1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 select LIB_MEMNEQ 19 help 20 This option provides the core Cryptographic API. 21 22if CRYPTO 23 24comment "Crypto core or helper" 25 26config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 30 help 31 This option enables the fips boot option which is 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no unless you know what 34 this is. 35 36config CRYPTO_ALGAPI 37 tristate 38 select CRYPTO_ALGAPI2 39 help 40 This option provides the API for cryptographic algorithms. 41 42config CRYPTO_ALGAPI2 43 tristate 44 45config CRYPTO_AEAD 46 tristate 47 select CRYPTO_AEAD2 48 select CRYPTO_ALGAPI 49 50config CRYPTO_AEAD2 51 tristate 52 select CRYPTO_ALGAPI2 53 select CRYPTO_NULL2 54 select CRYPTO_RNG2 55 56config CRYPTO_SKCIPHER 57 tristate 58 select CRYPTO_SKCIPHER2 59 select CRYPTO_ALGAPI 60 61config CRYPTO_SKCIPHER2 62 tristate 63 select CRYPTO_ALGAPI2 64 select CRYPTO_RNG2 65 66config CRYPTO_HASH 67 tristate 68 select CRYPTO_HASH2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_HASH2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_RNG 76 tristate 77 select CRYPTO_RNG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_RNG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_RNG_DEFAULT 85 tristate 86 select CRYPTO_DRBG_MENU 87 88config CRYPTO_AKCIPHER2 89 tristate 90 select CRYPTO_ALGAPI2 91 92config CRYPTO_AKCIPHER 93 tristate 94 select CRYPTO_AKCIPHER2 95 select CRYPTO_ALGAPI 96 97config CRYPTO_KPP2 98 tristate 99 select CRYPTO_ALGAPI2 100 101config CRYPTO_KPP 102 tristate 103 select CRYPTO_ALGAPI 104 select CRYPTO_KPP2 105 106config CRYPTO_ACOMP2 107 tristate 108 select CRYPTO_ALGAPI2 109 select SGL_ALLOC 110 111config CRYPTO_ACOMP 112 tristate 113 select CRYPTO_ALGAPI 114 select CRYPTO_ACOMP2 115 116config CRYPTO_MANAGER 117 tristate "Cryptographic algorithm manager" 118 select CRYPTO_MANAGER2 119 help 120 Create default cryptographic template instantiations such as 121 cbc(aes). 122 123config CRYPTO_MANAGER2 124 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 125 select CRYPTO_AEAD2 126 select CRYPTO_HASH2 127 select CRYPTO_SKCIPHER2 128 select CRYPTO_AKCIPHER2 129 select CRYPTO_KPP2 130 select CRYPTO_ACOMP2 131 132config CRYPTO_USER 133 tristate "Userspace cryptographic algorithm configuration" 134 depends on NET 135 select CRYPTO_MANAGER 136 help 137 Userspace configuration for cryptographic instantiations such as 138 cbc(aes). 139 140config CRYPTO_MANAGER_DISABLE_TESTS 141 bool "Disable run-time self tests" 142 default y 143 help 144 Disable run-time self tests that normally take place at 145 algorithm registration. 146 147config CRYPTO_MANAGER_EXTRA_TESTS 148 bool "Enable extra run-time crypto self tests" 149 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 150 help 151 Enable extra run-time self tests of registered crypto algorithms, 152 including randomized fuzz tests. 153 154 This is intended for developer use only, as these tests take much 155 longer to run than the normal self tests. 156 157config CRYPTO_GF128MUL 158 tristate 159 160config CRYPTO_NULL 161 tristate "Null algorithms" 162 select CRYPTO_NULL2 163 help 164 These are 'Null' algorithms, used by IPsec, which do nothing. 165 166config CRYPTO_NULL2 167 tristate 168 select CRYPTO_ALGAPI2 169 select CRYPTO_SKCIPHER2 170 select CRYPTO_HASH2 171 172config CRYPTO_PCRYPT 173 tristate "Parallel crypto engine" 174 depends on SMP 175 select PADATA 176 select CRYPTO_MANAGER 177 select CRYPTO_AEAD 178 help 179 This converts an arbitrary crypto algorithm into a parallel 180 algorithm that executes in kernel threads. 181 182config CRYPTO_CRYPTD 183 tristate "Software async crypto daemon" 184 select CRYPTO_SKCIPHER 185 select CRYPTO_HASH 186 select CRYPTO_MANAGER 187 help 188 This is a generic software asynchronous crypto daemon that 189 converts an arbitrary synchronous software crypto algorithm 190 into an asynchronous algorithm that executes in a kernel thread. 191 192config CRYPTO_AUTHENC 193 tristate "Authenc support" 194 select CRYPTO_AEAD 195 select CRYPTO_SKCIPHER 196 select CRYPTO_MANAGER 197 select CRYPTO_HASH 198 select CRYPTO_NULL 199 help 200 Authenc: Combined mode wrapper for IPsec. 201 This is required for IPSec. 202 203config CRYPTO_TEST 204 tristate "Testing module" 205 depends on m || EXPERT 206 select CRYPTO_MANAGER 207 help 208 Quick & dirty crypto test module. 209 210config CRYPTO_SIMD 211 tristate 212 select CRYPTO_CRYPTD 213 214config CRYPTO_ENGINE 215 tristate 216 217comment "Public-key cryptography" 218 219config CRYPTO_RSA 220 tristate "RSA algorithm" 221 select CRYPTO_AKCIPHER 222 select CRYPTO_MANAGER 223 select MPILIB 224 select ASN1 225 help 226 Generic implementation of the RSA public key algorithm. 227 228config CRYPTO_DH 229 tristate "Diffie-Hellman algorithm" 230 select CRYPTO_KPP 231 select MPILIB 232 help 233 Generic implementation of the Diffie-Hellman algorithm. 234 235config CRYPTO_DH_RFC7919_GROUPS 236 bool "Support for RFC 7919 FFDHE group parameters" 237 depends on CRYPTO_DH 238 select CRYPTO_RNG_DEFAULT 239 help 240 Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 241 242config CRYPTO_ECC 243 tristate 244 select CRYPTO_RNG_DEFAULT 245 246config CRYPTO_ECDH 247 tristate "ECDH algorithm" 248 select CRYPTO_ECC 249 select CRYPTO_KPP 250 help 251 Generic implementation of the ECDH algorithm 252 253config CRYPTO_ECDSA 254 tristate "ECDSA (NIST P192, P256 etc.) algorithm" 255 select CRYPTO_ECC 256 select CRYPTO_AKCIPHER 257 select ASN1 258 help 259 Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 260 is A NIST cryptographic standard algorithm. Only signature verification 261 is implemented. 262 263config CRYPTO_ECRDSA 264 tristate "EC-RDSA (GOST 34.10) algorithm" 265 select CRYPTO_ECC 266 select CRYPTO_AKCIPHER 267 select CRYPTO_STREEBOG 268 select OID_REGISTRY 269 select ASN1 270 help 271 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 272 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 273 standard algorithms (called GOST algorithms). Only signature verification 274 is implemented. 275 276config CRYPTO_SM2 277 tristate "SM2 algorithm" 278 select CRYPTO_SM3 279 select CRYPTO_AKCIPHER 280 select CRYPTO_MANAGER 281 select MPILIB 282 select ASN1 283 help 284 Generic implementation of the SM2 public key algorithm. It was 285 published by State Encryption Management Bureau, China. 286 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 287 288 References: 289 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 290 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 291 http://www.gmbz.org.cn/main/bzlb.html 292 293config CRYPTO_CURVE25519 294 tristate "Curve25519 algorithm" 295 select CRYPTO_KPP 296 select CRYPTO_LIB_CURVE25519_GENERIC 297 298config CRYPTO_CURVE25519_X86 299 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 300 depends on X86 && 64BIT 301 select CRYPTO_LIB_CURVE25519_GENERIC 302 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 303 304comment "Authenticated Encryption with Associated Data" 305 306config CRYPTO_CCM 307 tristate "CCM support" 308 select CRYPTO_CTR 309 select CRYPTO_HASH 310 select CRYPTO_AEAD 311 select CRYPTO_MANAGER 312 help 313 Support for Counter with CBC MAC. Required for IPsec. 314 315config CRYPTO_GCM 316 tristate "GCM/GMAC support" 317 select CRYPTO_CTR 318 select CRYPTO_AEAD 319 select CRYPTO_GHASH 320 select CRYPTO_NULL 321 select CRYPTO_MANAGER 322 help 323 Support for Galois/Counter Mode (GCM) and Galois Message 324 Authentication Code (GMAC). Required for IPSec. 325 326config CRYPTO_CHACHA20POLY1305 327 tristate "ChaCha20-Poly1305 AEAD support" 328 select CRYPTO_CHACHA20 329 select CRYPTO_POLY1305 330 select CRYPTO_AEAD 331 select CRYPTO_MANAGER 332 help 333 ChaCha20-Poly1305 AEAD support, RFC7539. 334 335 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 336 with the Poly1305 authenticator. It is defined in RFC7539 for use in 337 IETF protocols. 338 339config CRYPTO_AEGIS128 340 tristate "AEGIS-128 AEAD algorithm" 341 select CRYPTO_AEAD 342 select CRYPTO_AES # for AES S-box tables 343 help 344 Support for the AEGIS-128 dedicated AEAD algorithm. 