xref: /openbmc/linux/crypto/aead.c (revision e2f1cf25)
1 /*
2  * AEAD: Authenticated Encryption with Associated Data
3  *
4  * This file provides API support for AEAD algorithms.
5  *
6  * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  */
14 
15 #include <crypto/internal/geniv.h>
16 #include <crypto/scatterwalk.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/seq_file.h>
25 #include <linux/cryptouser.h>
26 #include <net/netlink.h>
27 
28 #include "internal.h"
29 
30 struct compat_request_ctx {
31 	struct scatterlist src[2];
32 	struct scatterlist dst[2];
33 	struct scatterlist ivbuf[2];
34 	struct scatterlist *ivsg;
35 	struct aead_givcrypt_request subreq;
36 };
37 
38 static int aead_null_givencrypt(struct aead_givcrypt_request *req);
39 static int aead_null_givdecrypt(struct aead_givcrypt_request *req);
40 
41 static int setkey_unaligned(struct crypto_aead *tfm, const u8 *key,
42 			    unsigned int keylen)
43 {
44 	unsigned long alignmask = crypto_aead_alignmask(tfm);
45 	int ret;
46 	u8 *buffer, *alignbuffer;
47 	unsigned long absize;
48 
49 	absize = keylen + alignmask;
50 	buffer = kmalloc(absize, GFP_ATOMIC);
51 	if (!buffer)
52 		return -ENOMEM;
53 
54 	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
55 	memcpy(alignbuffer, key, keylen);
56 	ret = tfm->setkey(tfm, alignbuffer, keylen);
57 	memset(alignbuffer, 0, keylen);
58 	kfree(buffer);
59 	return ret;
60 }
61 
62 int crypto_aead_setkey(struct crypto_aead *tfm,
63 		       const u8 *key, unsigned int keylen)
64 {
65 	unsigned long alignmask = crypto_aead_alignmask(tfm);
66 
67 	tfm = tfm->child;
68 
69 	if ((unsigned long)key & alignmask)
70 		return setkey_unaligned(tfm, key, keylen);
71 
72 	return tfm->setkey(tfm, key, keylen);
73 }
74 EXPORT_SYMBOL_GPL(crypto_aead_setkey);
75 
76 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
77 {
78 	int err;
79 
80 	if (authsize > crypto_aead_maxauthsize(tfm))
81 		return -EINVAL;
82 
83 	if (tfm->setauthsize) {
84 		err = tfm->setauthsize(tfm->child, authsize);
85 		if (err)
86 			return err;
87 	}
88 
89 	tfm->child->authsize = authsize;
90 	tfm->authsize = authsize;
91 	return 0;
92 }
93 EXPORT_SYMBOL_GPL(crypto_aead_setauthsize);
94 
95 struct aead_old_request {
96 	struct scatterlist srcbuf[2];
97 	struct scatterlist dstbuf[2];
98 	struct aead_request subreq;
99 };
100 
101 unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
102 {
103 	return tfm->reqsize + sizeof(struct aead_old_request);
104 }
105 EXPORT_SYMBOL_GPL(crypto_aead_reqsize);
106 
107 static int old_crypt(struct aead_request *req,
108 		     int (*crypt)(struct aead_request *req))
109 {
110 	struct aead_old_request *nreq = aead_request_ctx(req);
111 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
112 	struct scatterlist *src, *dst;
113 
114 	if (req->old)
115 		return crypt(req);
116 
117 	src = scatterwalk_ffwd(nreq->srcbuf, req->src, req->assoclen);
118 	dst = req->src == req->dst ?
