xref: /openbmc/linux/crypto/adiantum.c (revision 0601f25d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Adiantum length-preserving encryption mode
4  *
5  * Copyright 2018 Google LLC
6  */
7 
8 /*
9  * Adiantum is a tweakable, length-preserving encryption mode designed for fast
10  * and secure disk encryption, especially on CPUs without dedicated crypto
11  * instructions.  Adiantum encrypts each sector using the XChaCha12 stream
12  * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
13  * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
14  * 16-byte block.  See the paper for details:
15  *
16  *	Adiantum: length-preserving encryption for entry-level processors
17  *      (https://eprint.iacr.org/2018/720.pdf)
18  *
19  * For flexibility, this implementation also allows other ciphers:
20  *
21  *	- Stream cipher: XChaCha12 or XChaCha20
22  *	- Block cipher: any with a 128-bit block size and 256-bit key
23  *
24  * This implementation doesn't currently allow other ε-∆U hash functions, i.e.
25  * HPolyC is not supported.  This is because Adiantum is ~20% faster than HPolyC
26  * but still provably as secure, and also the ε-∆U hash function of HBSH is
27  * formally defined to take two inputs (tweak, message) which makes it difficult
28  * to wrap with the crypto_shash API.  Rather, some details need to be handled
29  * here.  Nevertheless, if needed in the future, support for other ε-∆U hash
30  * functions could be added here.
31  */
32 
33 #include <crypto/b128ops.h>
34 #include <crypto/chacha.h>
35 #include <crypto/internal/cipher.h>
36 #include <crypto/internal/hash.h>
37 #include <crypto/internal/poly1305.h>
38 #include <crypto/internal/skcipher.h>
39 #include <crypto/nhpoly1305.h>
40 #include <crypto/scatterwalk.h>
41 #include <linux/module.h>
42 
43 /*
44  * Size of right-hand part of input data, in bytes; also the size of the block
45  * cipher's block size and the hash function's output.
46  */
47 #define BLOCKCIPHER_BLOCK_SIZE		16
48 
49 /* Size of the block cipher key (K_E) in bytes */
50 #define BLOCKCIPHER_KEY_SIZE		32
51 
52 /* Size of the hash key (K_H) in bytes */
53 #define HASH_KEY_SIZE		(POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE)
54 
55 /*
56  * The specification allows variable-length tweaks, but Linux's crypto API
57  * currently only allows algorithms to support a single length.  The "natural"
58  * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
59  * the best performance.  But longer tweaks are useful for fscrypt, to avoid
60  * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes.
61  */
62 #define TWEAK_SIZE		32
63 
64 struct adiantum_instance_ctx {
65 	struct crypto_skcipher_spawn streamcipher_spawn;
66 	struct crypto_cipher_spawn blockcipher_spawn;
67 	struct crypto_shash_spawn hash_spawn;
68 };
69 
70 struct adiantum_tfm_ctx {
71 	struct crypto_skcipher *streamcipher;
72 	struct crypto_cipher *blockcipher;
73 	struct crypto_shash *hash;
74 	struct poly1305_core_key header_hash_key;
75 };
76 
77 struct adiantum_request_ctx {
78 
79 	/*
80 	 * Buffer for right-hand part of data, i.e.
81 	 *
82 	 *    P_L => P_M => C_M => C_R when encrypting, or
83 	 *    C_R => C_M => P_M => P_L when decrypting.
84 	 *
85 	 * Also used to build the IV for the stream cipher.
86 	 */
87 	union {
88 		u8 bytes[XCHACHA_IV_SIZE];
89 		__le32 words[XCHACHA_IV_SIZE / sizeof(__le32)];
90 		le128 bignum;	/* interpret as element of Z/(2^{128}Z) */
91 	} rbuf;
92 
93 	bool enc; /* true if encrypting, false if decrypting */
94 
95 	/*
96 	 * The result of the Poly1305 ε-∆U hash function applied to
97 	 * (bulk length, tweak)
98 	 */
99 	le128 header_hash;
100 
101 	/* Sub-requests, must be last */
102 	union {
103 		struct shash_desc hash_desc;
104 		struct skcipher_request streamcipher_req;
105 	} u;
106 };
107 
108 /*
109  * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
110  * hash key K_H as follows:
111  *
112  *     K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
113  *
114  * Note that this denotes using bits from the XChaCha keystream, which here we
115  * get indirectly by encrypting a buffer containing all 0's.