345 346config CRYPTO_AEGIS128_SIMD 347 bool "Support SIMD acceleration for AEGIS-128" 348 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 349 default y 350 351config CRYPTO_AEGIS128_AESNI_SSE2 352 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 353 depends on X86 && 64BIT 354 select CRYPTO_AEAD 355 select CRYPTO_SIMD 356 help 357 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 358 359config CRYPTO_SEQIV 360 tristate "Sequence Number IV Generator" 361 select CRYPTO_AEAD 362 select CRYPTO_SKCIPHER 363 select CRYPTO_NULL 364 select CRYPTO_RNG_DEFAULT 365 select CRYPTO_MANAGER 366 help 367 This IV generator generates an IV based on a sequence number by 368 xoring it with a salt. This algorithm is mainly useful for CTR 369 370config CRYPTO_ECHAINIV 371 tristate "Encrypted Chain IV Generator" 372 select CRYPTO_AEAD 373 select CRYPTO_NULL 374 select CRYPTO_RNG_DEFAULT 375 select CRYPTO_MANAGER 376 help 377 This IV generator generates an IV based on the encryption of 378 a sequence number xored with a salt. This is the default 379 algorithm for CBC. 380 381comment "Block modes" 382 383config CRYPTO_CBC 384 tristate "CBC support" 385 select CRYPTO_SKCIPHER 386 select CRYPTO_MANAGER 387 help 388 CBC: Cipher Block Chaining mode 389 This block cipher algorithm is required for IPSec. 390 391config CRYPTO_CFB 392 tristate "CFB support" 393 select CRYPTO_SKCIPHER 394 select CRYPTO_MANAGER 395 help 396 CFB: Cipher FeedBack mode 397 This block cipher algorithm is required for TPM2 Cryptography. 398 399config CRYPTO_CTR 400 tristate "CTR support" 401 select CRYPTO_SKCIPHER 402 select CRYPTO_MANAGER 403 help 404 CTR: Counter mode 405 This block cipher algorithm is required for IPSec. 406 407config CRYPTO_CTS 408 tristate "CTS support" 409 select CRYPTO_SKCIPHER 410 select CRYPTO_MANAGER 411 help 412 CTS: Cipher Text Stealing 413 This is the Cipher Text Stealing mode as described by 414 Section 8 of rfc2040 and referenced by rfc3962 415 (rfc3962 includes errata information in its Appendix A) or 416 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 417 This mode is required for Kerberos gss mechanism support 418 for AES encryption. 419 420 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 421 422config CRYPTO_ECB 423 tristate "ECB support" 424 select CRYPTO_SKCIPHER 425 select CRYPTO_MANAGER 426 help 427 ECB: Electronic CodeBook mode 428 This is the simplest block cipher algorithm. It simply encrypts 429 the input block by block. 430 431config CRYPTO_LRW 432 tristate "LRW support" 433 select CRYPTO_SKCIPHER 434 select CRYPTO_MANAGER 435 select CRYPTO_GF128MUL 436 select CRYPTO_ECB 437 help 438 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 439 narrow block cipher mode for dm-crypt. Use it with cipher 440 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 441 The first 128, 192 or 256 bits in the key are used for AES and the 442 rest is used to tie each cipher block to its logical position. 443 444config CRYPTO_OFB 445 tristate "OFB support" 446 select CRYPTO_SKCIPHER 447 select CRYPTO_MANAGER 448 help 449 OFB: the Output Feedback mode makes a block cipher into a synchronous 450 stream cipher. It generates keystream blocks, which are then XORed 451 with the plaintext blocks to get the ciphertext. Flipping a bit in the 452 ciphertext produces a flipped bit in the plaintext at the same 453 location. This property allows many error correcting codes to function 454 normally even when applied before encryption. 455 456config CRYPTO_PCBC 457 tristate "PCBC support" 458 select CRYPTO_SKCIPHER 459 select CRYPTO_MANAGER 460 help 461 PCBC: Propagating Cipher Block Chaining mode 462 This block cipher algorithm is required for RxRPC. 463 464config CRYPTO_XTS 465 tristate "XTS support" 466 select CRYPTO_SKCIPHER 467 select CRYPTO_MANAGER 468 select CRYPTO_ECB 469 help 470 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 471 key size 256, 384 or 512 bits. This implementation currently 472 can't handle a sectorsize which is not a multiple of 16 bytes. 473 474config CRYPTO_KEYWRAP 475 tristate "Key wrapping support" 476 select CRYPTO_SKCIPHER 477 select CRYPTO_MANAGER 478 help 479 Support for key wrapping (NIST SP800-38F / RFC3394) without 480 padding. 481 482config CRYPTO_NHPOLY1305 483 tristate 484 select CRYPTO_HASH 485 select CRYPTO_LIB_POLY1305_GENERIC 486 487config CRYPTO_NHPOLY1305_SSE2 488 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 489 depends on X86 && 64BIT 490 select CRYPTO_NHPOLY1305 491 help 492 SSE2 optimized implementation of the hash function used by the 493 Adiantum encryption mode. 494 495config CRYPTO_NHPOLY1305_AVX2 496 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 497 depends on X86 && 64BIT 498 select CRYPTO_NHPOLY1305 499 help 500 AVX2 optimized implementation of the hash function used by the 501 Adiantum encryption mode. 502 503config CRYPTO_ADIANTUM 504 tristate "Adiantum support" 505 select CRYPTO_CHACHA20 506 select CRYPTO_LIB_POLY1305_GENERIC 507 select CRYPTO_NHPOLY1305 508 select CRYPTO_MANAGER 509 help 510 Adiantum is a tweakable, length-preserving encryption mode 511 designed for fast and secure disk encryption, especially on 512 CPUs without dedicated crypto instructions. It encrypts 513 each sector using the XChaCha12 stream cipher, two passes of 514 an ε-almost-∆-universal hash function, and an invocation of 515 the AES-256 block cipher on a single 16-byte block. On CPUs 516 without AES instructions, Adiantum is much faster than 517 AES-XTS. 518 519 Adiantum's security is provably reducible to that of its 520 underlying stream and block ciphers, subject to a security 521 bound. Unlike XTS, Adiantum is a true wide-block encryption 522 mode, so it actually provides an even stronger notion of 523 security than XTS, subject to the security bound. 524 525 If unsure, say N. 526 527config CRYPTO_ESSIV 528 tristate "ESSIV support for block encryption" 529 select CRYPTO_AUTHENC 530 help 531 Encrypted salt-sector initialization vector (ESSIV) is an IV 532 generation method that is used in some cases by fscrypt and/or 533 dm-crypt. It uses the hash of the block encryption key as the 534 symmetric key for a block encryption pass applied to the input 535 IV, making low entropy IV sources more suitable for block 536 encryption. 537 538 This driver implements a crypto API template that can be 539 instantiated either as an skcipher or as an AEAD (depending on the 540 type of the first template argument), and which defers encryption 541 and decryption requests to the encapsulated cipher after applying 542 ESSIV to the input IV. Note that in the AEAD case, it is assumed 543 that the keys are presented in the same format used by the authenc 544 template, and that the IV appears at the end of the authenticated 545 associated data (AAD) region (which is how dm-crypt uses it.) 546 547 Note that the use of ESSIV is not recommended for new deployments, 548 and so this only needs to be enabled when interoperability with 549 existing encrypted volumes of filesystems is required, or when 550 building for a particular system that requires it (e.g., when 551 the SoC in question has accelerated CBC but not XTS, making CBC 552 combined with ESSIV the only feasible mode for h/w accelerated 553 block encryption) 554 555comment "Hash modes" 556 557config CRYPTO_CMAC 558 tristate "CMAC support" 559 select CRYPTO_HASH 560 select CRYPTO_MANAGER 561 help 562 Cipher-based Message Authentication Code (CMAC) specified by 563 The National Institute of Standards and Technology (NIST). 564 565 https://tools.ietf.org/html/rfc4493 566 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 567 568config CRYPTO_HMAC 569 tristate "HMAC support" 570 select CRYPTO_HASH 571 select CRYPTO_MANAGER 572 help 573 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 574 This is required for IPSec. 575 576config CRYPTO_XCBC 577 tristate "XCBC support" 578 select CRYPTO_HASH 579 select CRYPTO_MANAGER 580 help 581 XCBC: Keyed-Hashing with encryption algorithm 582 https://www.ietf.org/rfc/rfc3566.txt 583 http://csrc.nist.gov/encryption/modes/proposedmodes/ 584 xcbc-mac/xcbc-mac-spec.pdf 585 586config CRYPTO_VMAC 587 tristate "VMAC support" 588 select CRYPTO_HASH 589 select CRYPTO_MANAGER 590 help 591 VMAC is a message authentication algorithm designed for 592 very high speed on 64-bit architectures. 