119 	      src : scatterwalk_ffwd(nreq->dstbuf, req->dst, req->assoclen);
120 
121 	aead_request_set_tfm(&nreq->subreq, aead);
122 	aead_request_set_callback(&nreq->subreq, aead_request_flags(req),
123 				  req->base.complete, req->base.data);
124 	aead_request_set_crypt(&nreq->subreq, src, dst, req->cryptlen,
125 			       req->iv);
126 	aead_request_set_assoc(&nreq->subreq, req->src, req->assoclen);
127 
128 	return crypt(&nreq->subreq);
129 }
130 
131 static int old_encrypt(struct aead_request *req)
132 {
133 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
134 	struct old_aead_alg *alg = crypto_old_aead_alg(aead);
135 
136 	return old_crypt(req, alg->encrypt);
137 }
138 
139 static int old_decrypt(struct aead_request *req)
140 {
141 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
142 	struct old_aead_alg *alg = crypto_old_aead_alg(aead);
143 
144 	return old_crypt(req, alg->decrypt);
145 }
146 
147 static int no_givcrypt(struct aead_givcrypt_request *req)
148 {
149 	return -ENOSYS;
150 }
151 
152 static int crypto_old_aead_init_tfm(struct crypto_tfm *tfm)
153 {
154 	struct old_aead_alg *alg = &tfm->__crt_alg->cra_aead;
155 	struct crypto_aead *crt = __crypto_aead_cast(tfm);
156 
157 	if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
158 		return -EINVAL;
159 
160 	crt->setkey = alg->setkey;
161 	crt->setauthsize = alg->setauthsize;
162 	crt->encrypt = old_encrypt;
163 	crt->decrypt = old_decrypt;
164 	if (alg->ivsize) {
165 		crt->givencrypt = alg->givencrypt ?: no_givcrypt;
166 		crt->givdecrypt = alg->givdecrypt ?: no_givcrypt;
167 	} else {
168 		crt->givencrypt = aead_null_givencrypt;
169 		crt->givdecrypt = aead_null_givdecrypt;
170 	}
171 	crt->child = __crypto_aead_cast(tfm);
172 	crt->authsize = alg->maxauthsize;
173 
174 	return 0;
175 }
176 
177 static void crypto_aead_exit_tfm(struct crypto_tfm *tfm)
178 {
179 	struct crypto_aead *aead = __crypto_aead_cast(tfm);
180 	struct aead_alg *alg = crypto_aead_alg(aead);
181 
182 	alg->exit(aead);
183 }
184 
185 static int crypto_aead_init_tfm(struct crypto_tfm *tfm)
186 {
187 	struct crypto_aead *aead = __crypto_aead_cast(tfm);
188 	struct aead_alg *alg = crypto_aead_alg(aead);
189 
190 	if (crypto_old_aead_alg(aead)->encrypt)
191 		return crypto_old_aead_init_tfm(tfm);
192 
193 	aead->setkey = alg->setkey;
194 	aead->setauthsize = alg->setauthsize;
195 	aead->encrypt = alg->encrypt;
196 	aead->decrypt = alg->decrypt;
197 	aead->child = __crypto_aead_cast(tfm);
198 	aead->authsize = alg->maxauthsize;
199 
200 	if (alg->exit)
201 		aead->base.exit = crypto_aead_exit_tfm;
202 
203 	if (alg->init)
204 		return alg->init(aead);
205 
206 	return 0;
207 }
208 
209 #ifdef CONFIG_NET
210 static int crypto_old_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
211 {
212 	struct crypto_report_aead raead;
213 	struct old_aead_alg *aead = &alg->cra_aead;
214 
215 	strncpy(raead.type, "aead", sizeof(raead.type));
216 	strncpy(raead.geniv, aead->geniv ?: "<built-in>", sizeof(raead.geniv));
217 
218 	raead.blocksize = alg->cra_blocksize;
219 	raead.maxauthsize = aead->maxauthsize;
220 	raead.ivsize = aead->ivsize;
221 
222 	if (nla_put(skb, CRYPTOCFGA_REPORT_AEAD,
223 		    sizeof(struct crypto_report_aead), &raead))
224 		goto nla_put_failure;
225 	return 0;
226 
227 nla_put_failure:
228 	return -EMSGSIZE;
229 }
230 #else
231 static int crypto_old_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
232 {
233 	return -ENOSYS;
234 }
235 #endif
236 
237 static void crypto_old_aead_show(struct seq_file *m, struct crypto_alg *alg)
238 	__attribute__ ((unused));
239 static void crypto_old_aead_show(struct seq_file *m, struct crypto_alg *alg)
240 {
241 	struct old_aead_alg *aead = &alg->cra_aead;
242 
243 	seq_printf(m, "type         : aead\n");