116  */
117 static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key,
118 			   unsigned int keylen)
119 {
120 	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
121 	struct {
122 		u8 iv[XCHACHA_IV_SIZE];
123 		u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE];
124 		struct scatterlist sg;
125 		struct crypto_wait wait;
126 		struct skcipher_request req; /* must be last */
127 	} *data;
128 	u8 *keyp;
129 	int err;
130 
131 	/* Set the stream cipher key (K_S) */
132 	crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK);
133 	crypto_skcipher_set_flags(tctx->streamcipher,
134 				  crypto_skcipher_get_flags(tfm) &
135 				  CRYPTO_TFM_REQ_MASK);
136 	err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen);
137 	if (err)
138 		return err;
139 
140 	/* Derive the subkeys */
141 	data = kzalloc(sizeof(*data) +
142 		       crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL);
143 	if (!data)
144 		return -ENOMEM;
145 	data->iv[0] = 1;
146 	sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys));
147 	crypto_init_wait(&data->wait);
148 	skcipher_request_set_tfm(&data->req, tctx->streamcipher);
149 	skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
150 						  CRYPTO_TFM_REQ_MAY_BACKLOG,
151 				      crypto_req_done, &data->wait);
152 	skcipher_request_set_crypt(&data->req, &data->sg, &data->sg,
153 				   sizeof(data->derived_keys), data->iv);
154 	err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait);
155 	if (err)
156 		goto out;
157 	keyp = data->derived_keys;
158 
159 	/* Set the block cipher key (K_E) */
160 	crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
161 	crypto_cipher_set_flags(tctx->blockcipher,
162 				crypto_skcipher_get_flags(tfm) &
163 				CRYPTO_TFM_REQ_MASK);
164 	err = crypto_cipher_setkey(tctx->blockcipher, keyp,
165 				   BLOCKCIPHER_KEY_SIZE);
166 	if (err)
167 		goto out;
168 	keyp += BLOCKCIPHER_KEY_SIZE;
169 
170 	/* Set the hash key (K_H) */
171 	poly1305_core_setkey(&tctx->header_hash_key, keyp);
172 	keyp += POLY1305_BLOCK_SIZE;
173 
174 	crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK);
175 	crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) &
176 					   CRYPTO_TFM_REQ_MASK);
177 	err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE);
178 	keyp += NHPOLY1305_KEY_SIZE;
179 	WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]);
180 out:
181 	kfree_sensitive(data);
182 	return err;
183 }
184 
185 /* Addition in Z/(2^{128}Z) */
186 static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2)
187 {
188 	u64 x = le64_to_cpu(v1->b);
189 	u64 y = le64_to_cpu(v2->b);
190 
191 	r->b = cpu_to_le64(x + y);
192 	r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) +
193 			   (x + y < x));
194 }
195 
196 /* Subtraction in Z/(2^{128}Z) */
197 static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2)
198 {
199 	u64 x = le64_to_cpu(v1->b);
200 	u64 y = le64_to_cpu(v2->b);
201 
202 	r->b = cpu_to_le64(x - y);
203 	r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) -
204 			   (x - y > x));
205 }
206 
207 /*
208  * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
209  * result to rctx->header_hash.  This is the calculation
210  *
211  *	H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
212  *
213  * from the procedure in section 6.4 of the Adiantum paper.  The resulting value
214  * is reused in both the first and second hash steps.  Specifically, it's added
215  * to the result of an independently keyed ε-∆U hash function (for equal length
216  * inputs only) taken over the left-hand part (the "bulk") of the message, to
217  * give the overall Adiantum hash of the (tweak, left-hand part) pair.