593 594 See also: 595 <https://fastcrypto.org/vmac> 596 597comment "Digest" 598 599config CRYPTO_CRC32C 600 tristate "CRC32c CRC algorithm" 601 select CRYPTO_HASH 602 select CRC32 603 help 604 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 605 by iSCSI for header and data digests and by others. 606 See Castagnoli93. Module will be crc32c. 607 608config CRYPTO_CRC32C_INTEL 609 tristate "CRC32c INTEL hardware acceleration" 610 depends on X86 611 select CRYPTO_HASH 612 help 613 In Intel processor with SSE4.2 supported, the processor will 614 support CRC32C implementation using hardware accelerated CRC32 615 instruction. This option will create 'crc32c-intel' module, 616 which will enable any routine to use the CRC32 instruction to 617 gain performance compared with software implementation. 618 Module will be crc32c-intel. 619 620config CRYPTO_CRC32C_VPMSUM 621 tristate "CRC32c CRC algorithm (powerpc64)" 622 depends on PPC64 && ALTIVEC 623 select CRYPTO_HASH 624 select CRC32 625 help 626 CRC32c algorithm implemented using vector polynomial multiply-sum 627 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 628 and newer processors for improved performance. 629 630 631config CRYPTO_CRC32C_SPARC64 632 tristate "CRC32c CRC algorithm (SPARC64)" 633 depends on SPARC64 634 select CRYPTO_HASH 635 select CRC32 636 help 637 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 638 when available. 639 640config CRYPTO_CRC32 641 tristate "CRC32 CRC algorithm" 642 select CRYPTO_HASH 643 select CRC32 644 help 645 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 646 Shash crypto api wrappers to crc32_le function. 647 648config CRYPTO_CRC32_PCLMUL 649 tristate "CRC32 PCLMULQDQ hardware acceleration" 650 depends on X86 651 select CRYPTO_HASH 652 select CRC32 653 help 654 From Intel Westmere and AMD Bulldozer processor with SSE4.2 655 and PCLMULQDQ supported, the processor will support 656 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 657 instruction. This option will create 'crc32-pclmul' module, 658 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 659 and gain better performance as compared with the table implementation. 660 661config CRYPTO_CRC32_MIPS 662 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 663 depends on MIPS_CRC_SUPPORT 664 select CRYPTO_HASH 665 help 666 CRC32c and CRC32 CRC algorithms implemented using mips crypto 667 instructions, when available. 668 669config CRYPTO_CRC32_S390 670 tristate "CRC-32 algorithms" 671 depends on S390 672 select CRYPTO_HASH 673 select CRC32 674 help 675 Select this option if you want to use hardware accelerated 676 implementations of CRC algorithms. With this option, you 677 can optimize the computation of CRC-32 (IEEE 802.3 Ethernet) 678 and CRC-32C (Castagnoli). 679 680 It is available with IBM z13 or later. 681 682config CRYPTO_XXHASH 683 tristate "xxHash hash algorithm" 684 select CRYPTO_HASH 685 select XXHASH 686 help 687 xxHash non-cryptographic hash algorithm. Extremely fast, working at 688 speeds close to RAM limits. 689 690config CRYPTO_BLAKE2B 691 tristate "BLAKE2b digest algorithm" 692 select CRYPTO_HASH 693 help 694 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 695 optimized for 64bit platforms and can produce digests of any size 696 between 1 to 64. The keyed hash is also implemented. 697 698 This module provides the following algorithms: 699 700 - blake2b-160 701 - blake2b-256 702 - blake2b-384 703 - blake2b-512 704 705 See https://blake2.net for further information. 706 707config CRYPTO_BLAKE2S 708 tristate "BLAKE2s digest algorithm" 709 select CRYPTO_LIB_BLAKE2S_GENERIC 710 select CRYPTO_HASH 711 help 712 Implementation of cryptographic hash function BLAKE2s 713 optimized for 8-32bit platforms and can produce digests of any size 714 between 1 to 32. The keyed hash is also implemented. 715 716 This module provides the following algorithms: 717 718 - blake2s-128 719 - blake2s-160 720 - blake2s-224 721 - blake2s-256 722 723 See https://blake2.net for further information. 724 725config CRYPTO_BLAKE2S_X86 726 tristate "BLAKE2s digest algorithm (x86 accelerated version)" 727 depends on X86 && 64BIT 728 select CRYPTO_LIB_BLAKE2S_GENERIC 729 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 730 731config CRYPTO_CRCT10DIF 732 tristate "CRCT10DIF algorithm" 733 select CRYPTO_HASH 734 help 735 CRC T10 Data Integrity Field computation is being cast as 736 a crypto transform. This allows for faster crc t10 diff 737 transforms to be used if they are available. 738 739config CRYPTO_CRCT10DIF_PCLMUL 740 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 741 depends on X86 && 64BIT && CRC_T10DIF 742 select CRYPTO_HASH 743 help 744 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 745 CRC T10 DIF PCLMULQDQ computation can be hardware 746 accelerated PCLMULQDQ instruction. This option will create 747 'crct10dif-pclmul' module, which is faster when computing the 748 crct10dif checksum as compared with the generic table implementation. 749 750config CRYPTO_CRCT10DIF_VPMSUM 751 tristate "CRC32T10DIF powerpc64 hardware acceleration" 752 depends on PPC64 && ALTIVEC && CRC_T10DIF 753 select CRYPTO_HASH 754 help 755 CRC10T10DIF algorithm implemented using vector polynomial 756 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 757 POWER8 and newer processors for improved performance. 758 759config CRYPTO_CRC64_ROCKSOFT 760 tristate "Rocksoft Model CRC64 algorithm" 761 depends on CRC64 762 select CRYPTO_HASH 763 764config CRYPTO_VPMSUM_TESTER 765 tristate "Powerpc64 vpmsum hardware acceleration tester" 766 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 767 help 768 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 769 POWER8 vpmsum instructions. 770 Unless you are testing these algorithms, you don't need this. 771 772config CRYPTO_GHASH 773 tristate "GHASH hash function" 774 select CRYPTO_GF128MUL 775 select CRYPTO_HASH 776 help 777 GHASH is the hash function used in GCM (Galois/Counter Mode). 778 It is not a general-purpose cryptographic hash function. 779 780config CRYPTO_POLY1305 781 tristate "Poly1305 authenticator algorithm" 782 select CRYPTO_HASH 783 select CRYPTO_LIB_POLY1305_GENERIC 784 help 785 Poly1305 authenticator algorithm, RFC7539. 786 787 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 788 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 789 in IETF protocols. This is the portable C implementation of Poly1305. 790 791config CRYPTO_POLY1305_X86_64 792 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 793 depends on X86 && 64BIT 794 select CRYPTO_LIB_POLY1305_GENERIC 795 select CRYPTO_ARCH_HAVE_LIB_POLY1305 796 help 797 Poly1305 authenticator algorithm, RFC7539. 798 799 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 800 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 801 in IETF protocols. This is the x86_64 assembler implementation using SIMD 802 instructions. 803 804config CRYPTO_POLY1305_MIPS 805 tristate "Poly1305 authenticator algorithm (MIPS optimized)" 806 depends on MIPS 807 select CRYPTO_ARCH_HAVE_LIB_POLY1305 808 809config CRYPTO_MD4 810 tristate "MD4 digest algorithm" 811 select CRYPTO_HASH 812 help 813 MD4 message digest algorithm (RFC1320). 814 815config CRYPTO_MD5 816 tristate "MD5 digest algorithm" 817 select CRYPTO_HASH 818 help 819 MD5 message digest algorithm (RFC1321). 820 821config CRYPTO_MD5_OCTEON 822 tristate "MD5 digest algorithm (OCTEON)" 823 depends on CPU_CAVIUM_OCTEON 824 select CRYPTO_MD5 825 select CRYPTO_HASH 826 help 827 MD5 message digest algorithm (RFC1321) implemented 828 using OCTEON crypto instructions, when available. 829 830config CRYPTO_MD5_PPC 831 tristate "MD5 digest algorithm (PPC)" 832 depends on PPC 833 select CRYPTO_HASH 834 help 835 MD5 message digest algorithm (RFC1321) implemented 836 in PPC assembler. 