244 	seq_printf(m, "async        : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
245 					     "yes" : "no");
246 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
247 	seq_printf(m, "ivsize       : %u\n", aead->ivsize);
248 	seq_printf(m, "maxauthsize  : %u\n", aead->maxauthsize);
249 	seq_printf(m, "geniv        : %s\n", aead->geniv ?: "<built-in>");
250 }
251 
252 const struct crypto_type crypto_aead_type = {
253 	.extsize = crypto_alg_extsize,
254 	.init_tfm = crypto_aead_init_tfm,
255 #ifdef CONFIG_PROC_FS
256 	.show = crypto_old_aead_show,
257 #endif
258 	.report = crypto_old_aead_report,
259 	.lookup = crypto_lookup_aead,
260 	.maskclear = ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV),
261 	.maskset = CRYPTO_ALG_TYPE_MASK,
262 	.type = CRYPTO_ALG_TYPE_AEAD,
263 	.tfmsize = offsetof(struct crypto_aead, base),
264 };
265 EXPORT_SYMBOL_GPL(crypto_aead_type);
266 
267 #ifdef CONFIG_NET
268 static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
269 {
270 	struct crypto_report_aead raead;
271 	struct aead_alg *aead = container_of(alg, struct aead_alg, base);
272 
273 	strncpy(raead.type, "aead", sizeof(raead.type));
274 	strncpy(raead.geniv, "<none>", sizeof(raead.geniv));
275 
276 	raead.blocksize = alg->cra_blocksize;
277 	raead.maxauthsize = aead->maxauthsize;
278 	raead.ivsize = aead->ivsize;
279 
280 	if (nla_put(skb, CRYPTOCFGA_REPORT_AEAD,
281 		    sizeof(struct crypto_report_aead), &raead))
282 		goto nla_put_failure;
283 	return 0;
284 
285 nla_put_failure:
286 	return -EMSGSIZE;
287 }
288 #else
289 static int crypto_aead_report(struct sk_buff *skb, struct crypto_alg *alg)
290 {
291 	return -ENOSYS;
292 }
293 #endif
294 
295 static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
296 	__attribute__ ((unused));
297 static void crypto_aead_show(struct seq_file *m, struct crypto_alg *alg)
298 {
299 	struct aead_alg *aead = container_of(alg, struct aead_alg, base);
300 
301 	seq_printf(m, "type         : aead\n");
302 	seq_printf(m, "async        : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
303 					     "yes" : "no");
304 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
305 	seq_printf(m, "ivsize       : %u\n", aead->ivsize);
306 	seq_printf(m, "maxauthsize  : %u\n", aead->maxauthsize);
307 	seq_printf(m, "geniv        : <none>\n");
308 }
309 
310 static const struct crypto_type crypto_new_aead_type = {
311 	.extsize = crypto_alg_extsize,
312 	.init_tfm = crypto_aead_init_tfm,
313 #ifdef CONFIG_PROC_FS
314 	.show = crypto_aead_show,
315 #endif
316 	.report = crypto_aead_report,
317 	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
318 	.maskset = CRYPTO_ALG_TYPE_MASK,
319 	.type = CRYPTO_ALG_TYPE_AEAD,
320 	.tfmsize = offsetof(struct crypto_aead, base),
321 };
322 
323 static int aead_null_givencrypt(struct aead_givcrypt_request *req)
324 {
325 	return crypto_aead_encrypt(&req->areq);
326 }
327 
328 static int aead_null_givdecrypt(struct aead_givcrypt_request *req)
329 {
330 	return crypto_aead_decrypt(&req->areq);
331 }
332 
333 #ifdef CONFIG_NET
334 static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
335 {
336 	struct crypto_report_aead raead;
337 	struct old_aead_alg *aead = &alg->cra_aead;
338 
339 	strncpy(raead.type, "nivaead", sizeof(raead.type));
340 	strncpy(raead.geniv, aead->geniv, sizeof(raead.geniv));
341 
342 	raead.blocksize = alg->cra_blocksize;
343 	raead.maxauthsize = aead->maxauthsize;
344 	raead.ivsize = aead->ivsize;
345 
346 	if (nla_put(skb, CRYPTOCFGA_REPORT_AEAD,
347 		    sizeof(struct crypto_report_aead), &raead))
348 		goto nla_put_failure;
349 	return 0;
350 
351 nla_put_failure:
352 	return -EMSGSIZE;
353 }
354 #else
355 static int crypto_nivaead_report(struct sk_buff *skb, struct crypto_alg *alg)
356 {
357 	return -ENOSYS;
358 }
359 #endif
360 
361 
362 static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