218  */
219 static void adiantum_hash_header(struct skcipher_request *req)
220 {
221 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
222 	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
223 	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
224 	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
225 	struct {
226 		__le64 message_bits;
227 		__le64 padding;
228 	} header = {
229 		.message_bits = cpu_to_le64((u64)bulk_len * 8)
230 	};
231 	struct poly1305_state state;
232 
233 	poly1305_core_init(&state);
234 
235 	BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0);
236 	poly1305_core_blocks(&state, &tctx->header_hash_key,
237 			     &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1);
238 
239 	BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0);
240 	poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv,
241 			     TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1);
242 
243 	poly1305_core_emit(&state, NULL, &rctx->header_hash);
244 }
245 
246 /* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */
247 static int adiantum_hash_message(struct skcipher_request *req,
248 				 struct scatterlist *sgl, le128 *digest)
249 {
250 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
251 	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
252 	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
253 	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
254 	struct shash_desc *hash_desc = &rctx->u.hash_desc;
255 	struct sg_mapping_iter miter;
256 	unsigned int i, n;
257 	int err;
258 
259 	hash_desc->tfm = tctx->hash;
260 
261 	err = crypto_shash_init(hash_desc);
262 	if (err)
263 		return err;
264 
265 	sg_miter_start(&miter, sgl, sg_nents(sgl),
266 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
267 	for (i = 0; i < bulk_len; i += n) {
268 		sg_miter_next(&miter);
269 		n = min_t(unsigned int, miter.length, bulk_len - i);
270 		err = crypto_shash_update(hash_desc, miter.addr, n);
271 		if (err)
272 			break;
273 	}
274 	sg_miter_stop(&miter);
275 	if (err)
276 		return err;
277 
278 	return crypto_shash_final(hash_desc, (u8 *)digest);
279 }
280 
281 /* Continue Adiantum encryption/decryption after the stream cipher step */
282 static int adiantum_finish(struct skcipher_request *req)
283 {
284 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
285 	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
286 	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
287 	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
288 	le128 digest;
289 	int err;
290 
291 	/* If decrypting, decrypt C_M with the block cipher to get P_M */
292 	if (!rctx->enc)
293 		crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
294 					  rctx->rbuf.bytes);
295 
296 	/*
297 	 * Second hash step
298 	 *	enc: C_R = C_M - H_{K_H}(T, C_L)
299 	 *	dec: P_R = P_M - H_{K_H}(T, P_L)
300 	 */
301 	err = adiantum_hash_message(req, req->dst, &digest);
302 	if (err)
303 		return err;
304 	le128_add(&digest, &digest, &rctx->header_hash);
305 	le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
306 	scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->dst,
307 				 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 1);
308 	return 0;
309 }
310 
311 static void adiantum_streamcipher_done(void *data, int err)
312 {
313 	struct skcipher_request *req = data;
314 
315 	if (!err)
316 		err = adiantum_finish(req);
317 
318 	skcipher_request_complete(req, err);
319 }
320 
321 static int adiantum_crypt(struct skcipher_request *req, bool enc)
322 {
323 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
324 	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
325 	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
326 	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
327 	unsigned int stream_len;
328 	le128 digest;
329 	int err;
330 
331 	if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
332 		return -EINVAL;
333 
334 	rctx->enc = enc;
335 
336 	/*
337 	 * First hash step
338 	 *	enc: P_M = P_R + H_{K_H}(T, P_L)
339 	 *	dec: C_M = C_R + H_{K_H}(T, C_L)
340 	 */
341 	adiantum_hash_header(req);
342 	err = adiantum_hash_message(req, req->src, &digest);
343 	if (err)
344 		return err;
345 	le128_add(&digest, &digest, &rctx->header_hash);
346 	scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->src,
347 				 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 0);
348 	le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
349 
350 	/* If encrypting, encrypt P_M with the block cipher to get C_M */
351 	if (enc)
352 		crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
353 					  rctx->rbuf.bytes);
354 
355 	/* Initialize the rest of the XChaCha IV (first part is C_M) */
356 	BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16);
357 	BUILD_BUG_ON(XCHACHA_IV_SIZE != 32);	/* nonce || stream position */
358 	rctx->rbuf.words[4] = cpu_to_le32(1);
359 	rctx->rbuf.words[5] = 0;
360 	rctx->rbuf.words[6] = 0;
361 	rctx->rbuf.words[7] = 0;
362 
363 	/*
364 	 * XChaCha needs to be done on all the data except the last 16 bytes;
365 	 * for disk encryption that usually means 4080 or 496 bytes.  But ChaCha
366 	 * implementations tend to be most efficient when passed a whole number
367 	 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
368 	 * And here it doesn't matter whether the last 16 bytes are written to,
369 	 * as the second hash step will overwrite them.  Thus, round the XChaCha
370 	 * length up to the next 64-byte boundary if possible.