837 838config CRYPTO_MD5_SPARC64 839 tristate "MD5 digest algorithm (SPARC64)" 840 depends on SPARC64 841 select CRYPTO_MD5 842 select CRYPTO_HASH 843 help 844 MD5 message digest algorithm (RFC1321) implemented 845 using sparc64 crypto instructions, when available. 846 847config CRYPTO_MICHAEL_MIC 848 tristate "Michael MIC keyed digest algorithm" 849 select CRYPTO_HASH 850 help 851 Michael MIC is used for message integrity protection in TKIP 852 (IEEE 802.11i). This algorithm is required for TKIP, but it 853 should not be used for other purposes because of the weakness 854 of the algorithm. 855 856config CRYPTO_RMD160 857 tristate "RIPEMD-160 digest algorithm" 858 select CRYPTO_HASH 859 help 860 RIPEMD-160 (ISO/IEC 10118-3:2004). 861 862 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 863 to be used as a secure replacement for the 128-bit hash functions 864 MD4, MD5 and it's predecessor RIPEMD 865 (not to be confused with RIPEMD-128). 866 867 It's speed is comparable to SHA1 and there are no known attacks 868 against RIPEMD-160. 869 870 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 871 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 872 873config CRYPTO_SHA1 874 tristate "SHA1 digest algorithm" 875 select CRYPTO_HASH 876 help 877 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 878 879config CRYPTO_SHA1_SSSE3 880 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 881 depends on X86 && 64BIT 882 select CRYPTO_SHA1 883 select CRYPTO_HASH 884 help 885 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 886 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 887 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 888 when available. 889 890config CRYPTO_SHA256_SSSE3 891 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 892 depends on X86 && 64BIT 893 select CRYPTO_SHA256 894 select CRYPTO_HASH 895 help 896 SHA-256 secure hash standard (DFIPS 180-2) implemented 897 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 898 Extensions version 1 (AVX1), or Advanced Vector Extensions 899 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 900 Instructions) when available. 901 902config CRYPTO_SHA512_SSSE3 903 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 904 depends on X86 && 64BIT 905 select CRYPTO_SHA512 906 select CRYPTO_HASH 907 help 908 SHA-512 secure hash standard (DFIPS 180-2) implemented 909 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 910 Extensions version 1 (AVX1), or Advanced Vector Extensions 911 version 2 (AVX2) instructions, when available. 912 913config CRYPTO_SHA512_S390 914 tristate "SHA384 and SHA512 digest algorithm" 915 depends on S390 916 select CRYPTO_HASH 917 help 918 This is the s390 hardware accelerated implementation of the 919 SHA512 secure hash standard. 920 921 It is available as of z10. 922 923config CRYPTO_SHA1_OCTEON 924 tristate "SHA1 digest algorithm (OCTEON)" 925 depends on CPU_CAVIUM_OCTEON 926 select CRYPTO_SHA1 927 select CRYPTO_HASH 928 help 929 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 930 using OCTEON crypto instructions, when available. 931 932config CRYPTO_SHA1_SPARC64 933 tristate "SHA1 digest algorithm (SPARC64)" 934 depends on SPARC64 935 select CRYPTO_SHA1 936 select CRYPTO_HASH 937 help 938 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 939 using sparc64 crypto instructions, when available. 940 941config CRYPTO_SHA1_PPC 942 tristate "SHA1 digest algorithm (powerpc)" 943 depends on PPC 944 help 945 This is the powerpc hardware accelerated implementation of the 946 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 947 948config CRYPTO_SHA1_PPC_SPE 949 tristate "SHA1 digest algorithm (PPC SPE)" 950 depends on PPC && SPE 951 help 952 SHA-1 secure hash standard (DFIPS 180-4) implemented 953 using powerpc SPE SIMD instruction set. 954 955config CRYPTO_SHA1_S390 956 tristate "SHA1 digest algorithm" 957 depends on S390 958 select CRYPTO_HASH 959 help 960 This is the s390 hardware accelerated implementation of the 961 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 962 963 It is available as of z990. 964 965config CRYPTO_SHA256 966 tristate "SHA224 and SHA256 digest algorithm" 967 select CRYPTO_HASH 968 select CRYPTO_LIB_SHA256 969 help 970 SHA256 secure hash standard (DFIPS 180-2). 971 972 This version of SHA implements a 256 bit hash with 128 bits of 973 security against collision attacks. 974 975 This code also includes SHA-224, a 224 bit hash with 112 bits 976 of security against collision attacks. 977 978config CRYPTO_SHA256_PPC_SPE 979 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 980 depends on PPC && SPE 981 select CRYPTO_SHA256 982 select CRYPTO_HASH 983 help 984 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 985 implemented using powerpc SPE SIMD instruction set. 986 987config CRYPTO_SHA256_OCTEON 988 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 989 depends on CPU_CAVIUM_OCTEON 990 select CRYPTO_SHA256 991 select CRYPTO_HASH 992 help 993 SHA-256 secure hash standard (DFIPS 180-2) implemented 994 using OCTEON crypto instructions, when available. 995 996config CRYPTO_SHA256_SPARC64 997 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 998 depends on SPARC64 999 select CRYPTO_SHA256 1000 select CRYPTO_HASH 1001 help 1002 SHA-256 secure hash standard (DFIPS 180-2) implemented 1003 using sparc64 crypto instructions, when available. 1004 1005config CRYPTO_SHA256_S390 1006 tristate "SHA256 digest algorithm" 1007 depends on S390 1008 select CRYPTO_HASH 1009 help 1010 This is the s390 hardware accelerated implementation of the 1011 SHA256 secure hash standard (DFIPS 180-2). 1012 1013 It is available as of z9. 1014 1015config CRYPTO_SHA512 1016 tristate "SHA384 and SHA512 digest algorithms" 1017 select CRYPTO_HASH 1018 help 1019 SHA512 secure hash standard (DFIPS 180-2). 1020 1021 This version of SHA implements a 512 bit hash with 256 bits of 1022 security against collision attacks. 1023 1024 This code also includes SHA-384, a 384 bit hash with 192 bits 1025 of security against collision attacks. 1026 1027config CRYPTO_SHA512_OCTEON 1028 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 1029 depends on CPU_CAVIUM_OCTEON 1030 select CRYPTO_SHA512 1031 select CRYPTO_HASH 1032 help 1033 SHA-512 secure hash standard (DFIPS 180-2) implemented 1034 using OCTEON crypto instructions, when available. 1035 1036config CRYPTO_SHA512_SPARC64 1037 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 1038 depends on SPARC64 1039 select CRYPTO_SHA512 1040 select CRYPTO_HASH 1041 help 1042 SHA-512 secure hash standard (DFIPS 180-2) implemented 1043 using sparc64 crypto instructions, when available. 1044 1045config CRYPTO_SHA3 1046 tristate "SHA3 digest algorithm" 1047 select CRYPTO_HASH 1048 help 1049 SHA-3 secure hash standard (DFIPS 202). It's based on 1050 cryptographic sponge function family called Keccak. 1051 1052 References: 1053 http://keccak.noekeon.org/ 1054 1055config CRYPTO_SHA3_256_S390 1056 tristate "SHA3_224 and SHA3_256 digest algorithm" 1057 depends on S390 1058 select CRYPTO_HASH 1059 help 1060 This is the s390 hardware accelerated implementation of the 1061 SHA3_256 secure hash standard. 1062 1063 It is available as of z14. 1064 1065config CRYPTO_SHA3_512_S390 1066 tristate "SHA3_384 and SHA3_512 digest algorithm" 1067 depends on S390 1068 select CRYPTO_HASH 1069 help 1070 This is the s390 hardware accelerated implementation of the 1071 SHA3_512 secure hash standard. 1072 1073 It is available as of z14. 1074 1075config CRYPTO_SM3 1076 tristate 1077 1078config CRYPTO_SM3_GENERIC 1079 tristate "SM3 digest algorithm" 1080 select CRYPTO_HASH 1081 select CRYPTO_SM3 1082 help 1083 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1084 It is part of the Chinese Commercial Cryptography suite. 1085 1086 References: 1087 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1088 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1089 1090config CRYPTO_SM3_AVX_X86_64 1091 tristate "SM3 digest algorithm (x86_64/AVX)" 1092 depends on X86 && 64BIT 1093 select CRYPTO_HASH 1094 select CRYPTO_SM3 1095 help 1096 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1097 It is part of the Chinese Commercial Cryptography suite. This is 1098 SM3 optimized implementation using Advanced Vector Extensions (AVX) 1099 when available. 