363 	__attribute__ ((unused));
364 static void crypto_nivaead_show(struct seq_file *m, struct crypto_alg *alg)
365 {
366 	struct old_aead_alg *aead = &alg->cra_aead;
367 
368 	seq_printf(m, "type         : nivaead\n");
369 	seq_printf(m, "async        : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
370 					     "yes" : "no");
371 	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
372 	seq_printf(m, "ivsize       : %u\n", aead->ivsize);
373 	seq_printf(m, "maxauthsize  : %u\n", aead->maxauthsize);
374 	seq_printf(m, "geniv        : %s\n", aead->geniv);
375 }
376 
377 const struct crypto_type crypto_nivaead_type = {
378 	.extsize = crypto_alg_extsize,
379 	.init_tfm = crypto_aead_init_tfm,
380 #ifdef CONFIG_PROC_FS
381 	.show = crypto_nivaead_show,
382 #endif
383 	.report = crypto_nivaead_report,
384 	.maskclear = ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV),
385 	.maskset = CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV,
386 	.type = CRYPTO_ALG_TYPE_AEAD,
387 	.tfmsize = offsetof(struct crypto_aead, base),
388 };
389 EXPORT_SYMBOL_GPL(crypto_nivaead_type);
390 
391 static int crypto_grab_nivaead(struct crypto_aead_spawn *spawn,
392 			       const char *name, u32 type, u32 mask)
393 {
394 	spawn->base.frontend = &crypto_nivaead_type;
395 	return crypto_grab_spawn(&spawn->base, name, type, mask);
396 }
397 
398 static int aead_geniv_setkey(struct crypto_aead *tfm,
399 			     const u8 *key, unsigned int keylen)
400 {
401 	struct aead_geniv_ctx *ctx = crypto_aead_ctx(tfm);
402 
403 	return crypto_aead_setkey(ctx->child, key, keylen);
404 }
405 
406 static int aead_geniv_setauthsize(struct crypto_aead *tfm,
407 				  unsigned int authsize)
408 {
409 	struct aead_geniv_ctx *ctx = crypto_aead_ctx(tfm);
410 
411 	return crypto_aead_setauthsize(ctx->child, authsize);
412 }
413 
414 static void compat_encrypt_complete2(struct aead_request *req, int err)
415 {
416 	struct compat_request_ctx *rctx = aead_request_ctx(req);
417 	struct aead_givcrypt_request *subreq = &rctx->subreq;
418 	struct crypto_aead *geniv;
419 
420 	if (err == -EINPROGRESS)
421 		return;
422 
423 	if (err)
424 		goto out;
425 
426 	geniv = crypto_aead_reqtfm(req);
427 	scatterwalk_map_and_copy(subreq->giv, rctx->ivsg, 0,
428 				 crypto_aead_ivsize(geniv), 1);
429 
430 out:
431 	kzfree(subreq->giv);
432 }
433 
434 static void compat_encrypt_complete(struct crypto_async_request *base, int err)
435 {
436 	struct aead_request *req = base->data;
437 
438 	compat_encrypt_complete2(req, err);
439 	aead_request_complete(req, err);
440 }
441 
442 static int compat_encrypt(struct aead_request *req)
443 {
444 	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
445 	struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
446 	struct compat_request_ctx *rctx = aead_request_ctx(req);
447 	struct aead_givcrypt_request *subreq = &rctx->subreq;
448 	unsigned int ivsize = crypto_aead_ivsize(geniv);
449 	struct scatterlist *src, *dst;
450 	crypto_completion_t compl;
451 	void *data;
452 	u8 *info;
453 	__be64 seq;
454 	int err;
455 
456 	if (req->cryptlen < ivsize)
457 		return -EINVAL;
458 
459 	compl = req->base.complete;
460 	data = req->base.data;
461 
462 	rctx->ivsg = scatterwalk_ffwd(rctx->ivbuf, req->dst, req->assoclen);
463 	info = PageHighMem(sg_page(rctx->ivsg)) ? NULL : sg_virt(rctx->ivsg);
464 
465 	if (!info) {
466 		info = kmalloc(ivsize, req->base.flags &
467 				       CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL:
468 								  GFP_ATOMIC);
469 		if (!info)
470 			return -ENOMEM;
471 
472 		compl = compat_encrypt_complete;
473 		data = req;
474 	}
475 
476 	memcpy(&seq, req->iv + ivsize - sizeof(seq), sizeof(seq));
477 
478 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen + ivsize);
479 	dst = req->src == req->dst ?
