189 vst1q_u8(dst, msg ^ s); 190 191 size -= AEGIS_BLOCK_SIZE; 192 src += AEGIS_BLOCK_SIZE; 193 dst += AEGIS_BLOCK_SIZE; 194 } 195 196 if (size > 0) { 197 uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; 198 uint8_t buf[AEGIS_BLOCK_SIZE] = {}; 199 200 memcpy(buf, src, size); 201 msg = vld1q_u8(buf); 202 st = aegis128_update_neon(st, msg); 203 vst1q_u8(buf, msg ^ s); 204 memcpy(dst, buf, size); 205 } 206 207 aegis128_save_state_neon(st, state); 208 } 209 210 void crypto_aegis128_decrypt_chunk_neon(void *state, void *dst, const void *src, 211 unsigned int size) 212 { 213 struct aegis128_state st = aegis128_load_state_neon(state); 214 uint8x16_t msg; 215 216 preload_sbox(); 217 218 while (size >= AEGIS_BLOCK_SIZE) { 219 msg = vld1q_u8(src) ^ st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; 220 st = aegis128_update_neon(st, msg); 221 vst1q_u8(dst, msg); 222 223 size -= AEGIS_BLOCK_SIZE; 224 src += AEGIS_BLOCK_SIZE; 225 dst += AEGIS_BLOCK_SIZE; 226 } 227 228 if (size > 0) { 229 uint8x16_t s = st.v[1] ^ (st.v[2] & st.v[3]) ^ st.v[4]; 230 uint8_t buf[AEGIS_BLOCK_SIZE]; 231 232 vst1q_u8(buf, s); 233 memcpy(buf, src, size); 234 msg = vld1q_u8(buf) ^ s; 235 vst1q_u8(buf, msg); 236 memcpy(dst, buf, size); 237 238 st = aegis128_update_neon(st, msg); 239 } 240 241 aegis128_save_state_neon(st, state); 242 } 243 244 void crypto_aegis128_final_neon(void *state, void *tag_xor, uint64_t assoclen, 245 uint64_t cryptlen) 246 { 247 struct aegis128_state st = aegis128_load_state_neon(state); 248 uint8x16_t v; 249 int i; 250 251 preload_sbox(); 252 253 v = st.v[3] ^ (uint8x16_t)vcombine_u64(vmov_n_u64(8 * assoclen), 254 vmov_n_u64(8 * cryptlen)); 255 256 for (i = 0; i < 7; i++) 257 st = aegis128_update_neon(st, v); 258 259 v = vld1q_u8(tag_xor); 260 v ^= st.v[0] ^ st.v[1] ^ st.v[2] ^ st.v[3] ^ st.v[4]; 261 vst1q_u8(tag_xor, v); 262 } 263