1100 1101 If unsure, say N. 1102 1103config CRYPTO_STREEBOG 1104 tristate "Streebog Hash Function" 1105 select CRYPTO_HASH 1106 help 1107 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1108 cryptographic standard algorithms (called GOST algorithms). 1109 This setting enables two hash algorithms with 256 and 512 bits output. 1110 1111 References: 1112 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1113 https://tools.ietf.org/html/rfc6986 1114 1115config CRYPTO_WP512 1116 tristate "Whirlpool digest algorithms" 1117 select CRYPTO_HASH 1118 help 1119 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1120 1121 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1122 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1123 1124 See also: 1125 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1126 1127config CRYPTO_GHASH_CLMUL_NI_INTEL 1128 tristate "GHASH hash function (CLMUL-NI accelerated)" 1129 depends on X86 && 64BIT 1130 select CRYPTO_CRYPTD 1131 help 1132 This is the x86_64 CLMUL-NI accelerated implementation of 1133 GHASH, the hash function used in GCM (Galois/Counter mode). 1134 1135config CRYPTO_GHASH_S390 1136 tristate "GHASH hash function" 1137 depends on S390 1138 select CRYPTO_HASH 1139 help 1140 This is the s390 hardware accelerated implementation of GHASH, 1141 the hash function used in GCM (Galois/Counter mode). 1142 1143 It is available as of z196. 1144 1145comment "Ciphers" 1146 1147config CRYPTO_AES 1148 tristate "AES cipher algorithms" 1149 select CRYPTO_ALGAPI 1150 select CRYPTO_LIB_AES 1151 help 1152 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1153 algorithm. 1154 1155 Rijndael appears to be consistently a very good performer in 1156 both hardware and software across a wide range of computing 1157 environments regardless of its use in feedback or non-feedback 1158 modes. Its key setup time is excellent, and its key agility is 1159 good. Rijndael's very low memory requirements make it very well 1160 suited for restricted-space environments, in which it also 1161 demonstrates excellent performance. Rijndael's operations are 1162 among the easiest to defend against power and timing attacks. 1163 1164 The AES specifies three key sizes: 128, 192 and 256 bits 1165 1166 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1167 1168config CRYPTO_AES_TI 1169 tristate "Fixed time AES cipher" 1170 select CRYPTO_ALGAPI 1171 select CRYPTO_LIB_AES 1172 help 1173 This is a generic implementation of AES that attempts to eliminate 1174 data dependent latencies as much as possible without affecting 1175 performance too much. It is intended for use by the generic CCM 1176 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1177 solely on encryption (although decryption is supported as well, but 1178 with a more dramatic performance hit) 1179 1180 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1181 8 for decryption), this implementation only uses just two S-boxes of 1182 256 bytes each, and attempts to eliminate data dependent latencies by 1183 prefetching the entire table into the cache at the start of each 1184 block. Interrupts are also disabled to avoid races where cachelines 1185 are evicted when the CPU is interrupted to do something else. 1186 1187config CRYPTO_AES_NI_INTEL 1188 tristate "AES cipher algorithms (AES-NI)" 1189 depends on X86 1190 select CRYPTO_AEAD 1191 select CRYPTO_LIB_AES 1192 select CRYPTO_ALGAPI 1193 select CRYPTO_SKCIPHER 1194 select CRYPTO_SIMD 1195 help 1196 Use Intel AES-NI instructions for AES algorithm. 1197 1198 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1199 algorithm. 1200 1201 Rijndael appears to be consistently a very good performer in 1202 both hardware and software across a wide range of computing 1203 environments regardless of its use in feedback or non-feedback 1204 modes. Its key setup time is excellent, and its key agility is 1205 good. Rijndael's very low memory requirements make it very well 1206 suited for restricted-space environments, in which it also 1207 demonstrates excellent performance. Rijndael's operations are 1208 among the easiest to defend against power and timing attacks. 1209 1210 The AES specifies three key sizes: 128, 192 and 256 bits 1211 1212 See <http://csrc.nist.gov/encryption/aes/> for more information. 1213 1214 In addition to AES cipher algorithm support, the acceleration 1215 for some popular block cipher mode is supported too, including 1216 ECB, CBC, LRW, XTS. The 64 bit version has additional 1217 acceleration for CTR. 1218 1219config CRYPTO_AES_SPARC64 1220 tristate "AES cipher algorithms (SPARC64)" 1221 depends on SPARC64 1222 select CRYPTO_SKCIPHER 1223 help 1224 Use SPARC64 crypto opcodes for AES algorithm. 1225 1226 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1227 algorithm. 1228 1229 Rijndael appears to be consistently a very good performer in 1230 both hardware and software across a wide range of computing 1231 environments regardless of its use in feedback or non-feedback 1232 modes. Its key setup time is excellent, and its key agility is 1233 good. Rijndael's very low memory requirements make it very well 1234 suited for restricted-space environments, in which it also 1235 demonstrates excellent performance. Rijndael's operations are 1236 among the easiest to defend against power and timing attacks. 1237 1238 The AES specifies three key sizes: 128, 192 and 256 bits 1239 1240 See <http://csrc.nist.gov/encryption/aes/> for more information. 1241 1242 In addition to AES cipher algorithm support, the acceleration 1243 for some popular block cipher mode is supported too, including 1244 ECB and CBC. 1245 1246config CRYPTO_AES_PPC_SPE 1247 tristate "AES cipher algorithms (PPC SPE)" 1248 depends on PPC && SPE 1249 select CRYPTO_SKCIPHER 1250 help 1251 AES cipher algorithms (FIPS-197). Additionally the acceleration 1252 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1253 This module should only be used for low power (router) devices 1254 without hardware AES acceleration (e.g. caam crypto). It reduces the 1255 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1256 timining attacks. Nevertheless it might be not as secure as other 1257 architecture specific assembler implementations that work on 1KB 1258 tables or 256 bytes S-boxes. 1259 1260config CRYPTO_AES_S390 1261 tristate "AES cipher algorithms" 1262 depends on S390 1263 select CRYPTO_ALGAPI 1264 select CRYPTO_SKCIPHER 1265 help 1266 This is the s390 hardware accelerated implementation of the 1267 AES cipher algorithms (FIPS-197). 1268 1269 As of z9 the ECB and CBC modes are hardware accelerated 1270 for 128 bit keys. 1271 As of z10 the ECB and CBC modes are hardware accelerated 1272 for all AES key sizes. 1273 As of z196 the CTR mode is hardware accelerated for all AES 1274 key sizes and XTS mode is hardware accelerated for 256 and 1275 512 bit keys. 1276 1277config CRYPTO_ANUBIS 1278 tristate "Anubis cipher algorithm" 1279 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1280 select CRYPTO_ALGAPI 1281 help 1282 Anubis cipher algorithm. 1283 1284 Anubis is a variable key length cipher which can use keys from 1285 128 bits to 320 bits in length. It was evaluated as a entrant 1286 in the NESSIE competition. 1287 1288 See also: 1289 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1290 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1291 1292config CRYPTO_ARC4 1293 tristate "ARC4 cipher algorithm" 1294 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1295 select CRYPTO_SKCIPHER 1296 select CRYPTO_LIB_ARC4 1297 help 1298 ARC4 cipher algorithm. 1299 1300 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1301 bits in length. This algorithm is required for driver-based 1302 WEP, but it should not be for other purposes because of the 1303 weakness of the algorithm. 1304 1305config CRYPTO_BLOWFISH 1306 tristate "Blowfish cipher algorithm" 1307 select CRYPTO_ALGAPI 1308 select CRYPTO_BLOWFISH_COMMON 1309 help 1310 Blowfish cipher algorithm, by Bruce Schneier. 