480 	      src : scatterwalk_ffwd(rctx->dst, rctx->ivsg, ivsize);
481 
482 	aead_givcrypt_set_tfm(subreq, ctx->child);
483 	aead_givcrypt_set_callback(subreq, req->base.flags,
484 				   req->base.complete, req->base.data);
485 	aead_givcrypt_set_crypt(subreq, src, dst,
486 				req->cryptlen - ivsize, req->iv);
487 	aead_givcrypt_set_assoc(subreq, req->src, req->assoclen);
488 	aead_givcrypt_set_giv(subreq, info, be64_to_cpu(seq));
489 
490 	err = crypto_aead_givencrypt(subreq);
491 	if (unlikely(PageHighMem(sg_page(rctx->ivsg))))
492 		compat_encrypt_complete2(req, err);
493 	return err;
494 }
495 
496 static int compat_decrypt(struct aead_request *req)
497 {
498 	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
499 	struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
500 	struct compat_request_ctx *rctx = aead_request_ctx(req);
501 	struct aead_request *subreq = &rctx->subreq.areq;
502 	unsigned int ivsize = crypto_aead_ivsize(geniv);
503 	struct scatterlist *src, *dst;
504 	crypto_completion_t compl;
505 	void *data;
506 
507 	if (req->cryptlen < ivsize)
508 		return -EINVAL;
509 
510 	aead_request_set_tfm(subreq, ctx->child);
511 
512 	compl = req->base.complete;
513 	data = req->base.data;
514 
515 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen + ivsize);
516 	dst = req->src == req->dst ?
517 	      src : scatterwalk_ffwd(rctx->dst, req->dst,
518 				     req->assoclen + ivsize);
519 
520 	aead_request_set_callback(subreq, req->base.flags, compl, data);
521 	aead_request_set_crypt(subreq, src, dst,
522 			       req->cryptlen - ivsize, req->iv);
523 	aead_request_set_assoc(subreq, req->src, req->assoclen);
524 
525 	scatterwalk_map_and_copy(req->iv, req->src, req->assoclen, ivsize, 0);
526 
527 	return crypto_aead_decrypt(subreq);
528 }
529 
530 static int compat_encrypt_first(struct aead_request *req)
531 {
532 	struct crypto_aead *geniv = crypto_aead_reqtfm(req);
533 	struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
534 	int err = 0;
535 
536 	spin_lock_bh(&ctx->lock);
537 	if (geniv->encrypt != compat_encrypt_first)
538 		goto unlock;
539 
540 	geniv->encrypt = compat_encrypt;
541 
542 unlock:
543 	spin_unlock_bh(&ctx->lock);
544 
545 	if (err)
546 		return err;
547 
548 	return compat_encrypt(req);
549 }
550 
551 static int aead_geniv_init_compat(struct crypto_tfm *tfm)
552 {
553 	struct crypto_aead *geniv = __crypto_aead_cast(tfm);
554 	struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
555 	int err;
556 
557 	spin_lock_init(&ctx->lock);
558 
559 	crypto_aead_set_reqsize(geniv, sizeof(struct compat_request_ctx));
560 
561 	err = aead_geniv_init(tfm);
562 
563 	ctx->child = geniv->child;
564 	geniv->child = geniv;
565 
566 	return err;
567 }
568 
569 static void aead_geniv_exit_compat(struct crypto_tfm *tfm)
570 {
571 	struct crypto_aead *geniv = __crypto_aead_cast(tfm);
572 	struct aead_geniv_ctx *ctx = crypto_aead_ctx(geniv);
573 
574 	crypto_free_aead(ctx->child);
575 }
576 
577 struct aead_instance *aead_geniv_alloc(struct crypto_template *tmpl,
578 				       struct rtattr **tb, u32 type, u32 mask)
579 {
580 	const char *name;
581 	struct crypto_aead_spawn *spawn;
582 	struct crypto_attr_type *algt;
583 	struct aead_instance *inst;
584 	struct aead_alg *alg;
585 	unsigned int ivsize;
586 	unsigned int maxauthsize;
587 	int err;
588 
589 	algt = crypto_get_attr_type(tb);
590 	if (IS_ERR(algt))
591 		return ERR_CAST(algt);
592 
593 	if ((algt->type ^ (CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV)) &
594 	    algt->mask)
595 		return ERR_PTR(-EINVAL);
596 
597 	name = crypto_attr_alg_name(tb[1]);
598 	if (IS_ERR(name))
599 		return ERR_CAST(name);
600 
601 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
602 	if (!inst)
603 		return ERR_PTR(-ENOMEM);
604 
605 	spawn = aead_instance_ctx(inst);
606 
607 	/* Ignore async algorithms if necessary. */
608 	mask |= crypto_requires_sync(algt->type, algt->mask);
609 
610 	crypto_set_aead_spawn(spawn, aead_crypto_instance(inst));
611 	err = (algt->mask & CRYPTO_ALG_GENIV) ?