371 	 */
372 	stream_len = bulk_len;
373 	if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen)
374 		stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE);
375 
376 	skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher);
377 	skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src,
378 				   req->dst, stream_len, &rctx->rbuf);
379 	skcipher_request_set_callback(&rctx->u.streamcipher_req,
380 				      req->base.flags,
381 				      adiantum_streamcipher_done, req);
382 	return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?:
383 		adiantum_finish(req);
384 }
385 
386 static int adiantum_encrypt(struct skcipher_request *req)
387 {
388 	return adiantum_crypt(req, true);
389 }
390 
391 static int adiantum_decrypt(struct skcipher_request *req)
392 {
393 	return adiantum_crypt(req, false);
394 }
395 
396 static int adiantum_init_tfm(struct crypto_skcipher *tfm)
397 {
398 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
399 	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
400 	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
401 	struct crypto_skcipher *streamcipher;
402 	struct crypto_cipher *blockcipher;
403 	struct crypto_shash *hash;
404 	unsigned int subreq_size;
405 	int err;
406 
407 	streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn);
408 	if (IS_ERR(streamcipher))
409 		return PTR_ERR(streamcipher);
410 
411 	blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
412 	if (IS_ERR(blockcipher)) {
413 		err = PTR_ERR(blockcipher);
414 		goto err_free_streamcipher;
415 	}
416 
417 	hash = crypto_spawn_shash(&ictx->hash_spawn);
418 	if (IS_ERR(hash)) {
419 		err = PTR_ERR(hash);
420 		goto err_free_blockcipher;
421 	}
422 
423 	tctx->streamcipher = streamcipher;
424 	tctx->blockcipher = blockcipher;
425 	tctx->hash = hash;
426 
427 	BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) !=
428 		     sizeof(struct adiantum_request_ctx));
429 	subreq_size = max(sizeof_field(struct adiantum_request_ctx,
430 				       u.hash_desc) +
431 			  crypto_shash_descsize(hash),
432 			  sizeof_field(struct adiantum_request_ctx,
433 				       u.streamcipher_req) +
434 			  crypto_skcipher_reqsize(streamcipher));
435 
436 	crypto_skcipher_set_reqsize(tfm,
437 				    offsetof(struct adiantum_request_ctx, u) +
438 				    subreq_size);
439 	return 0;
440 
441 err_free_blockcipher:
442 	crypto_free_cipher(blockcipher);
443 err_free_streamcipher:
444 	crypto_free_skcipher(streamcipher);
445 	return err;
446 }
447 
448 static void adiantum_exit_tfm(struct crypto_skcipher *tfm)
449 {
450 	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
451 
452 	crypto_free_skcipher(tctx->streamcipher);
453 	crypto_free_cipher(tctx->blockcipher);
454 	crypto_free_shash(tctx->hash);
455 }
456 
457 static void adiantum_free_instance(struct skcipher_instance *inst)
458 {
459 	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
460 
461 	crypto_drop_skcipher(&ictx->streamcipher_spawn);
462 	crypto_drop_cipher(&ictx->blockcipher_spawn);
463 	crypto_drop_shash(&ictx->hash_spawn);
464 	kfree(inst);
465 }
466 
467 /*
468  * Check for a supported set of inner algorithms.
469  * See the comment at the beginning of this file.