1311 1312 This is a variable key length cipher which can use keys from 32 1313 bits to 448 bits in length. It's fast, simple and specifically 1314 designed for use on "large microprocessors". 1315 1316 See also: 1317 <https://www.schneier.com/blowfish.html> 1318 1319config CRYPTO_BLOWFISH_COMMON 1320 tristate 1321 help 1322 Common parts of the Blowfish cipher algorithm shared by the 1323 generic c and the assembler implementations. 1324 1325 See also: 1326 <https://www.schneier.com/blowfish.html> 1327 1328config CRYPTO_BLOWFISH_X86_64 1329 tristate "Blowfish cipher algorithm (x86_64)" 1330 depends on X86 && 64BIT 1331 select CRYPTO_SKCIPHER 1332 select CRYPTO_BLOWFISH_COMMON 1333 imply CRYPTO_CTR 1334 help 1335 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1336 1337 This is a variable key length cipher which can use keys from 32 1338 bits to 448 bits in length. It's fast, simple and specifically 1339 designed for use on "large microprocessors". 1340 1341 See also: 1342 <https://www.schneier.com/blowfish.html> 1343 1344config CRYPTO_CAMELLIA 1345 tristate "Camellia cipher algorithms" 1346 select CRYPTO_ALGAPI 1347 help 1348 Camellia cipher algorithms module. 1349 1350 Camellia is a symmetric key block cipher developed jointly 1351 at NTT and Mitsubishi Electric Corporation. 1352 1353 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1354 1355 See also: 1356 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1357 1358config CRYPTO_CAMELLIA_X86_64 1359 tristate "Camellia cipher algorithm (x86_64)" 1360 depends on X86 && 64BIT 1361 select CRYPTO_SKCIPHER 1362 imply CRYPTO_CTR 1363 help 1364 Camellia cipher algorithm module (x86_64). 1365 1366 Camellia is a symmetric key block cipher developed jointly 1367 at NTT and Mitsubishi Electric Corporation. 1368 1369 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1370 1371 See also: 1372 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1373 1374config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1375 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1376 depends on X86 && 64BIT 1377 select CRYPTO_SKCIPHER 1378 select CRYPTO_CAMELLIA_X86_64 1379 select CRYPTO_SIMD 1380 imply CRYPTO_XTS 1381 help 1382 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1383 1384 Camellia is a symmetric key block cipher developed jointly 1385 at NTT and Mitsubishi Electric Corporation. 1386 1387 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1388 1389 See also: 1390 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1391 1392config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1393 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1394 depends on X86 && 64BIT 1395 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1396 help 1397 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1398 1399 Camellia is a symmetric key block cipher developed jointly 1400 at NTT and Mitsubishi Electric Corporation. 1401 1402 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1403 1404 See also: 1405 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1406 1407config CRYPTO_CAMELLIA_SPARC64 1408 tristate "Camellia cipher algorithm (SPARC64)" 1409 depends on SPARC64 1410 select CRYPTO_ALGAPI 1411 select CRYPTO_SKCIPHER 1412 help 1413 Camellia cipher algorithm module (SPARC64). 1414 1415 Camellia is a symmetric key block cipher developed jointly 1416 at NTT and Mitsubishi Electric Corporation. 1417 1418 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1419 1420 See also: 1421 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1422 1423config CRYPTO_CAST_COMMON 1424 tristate 1425 help 1426 Common parts of the CAST cipher algorithms shared by the 1427 generic c and the assembler implementations. 1428 1429config CRYPTO_CAST5 1430 tristate "CAST5 (CAST-128) cipher algorithm" 1431 select CRYPTO_ALGAPI 1432 select CRYPTO_CAST_COMMON 1433 help 1434 The CAST5 encryption algorithm (synonymous with CAST-128) is 1435 described in RFC2144. 1436 1437config CRYPTO_CAST5_AVX_X86_64 1438 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1439 depends on X86 && 64BIT 1440 select CRYPTO_SKCIPHER 1441 select CRYPTO_CAST5 1442 select CRYPTO_CAST_COMMON 1443 select CRYPTO_SIMD 1444 imply CRYPTO_CTR 1445 help 1446 The CAST5 encryption algorithm (synonymous with CAST-128) is 1447 described in RFC2144. 1448 1449 This module provides the Cast5 cipher algorithm that processes 1450 sixteen blocks parallel using the AVX instruction set. 1451 1452config CRYPTO_CAST6 1453 tristate "CAST6 (CAST-256) cipher algorithm" 1454 select CRYPTO_ALGAPI 1455 select CRYPTO_CAST_COMMON 1456 help 1457 The CAST6 encryption algorithm (synonymous with CAST-256) is 1458 described in RFC2612. 1459 1460config CRYPTO_CAST6_AVX_X86_64 1461 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1462 depends on X86 && 64BIT 1463 select CRYPTO_SKCIPHER 1464 select CRYPTO_CAST6 1465 select CRYPTO_CAST_COMMON 1466 select CRYPTO_SIMD 1467 imply CRYPTO_XTS 1468 imply CRYPTO_CTR 1469 help 1470 The CAST6 encryption algorithm (synonymous with CAST-256) is 1471 described in RFC2612. 1472 1473 This module provides the Cast6 cipher algorithm that processes 1474 eight blocks parallel using the AVX instruction set. 1475 1476config CRYPTO_DES 1477 tristate "DES and Triple DES EDE cipher algorithms" 1478 select CRYPTO_ALGAPI 1479 select CRYPTO_LIB_DES 1480 help 1481 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1482 1483config CRYPTO_DES_SPARC64 1484 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1485 depends on SPARC64 1486 select CRYPTO_ALGAPI 1487 select CRYPTO_LIB_DES 1488 select CRYPTO_SKCIPHER 1489 help 1490 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1491 optimized using SPARC64 crypto opcodes. 1492 1493config CRYPTO_DES3_EDE_X86_64 1494 tristate "Triple DES EDE cipher algorithm (x86-64)" 1495 depends on X86 && 64BIT 1496 select CRYPTO_SKCIPHER 1497 select CRYPTO_LIB_DES 1498 imply CRYPTO_CTR 1499 help 1500 Triple DES EDE (FIPS 46-3) algorithm. 1501 1502 This module provides implementation of the Triple DES EDE cipher 1503 algorithm that is optimized for x86-64 processors. Two versions of 1504 algorithm are provided; regular processing one input block and 1505 one that processes three blocks parallel. 1506 1507config CRYPTO_DES_S390 1508 tristate "DES and Triple DES cipher algorithms" 1509 depends on S390 1510 select CRYPTO_ALGAPI 1511 select CRYPTO_SKCIPHER 1512 select CRYPTO_LIB_DES 1513 help 1514 This is the s390 hardware accelerated implementation of the 1515 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1516 1517 As of z990 the ECB and CBC mode are hardware accelerated. 1518 As of z196 the CTR mode is hardware accelerated. 1519 1520config CRYPTO_FCRYPT 1521 tristate "FCrypt cipher algorithm" 1522 select CRYPTO_ALGAPI 1523 select CRYPTO_SKCIPHER 1524 help 1525 FCrypt algorithm used by RxRPC. 1526 1527config CRYPTO_KHAZAD 1528 tristate "Khazad cipher algorithm" 1529 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1530 select CRYPTO_ALGAPI 1531 help 1532 Khazad cipher algorithm. 1533 1534 Khazad was a finalist in the initial NESSIE competition. It is 1535 an algorithm optimized for 64-bit processors with good performance 1536 on 32-bit processors. Khazad uses an 128 bit key size. 1537 1538 See also: 1539 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1540 1541config CRYPTO_CHACHA20 1542 tristate "ChaCha stream cipher algorithms" 1543 select CRYPTO_LIB_CHACHA_GENERIC 1544 select CRYPTO_SKCIPHER 1545 help 1546 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1547 1548 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1549 Bernstein and further specified in RFC7539 for use in IETF protocols. 1550 This is the portable C implementation of ChaCha20. See also: 1551 <https://cr.yp.to/chacha/chacha-20080128.pdf> 1552 1553 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1554 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1555 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1556 while provably retaining ChaCha20's security. See also: 1557 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1558 1559 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1560 reduced security margin but increased performance. It can be needed 1561 in some performance-sensitive scenarios. 