612 	      crypto_grab_nivaead(spawn, name, type, mask) :
613 	      crypto_grab_aead(spawn, name, type, mask);
614 	if (err)
615 		goto err_free_inst;
616 
617 	alg = crypto_spawn_aead_alg(spawn);
618 
619 	ivsize = crypto_aead_alg_ivsize(alg);
620 	maxauthsize = crypto_aead_alg_maxauthsize(alg);
621 
622 	err = -EINVAL;
623 	if (ivsize < sizeof(u64))
624 		goto err_drop_alg;
625 
626 	/*
627 	 * This is only true if we're constructing an algorithm with its
628 	 * default IV generator.  For the default generator we elide the
629 	 * template name and double-check the IV generator.
630 	 */
631 	if (algt->mask & CRYPTO_ALG_GENIV) {
632 		if (!alg->base.cra_aead.encrypt)
633 			goto err_drop_alg;
634 		if (strcmp(tmpl->name, alg->base.cra_aead.geniv))
635 			goto err_drop_alg;
636 
637 		memcpy(inst->alg.base.cra_name, alg->base.cra_name,
638 		       CRYPTO_MAX_ALG_NAME);
639 		memcpy(inst->alg.base.cra_driver_name,
640 		       alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME);
641 
642 		inst->alg.base.cra_flags = CRYPTO_ALG_TYPE_AEAD |
643 					   CRYPTO_ALG_GENIV;
644 		inst->alg.base.cra_flags |= alg->base.cra_flags &
645 					    CRYPTO_ALG_ASYNC;
646 		inst->alg.base.cra_priority = alg->base.cra_priority;
647 		inst->alg.base.cra_blocksize = alg->base.cra_blocksize;
648 		inst->alg.base.cra_alignmask = alg->base.cra_alignmask;
649 		inst->alg.base.cra_type = &crypto_aead_type;
650 
651 		inst->alg.base.cra_aead.ivsize = ivsize;
652 		inst->alg.base.cra_aead.maxauthsize = maxauthsize;
653 
654 		inst->alg.base.cra_aead.setkey = alg->base.cra_aead.setkey;
655 		inst->alg.base.cra_aead.setauthsize =
656 			alg->base.cra_aead.setauthsize;
657 		inst->alg.base.cra_aead.encrypt = alg->base.cra_aead.encrypt;
658 		inst->alg.base.cra_aead.decrypt = alg->base.cra_aead.decrypt;
659 
660 		goto out;
661 	}
662 
663 	err = -ENAMETOOLONG;
664 	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
665 		     "%s(%s)", tmpl->name, alg->base.cra_name) >=
666 	    CRYPTO_MAX_ALG_NAME)
667 		goto err_drop_alg;
668 	if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
669 		     "%s(%s)", tmpl->name, alg->base.cra_driver_name) >=
670 	    CRYPTO_MAX_ALG_NAME)
671 		goto err_drop_alg;
672 
673 	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
674 	inst->alg.base.cra_priority = alg->base.cra_priority;
675 	inst->alg.base.cra_blocksize = alg->base.cra_blocksize;
676 	inst->alg.base.cra_alignmask = alg->base.cra_alignmask;
677 	inst->alg.base.cra_ctxsize = sizeof(struct aead_geniv_ctx);
678 
679 	inst->alg.setkey = aead_geniv_setkey;
680 	inst->alg.setauthsize = aead_geniv_setauthsize;
681 
682 	inst->alg.ivsize = ivsize;
683 	inst->alg.maxauthsize = maxauthsize;
684 
685 	inst->alg.encrypt = compat_encrypt_first;
686 	inst->alg.decrypt = compat_decrypt;
687 
688 	inst->alg.base.cra_init = aead_geniv_init_compat;
689 	inst->alg.base.cra_exit = aead_geniv_exit_compat;
690 
691 out:
692 	return inst;
693 
694 err_drop_alg:
695 	crypto_drop_aead(spawn);
696 err_free_inst:
697 	kfree(inst);
698 	inst = ERR_PTR(err);
699 	goto out;
700 }