470  */
471 static bool adiantum_supported_algorithms(struct skcipher_alg *streamcipher_alg,
472 					  struct crypto_alg *blockcipher_alg,
473 					  struct shash_alg *hash_alg)
474 {
475 	if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 &&
476 	    strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0)
477 		return false;
478 
479 	if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE ||
480 	    blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE)
481 		return false;
482 	if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
483 		return false;
484 
485 	if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0)
486 		return false;
487 
488 	return true;
489 }
490 
491 static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb)
492 {
493 	u32 mask;
494 	const char *nhpoly1305_name;
495 	struct skcipher_instance *inst;
496 	struct adiantum_instance_ctx *ictx;
497 	struct skcipher_alg *streamcipher_alg;
498 	struct crypto_alg *blockcipher_alg;
499 	struct shash_alg *hash_alg;
500 	int err;
501 
502 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
503 	if (err)
504 		return err;
505 
506 	inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
507 	if (!inst)
508 		return -ENOMEM;
509 	ictx = skcipher_instance_ctx(inst);
510 
511 	/* Stream cipher, e.g. "xchacha12" */
512 	err = crypto_grab_skcipher(&ictx->streamcipher_spawn,
513 				   skcipher_crypto_instance(inst),
514 				   crypto_attr_alg_name(tb[1]), 0, mask);
515 	if (err)
516 		goto err_free_inst;
517 	streamcipher_alg = crypto_spawn_skcipher_alg(&ictx->streamcipher_spawn);
518 
519 	/* Block cipher, e.g. "aes" */
520 	err = crypto_grab_cipher(&ictx->blockcipher_spawn,
521 				 skcipher_crypto_instance(inst),
522 				 crypto_attr_alg_name(tb[2]), 0, mask);
523 	if (err)
524 		goto err_free_inst;
525 	blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);
526 
527 	/* NHPoly1305 ε-∆U hash function */
528 	nhpoly1305_name = crypto_attr_alg_name(tb[3]);
529 	if (nhpoly1305_name == ERR_PTR(-ENOENT))
530 		nhpoly1305_name = "nhpoly1305";
531 	err = crypto_grab_shash(&ictx->hash_spawn,
532 				skcipher_crypto_instance(inst),
533 				nhpoly1305_name, 0, mask);
534 	if (err)
535 		goto err_free_inst;
536 	hash_alg = crypto_spawn_shash_alg(&ictx->hash_spawn);
537 
538 	/* Check the set of algorithms */
539 	if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg,
540 					   hash_alg)) {
541 		pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n",
542 			streamcipher_alg->base.cra_name,
543 			blockcipher_alg->cra_name, hash_alg->base.cra_name);
544 		err = -EINVAL;
545 		goto err_free_inst;
546 	}
547 
548 	/* Instance fields */
549 
550 	err = -ENAMETOOLONG;
551 	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
552 		     "adiantum(%s,%s)", streamcipher_alg->base.cra_name,
553 		     blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
554 		goto err_free_inst;
555 	if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
556 		     "adiantum(%s,%s,%s)",
557 		     streamcipher_alg->base.cra_driver_name,
558 		     blockcipher_alg->cra_driver_name,
559 		     hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
560 		goto err_free_inst;
561 
562 	inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
563 	inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx);
564 	inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask |
565 				       hash_alg->base.cra_alignmask;
566 	/*
567 	 * The block cipher is only invoked once per message, so for long
568 	 * messages (e.g. sectors for disk encryption) its performance doesn't
569 	 * matter as much as that of the stream cipher and hash function.  Thus,
570 	 * weigh the block cipher's ->cra_priority less.
571 	 */
572 	inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority +
573 				       2 * hash_alg->base.cra_priority +
574 				       blockcipher_alg->cra_priority) / 7;
575 
576 	inst->alg.setkey = adiantum_setkey;
577 	inst->alg.encrypt = adiantum_encrypt;
578 	inst->alg.decrypt = adiantum_decrypt;
579 	inst->alg.init = adiantum_init_tfm;
580 	inst->alg.exit = adiantum_exit_tfm;
581 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(streamcipher_alg);
582 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(streamcipher_alg);
583 	inst->alg.ivsize = TWEAK_SIZE;
584 
585 	inst->free = adiantum_free_instance;
586 
587 	err = skcipher_register_instance(tmpl, inst);
588 	if (err) {
589 err_free_inst:
590 		adiantum_free_instance(inst);
591 	}
592 	return err;
593 }
594 
595 /* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */
596 static struct crypto_template adiantum_tmpl = {
597 	.name = "adiantum",
598 	.create = adiantum_create,
599 	.module = THIS_MODULE,
600 };
601 
602 static int __init adiantum_module_init(void)
603 {
604 	return crypto_register_template(&adiantum_tmpl);
605 }
606 
607 static void __exit adiantum_module_exit(void)
608 {
609 	crypto_unregister_template(&adiantum_tmpl);
610 }
611 
612 subsys_initcall(adiantum_module_init);
613 module_exit(adiantum_module_exit);
614 
615 MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
616 MODULE_LICENSE("GPL v2");
617 MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
618 MODULE_ALIAS_CRYPTO("adiantum");
619 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
620