1562 1563config CRYPTO_CHACHA20_X86_64 1564 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1565 depends on X86 && 64BIT 1566 select CRYPTO_SKCIPHER 1567 select CRYPTO_LIB_CHACHA_GENERIC 1568 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1569 help 1570 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1571 XChaCha20, and XChaCha12 stream ciphers. 1572 1573config CRYPTO_CHACHA_MIPS 1574 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 1575 depends on CPU_MIPS32_R2 1576 select CRYPTO_SKCIPHER 1577 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1578 1579config CRYPTO_CHACHA_S390 1580 tristate "ChaCha20 stream cipher" 1581 depends on S390 1582 select CRYPTO_SKCIPHER 1583 select CRYPTO_LIB_CHACHA_GENERIC 1584 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1585 help 1586 This is the s390 SIMD implementation of the ChaCha20 stream 1587 cipher (RFC 7539). 1588 1589 It is available as of z13. 1590 1591config CRYPTO_SEED 1592 tristate "SEED cipher algorithm" 1593 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1594 select CRYPTO_ALGAPI 1595 help 1596 SEED cipher algorithm (RFC4269). 1597 1598 SEED is a 128-bit symmetric key block cipher that has been 1599 developed by KISA (Korea Information Security Agency) as a 1600 national standard encryption algorithm of the Republic of Korea. 1601 It is a 16 round block cipher with the key size of 128 bit. 1602 1603 See also: 1604 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1605 1606config CRYPTO_SERPENT 1607 tristate "Serpent cipher algorithm" 1608 select CRYPTO_ALGAPI 1609 help 1610 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1611 1612 Keys are allowed to be from 0 to 256 bits in length, in steps 1613 of 8 bits. 1614 1615 See also: 1616 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1617 1618config CRYPTO_SERPENT_SSE2_X86_64 1619 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1620 depends on X86 && 64BIT 1621 select CRYPTO_SKCIPHER 1622 select CRYPTO_SERPENT 1623 select CRYPTO_SIMD 1624 imply CRYPTO_CTR 1625 help 1626 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1627 1628 Keys are allowed to be from 0 to 256 bits in length, in steps 1629 of 8 bits. 1630 1631 This module provides Serpent cipher algorithm that processes eight 1632 blocks parallel using SSE2 instruction set. 1633 1634 See also: 1635 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1636 1637config CRYPTO_SERPENT_SSE2_586 1638 tristate "Serpent cipher algorithm (i586/SSE2)" 1639 depends on X86 && !64BIT 1640 select CRYPTO_SKCIPHER 1641 select CRYPTO_SERPENT 1642 select CRYPTO_SIMD 1643 imply CRYPTO_CTR 1644 help 1645 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1646 1647 Keys are allowed to be from 0 to 256 bits in length, in steps 1648 of 8 bits. 1649 1650 This module provides Serpent cipher algorithm that processes four 1651 blocks parallel using SSE2 instruction set. 1652 1653 See also: 1654 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1655 1656config CRYPTO_SERPENT_AVX_X86_64 1657 tristate "Serpent cipher algorithm (x86_64/AVX)" 1658 depends on X86 && 64BIT 1659 select CRYPTO_SKCIPHER 1660 select CRYPTO_SERPENT 1661 select CRYPTO_SIMD 1662 imply CRYPTO_XTS 1663 imply CRYPTO_CTR 1664 help 1665 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1666 1667 Keys are allowed to be from 0 to 256 bits in length, in steps 1668 of 8 bits. 1669 1670 This module provides the Serpent cipher algorithm that processes 1671 eight blocks parallel using the AVX instruction set. 1672 1673 See also: 1674 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1675 1676config CRYPTO_SERPENT_AVX2_X86_64 1677 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1678 depends on X86 && 64BIT 1679 select CRYPTO_SERPENT_AVX_X86_64 1680 help 1681 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1682 1683 Keys are allowed to be from 0 to 256 bits in length, in steps 1684 of 8 bits. 1685 1686 This module provides Serpent cipher algorithm that processes 16 1687 blocks parallel using AVX2 instruction set. 1688 1689 See also: 1690 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1691 1692config CRYPTO_SM4 1693 tristate 1694 1695config CRYPTO_SM4_GENERIC 1696 tristate "SM4 cipher algorithm" 1697 select CRYPTO_ALGAPI 1698 select CRYPTO_SM4 1699 help 1700 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1701 1702 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1703 Organization of State Commercial Administration of China (OSCCA) 1704 as an authorized cryptographic algorithms for the use within China. 1705 1706 SMS4 was originally created for use in protecting wireless 1707 networks, and is mandated in the Chinese National Standard for 1708 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1709 (GB.15629.11-2003). 1710 1711 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1712 standardized through TC 260 of the Standardization Administration 1713 of the People's Republic of China (SAC). 1714 1715 The input, output, and key of SMS4 are each 128 bits. 1716 1717 See also: <https://eprint.iacr.org/2008/329.pdf> 1718 1719 If unsure, say N. 1720 1721config CRYPTO_SM4_AESNI_AVX_X86_64 1722 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1723 depends on X86 && 64BIT 1724 select CRYPTO_SKCIPHER 1725 select CRYPTO_SIMD 1726 select CRYPTO_ALGAPI 1727 select CRYPTO_SM4 1728 help 1729 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1730 1731 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1732 Organization of State Commercial Administration of China (OSCCA) 1733 as an authorized cryptographic algorithms for the use within China. 1734 1735 This is SM4 optimized implementation using AES-NI/AVX/x86_64 1736 instruction set for block cipher. Through two affine transforms, 1737 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1738 effect of instruction acceleration. 1739 1740 If unsure, say N. 1741 1742config CRYPTO_SM4_AESNI_AVX2_X86_64 1743 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 1744 depends on X86 && 64BIT 1745 select CRYPTO_SKCIPHER 1746 select CRYPTO_SIMD 1747 select CRYPTO_ALGAPI 1748 select CRYPTO_SM4 1749 select CRYPTO_SM4_AESNI_AVX_X86_64 1750 help 1751 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 1752 1753 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1754 Organization of State Commercial Administration of China (OSCCA) 1755 as an authorized cryptographic algorithms for the use within China. 1756 1757 This is SM4 optimized implementation using AES-NI/AVX2/x86_64 1758 instruction set for block cipher. Through two affine transforms, 1759 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1760 effect of instruction acceleration. 1761 1762 If unsure, say N. 1763 1764config CRYPTO_TEA 1765 tristate "TEA, XTEA and XETA cipher algorithms" 1766 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1767 select CRYPTO_ALGAPI 1768 help 1769 TEA cipher algorithm. 1770 1771 Tiny Encryption Algorithm is a simple cipher that uses 1772 many rounds for security. It is very fast and uses 1773 little memory. 1774 1775 Xtendend Tiny Encryption Algorithm is a modification to 1776 the TEA algorithm to address a potential key weakness 1777 in the TEA algorithm. 1778 1779 Xtendend Encryption Tiny Algorithm is a mis-implementation 1780 of the XTEA algorithm for compatibility purposes. 1781 1782config CRYPTO_TWOFISH 1783 tristate "Twofish cipher algorithm" 1784 select CRYPTO_ALGAPI 1785 select CRYPTO_TWOFISH_COMMON 1786 help 1787 Twofish cipher algorithm. 1788 1789 Twofish was submitted as an AES (Advanced Encryption Standard) 1790 candidate cipher by researchers at CounterPane Systems. It is a 1791 16 round block cipher supporting key sizes of 128, 192, and 256 1792 bits. 1793 1794 See also: 1795 <https://www.schneier.com/twofish.html> 1796 1797config CRYPTO_TWOFISH_COMMON 1798 tristate 1799 help 1800 Common parts of the Twofish cipher algorithm shared by the 1801 generic c and the assembler implementations. 