701 EXPORT_SYMBOL_GPL(aead_geniv_alloc);
702 
703 void aead_geniv_free(struct aead_instance *inst)
704 {
705 	crypto_drop_aead(aead_instance_ctx(inst));
706 	kfree(inst);
707 }
708 EXPORT_SYMBOL_GPL(aead_geniv_free);
709 
710 int aead_geniv_init(struct crypto_tfm *tfm)
711 {
712 	struct crypto_instance *inst = (void *)tfm->__crt_alg;
713 	struct crypto_aead *child;
714 	struct crypto_aead *aead;
715 
716 	aead = __crypto_aead_cast(tfm);
717 
718 	child = crypto_spawn_aead(crypto_instance_ctx(inst));
719 	if (IS_ERR(child))
720 		return PTR_ERR(child);
721 
722 	aead->child = child;
723 	aead->reqsize += crypto_aead_reqsize(child);
724 
725 	return 0;
726 }
727 EXPORT_SYMBOL_GPL(aead_geniv_init);
728 
729 void aead_geniv_exit(struct crypto_tfm *tfm)
730 {
731 	crypto_free_aead(__crypto_aead_cast(tfm)->child);
732 }
733 EXPORT_SYMBOL_GPL(aead_geniv_exit);
734 
735 static int crypto_nivaead_default(struct crypto_alg *alg, u32 type, u32 mask)
736 {
737 	struct rtattr *tb[3];
738 	struct {
739 		struct rtattr attr;
740 		struct crypto_attr_type data;
741 	} ptype;
742 	struct {
743 		struct rtattr attr;
744 		struct crypto_attr_alg data;
745 	} palg;
746 	struct crypto_template *tmpl;
747 	struct crypto_instance *inst;
748 	struct crypto_alg *larval;
749 	const char *geniv;
750 	int err;
751 
752 	larval = crypto_larval_lookup(alg->cra_driver_name,
753 				      CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_GENIV,
754 				      CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
755 	err = PTR_ERR(larval);
756 	if (IS_ERR(larval))
757 		goto out;
758 
759 	err = -EAGAIN;
760 	if (!crypto_is_larval(larval))
761 		goto drop_larval;
762 
763 	ptype.attr.rta_len = sizeof(ptype);
764 	ptype.attr.rta_type = CRYPTOA_TYPE;
765 	ptype.data.type = type | CRYPTO_ALG_GENIV;
766 	/* GENIV tells the template that we're making a default geniv. */
767 	ptype.data.mask = mask | CRYPTO_ALG_GENIV;
768 	tb[0] = &ptype.attr;
769 
770 	palg.attr.rta_len = sizeof(palg);
771 	palg.attr.rta_type = CRYPTOA_ALG;
772 	/* Must use the exact name to locate ourselves. */
773 	memcpy(palg.data.name, alg->cra_driver_name, CRYPTO_MAX_ALG_NAME);
774 	tb[1] = &palg.attr;
775 
776 	tb[2] = NULL;
777 
778 	geniv = alg->cra_aead.geniv;
779 
780 	tmpl = crypto_lookup_template(geniv);
781 	err = -ENOENT;
782 	if (!tmpl)
783 		goto kill_larval;
784 
785 	if (tmpl->create) {
786 		err = tmpl->create(tmpl, tb);
787 		if (err)
788 			goto put_tmpl;
789 		goto ok;
790 	}
791 
792 	inst = tmpl->alloc(tb);
793 	err = PTR_ERR(inst);
794 	if (IS_ERR(inst))
795 		goto put_tmpl;
796 
797 	err = crypto_register_instance(tmpl, inst);
798 	if (err) {
799 		tmpl->free(inst);
800 		goto put_tmpl;
801 	}
802 
803 ok:
804 	/* Redo the lookup to use the instance we just registered. */
805 	err = -EAGAIN;
806 
807 put_tmpl:
808 	crypto_tmpl_put(tmpl);
809 kill_larval:
810 	crypto_larval_kill(larval);
811 drop_larval:
812 	crypto_mod_put(larval);
813 out:
814 	crypto_mod_put(alg);
815 	return err;
816 }
817 
818 struct crypto_alg *crypto_lookup_aead(const char *name, u32 type, u32 mask)
819 {
820 	struct crypto_alg *alg;
821 
822 	alg = crypto_alg_mod_lookup(name, type, mask);
823 	if (IS_ERR(alg))
824 		return alg;
825 
826 	if (alg->cra_type == &crypto_aead_type)
827 		return alg;
828 
829 	if (!alg->cra_aead.ivsize)
830 		return alg;
831 
832 	crypto_mod_put(alg);
833 	alg = crypto_alg_mod_lookup(name, type | CRYPTO_ALG_TESTED,
834 				    mask & ~CRYPTO_ALG_TESTED);
835 	if (IS_ERR(alg))
836 		return alg;
837 
838 	if (alg->cra_type == &crypto_aead_type) {
839 		if (~alg->cra_flags & (type ^ ~mask) & CRYPTO_ALG_TESTED) {
840 			crypto_mod_put(alg);
841 			alg = ERR_PTR(-ENOENT);
842 		}
843 		return alg;
844 	}
845 
846 	BUG_ON(!alg->cra_aead.ivsize);
847 
848 	return ERR_PTR(crypto_nivaead_default(alg, type, mask));
849 }
850 EXPORT_SYMBOL_GPL(crypto_lookup_aead);
851 
852 int crypto_grab_aead(struct crypto_aead_spawn *spawn, const char *name,
853 		     u32 type, u32 mask)
854 {
855 	spawn->base.frontend = &crypto_aead_type;
856 	return crypto_grab_spawn(&spawn->base, name, type, mask);
857 }
858 EXPORT_SYMBOL_GPL(crypto_grab_aead);
859 
860 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask)
861 {
862 	return crypto_alloc_tfm(alg_name, &crypto_aead_type, type, mask);
863 }
864 EXPORT_SYMBOL_GPL(crypto_alloc_aead);
865 
866 static int aead_prepare_alg(struct aead_alg *alg)
867 {
868 	struct crypto_alg *base = &alg->base;
869 
870 	if (max(alg->maxauthsize, alg->ivsize) > PAGE_SIZE / 8)
871 		return -EINVAL;
872 
873 	base->cra_type = &crypto_new_aead_type;
874 	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
875 	base->cra_flags |= CRYPTO_ALG_TYPE_AEAD;
876 
877 	return 0;
878 }
879 
880 int crypto_register_aead(struct aead_alg *alg)
881 {
882 	struct crypto_alg *base = &alg->base;
883 	int err;
884 
885 	err = aead_prepare_alg(alg);
886 	if (err)
887 		return err;
888 
889 	return crypto_register_alg(base);
890 }
891 EXPORT_SYMBOL_GPL(crypto_register_aead);
892 
893 void crypto_unregister_aead(struct aead_alg *alg)
894 {
895 	crypto_unregister_alg(&alg->base);
896 }
897 EXPORT_SYMBOL_GPL(crypto_unregister_aead);
898 
899 int crypto_register_aeads(struct aead_alg *algs, int count)
900 {
901 	int i, ret;
902 
903 	for (i = 0; i < count; i++) {
904 		ret = crypto_register_aead(&algs[i]);
905 		if (ret)
906 			goto err;
907 	}
908 
909 	return 0;
910 
911 err:
912 	for (--i; i >= 0; --i)
913 		crypto_unregister_aead(&algs[i]);
914 
915 	return ret;
916 }
917 EXPORT_SYMBOL_GPL(crypto_register_aeads);
918 
919 void crypto_unregister_aeads(struct aead_alg *algs, int count)
920 {
921 	int i;
922 
923 	for (i = count - 1; i >= 0; --i)
924 		crypto_unregister_aead(&algs[i]);
925 }
926 EXPORT_SYMBOL_GPL(crypto_unregister_aeads);
927 
928 int aead_register_instance(struct crypto_template *tmpl,
929 			   struct aead_instance *inst)
930 {
931 	int err;
932 
933 	err = aead_prepare_alg(&inst->alg);
934 	if (err)
935 		return err;
936 
937 	return crypto_register_instance(tmpl, aead_crypto_instance(inst));
938 }
939 EXPORT_SYMBOL_GPL(aead_register_instance);
940 
941 MODULE_LICENSE("GPL");
942 MODULE_DESCRIPTION("Authenticated Encryption with Associated Data (AEAD)");
943