1802 1803config CRYPTO_TWOFISH_586 1804 tristate "Twofish cipher algorithms (i586)" 1805 depends on (X86 || UML_X86) && !64BIT 1806 select CRYPTO_ALGAPI 1807 select CRYPTO_TWOFISH_COMMON 1808 imply CRYPTO_CTR 1809 help 1810 Twofish cipher algorithm. 1811 1812 Twofish was submitted as an AES (Advanced Encryption Standard) 1813 candidate cipher by researchers at CounterPane Systems. It is a 1814 16 round block cipher supporting key sizes of 128, 192, and 256 1815 bits. 1816 1817 See also: 1818 <https://www.schneier.com/twofish.html> 1819 1820config CRYPTO_TWOFISH_X86_64 1821 tristate "Twofish cipher algorithm (x86_64)" 1822 depends on (X86 || UML_X86) && 64BIT 1823 select CRYPTO_ALGAPI 1824 select CRYPTO_TWOFISH_COMMON 1825 imply CRYPTO_CTR 1826 help 1827 Twofish cipher algorithm (x86_64). 1828 1829 Twofish was submitted as an AES (Advanced Encryption Standard) 1830 candidate cipher by researchers at CounterPane Systems. It is a 1831 16 round block cipher supporting key sizes of 128, 192, and 256 1832 bits. 1833 1834 See also: 1835 <https://www.schneier.com/twofish.html> 1836 1837config CRYPTO_TWOFISH_X86_64_3WAY 1838 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1839 depends on X86 && 64BIT 1840 select CRYPTO_SKCIPHER 1841 select CRYPTO_TWOFISH_COMMON 1842 select CRYPTO_TWOFISH_X86_64 1843 help 1844 Twofish cipher algorithm (x86_64, 3-way parallel). 1845 1846 Twofish was submitted as an AES (Advanced Encryption Standard) 1847 candidate cipher by researchers at CounterPane Systems. It is a 1848 16 round block cipher supporting key sizes of 128, 192, and 256 1849 bits. 1850 1851 This module provides Twofish cipher algorithm that processes three 1852 blocks parallel, utilizing resources of out-of-order CPUs better. 1853 1854 See also: 1855 <https://www.schneier.com/twofish.html> 1856 1857config CRYPTO_TWOFISH_AVX_X86_64 1858 tristate "Twofish cipher algorithm (x86_64/AVX)" 1859 depends on X86 && 64BIT 1860 select CRYPTO_SKCIPHER 1861 select CRYPTO_SIMD 1862 select CRYPTO_TWOFISH_COMMON 1863 select CRYPTO_TWOFISH_X86_64 1864 select CRYPTO_TWOFISH_X86_64_3WAY 1865 imply CRYPTO_XTS 1866 help 1867 Twofish cipher algorithm (x86_64/AVX). 1868 1869 Twofish was submitted as an AES (Advanced Encryption Standard) 1870 candidate cipher by researchers at CounterPane Systems. It is a 1871 16 round block cipher supporting key sizes of 128, 192, and 256 1872 bits. 1873 1874 This module provides the Twofish cipher algorithm that processes 1875 eight blocks parallel using the AVX Instruction Set. 1876 1877 See also: 1878 <https://www.schneier.com/twofish.html> 1879 1880comment "Compression" 1881 1882config CRYPTO_DEFLATE 1883 tristate "Deflate compression algorithm" 1884 select CRYPTO_ALGAPI 1885 select CRYPTO_ACOMP2 1886 select ZLIB_INFLATE 1887 select ZLIB_DEFLATE 1888 help 1889 This is the Deflate algorithm (RFC1951), specified for use in 1890 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1891 1892 You will most probably want this if using IPSec. 1893 1894config CRYPTO_LZO 1895 tristate "LZO compression algorithm" 1896 select CRYPTO_ALGAPI 1897 select CRYPTO_ACOMP2 1898 select LZO_COMPRESS 1899 select LZO_DECOMPRESS 1900 help 1901 This is the LZO algorithm. 1902 1903config CRYPTO_842 1904 tristate "842 compression algorithm" 1905 select CRYPTO_ALGAPI 1906 select CRYPTO_ACOMP2 1907 select 842_COMPRESS 1908 select 842_DECOMPRESS 1909 help 1910 This is the 842 algorithm. 1911 1912config CRYPTO_LZ4 1913 tristate "LZ4 compression algorithm" 1914 select CRYPTO_ALGAPI 1915 select CRYPTO_ACOMP2 1916 select LZ4_COMPRESS 1917 select LZ4_DECOMPRESS 1918 help 1919 This is the LZ4 algorithm. 1920 1921config CRYPTO_LZ4HC 1922 tristate "LZ4HC compression algorithm" 1923 select CRYPTO_ALGAPI 1924 select CRYPTO_ACOMP2 1925 select LZ4HC_COMPRESS 1926 select LZ4_DECOMPRESS 1927 help 1928 This is the LZ4 high compression mode algorithm. 1929 1930config CRYPTO_ZSTD 1931 tristate "Zstd compression algorithm" 1932 select CRYPTO_ALGAPI 1933 select CRYPTO_ACOMP2 1934 select ZSTD_COMPRESS 1935 select ZSTD_DECOMPRESS 1936 help 1937 This is the zstd algorithm. 1938 1939comment "Random Number Generation" 1940 1941config CRYPTO_ANSI_CPRNG 1942 tristate "Pseudo Random Number Generation for Cryptographic modules" 1943 select CRYPTO_AES 1944 select CRYPTO_RNG 1945 help 1946 This option enables the generic pseudo random number generator 1947 for cryptographic modules. Uses the Algorithm specified in 1948 ANSI X9.31 A.2.4. Note that this option must be enabled if 1949 CRYPTO_FIPS is selected 1950 1951menuconfig CRYPTO_DRBG_MENU 1952 tristate "NIST SP800-90A DRBG" 1953 help 1954 NIST SP800-90A compliant DRBG. In the following submenu, one or 1955 more of the DRBG types must be selected. 1956 1957if CRYPTO_DRBG_MENU 1958 1959config CRYPTO_DRBG_HMAC 1960 bool 1961 default y 1962 select CRYPTO_HMAC 1963 select CRYPTO_SHA512 1964 1965config CRYPTO_DRBG_HASH 1966 bool "Enable Hash DRBG" 1967 select CRYPTO_SHA256 1968 help 1969 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1970 1971config CRYPTO_DRBG_CTR 1972 bool "Enable CTR DRBG" 1973 select CRYPTO_AES 1974 select CRYPTO_CTR 1975 help 1976 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1977 1978config CRYPTO_DRBG 1979 tristate 1980 default CRYPTO_DRBG_MENU 1981 select CRYPTO_RNG 1982 select CRYPTO_JITTERENTROPY 1983 1984endif # if CRYPTO_DRBG_MENU 1985 1986config CRYPTO_JITTERENTROPY 1987 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1988 select CRYPTO_RNG 1989 help 1990 The Jitterentropy RNG is a noise that is intended 1991 to provide seed to another RNG. The RNG does not 1992 perform any cryptographic whitening of the generated 1993 random numbers. This Jitterentropy RNG registers with 1994 the kernel crypto API and can be used by any caller. 1995 1996config CRYPTO_KDF800108_CTR 1997 tristate 1998 select CRYPTO_HMAC 1999 select CRYPTO_SHA256 2000 2001config CRYPTO_USER_API 2002 tristate 2003 2004config CRYPTO_USER_API_HASH 2005 tristate "User-space interface for hash algorithms" 2006 depends on NET 2007 select CRYPTO_HASH 2008 select CRYPTO_USER_API 2009 help 2010 This option enables the user-spaces interface for hash 2011 algorithms. 2012 2013config CRYPTO_USER_API_SKCIPHER 2014 tristate "User-space interface for symmetric key cipher algorithms" 2015 depends on NET 2016 select CRYPTO_SKCIPHER 2017 select CRYPTO_USER_API 2018 help 2019 This option enables the user-spaces interface for symmetric 2020 key cipher algorithms. 2021 2022config CRYPTO_USER_API_RNG 2023 tristate "User-space interface for random number generator algorithms" 2024 depends on NET 2025 select CRYPTO_RNG 2026 select CRYPTO_USER_API 2027 help 2028 This option enables the user-spaces interface for random 2029 number generator algorithms. 2030 2031config CRYPTO_USER_API_RNG_CAVP 2032 bool "Enable CAVP testing of DRBG" 2033 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 2034 help 2035 This option enables extra API for CAVP testing via the user-space 2036 interface: resetting of DRBG entropy, and providing Additional Data. 2037 This should only be enabled for CAVP testing. You should say 2038 no unless you know what this is. 2039 2040config CRYPTO_USER_API_AEAD 2041 tristate "User-space interface for AEAD cipher algorithms" 2042 depends on NET 2043 select CRYPTO_AEAD 2044 select CRYPTO_SKCIPHER 2045 select CRYPTO_NULL 2046 select CRYPTO_USER_API 2047 help 2048 This option enables the user-spaces interface for AEAD 2049 cipher algorithms. 2050 2051config CRYPTO_USER_API_ENABLE_OBSOLETE 2052 bool "Enable obsolete cryptographic algorithms for userspace" 2053 depends on CRYPTO_USER_API 2054 default y 2055 help 2056 Allow obsolete cryptographic algorithms to be selected that have 2057 already been phased out from internal use by the kernel, and are 2058 only useful for userspace clients that still rely on them. 2059 2060config CRYPTO_STATS 2061 bool "Crypto usage statistics for User-space" 2062 depends on CRYPTO_USER 2063 help 2064 This option enables the gathering of crypto stats. 2065 This will collect: 2066 - encrypt/decrypt size and numbers of symmeric operations 2067 - compress/decompress size and numbers of compress operations 2068 - size and numbers of hash operations 2069 - encrypt/decrypt/sign/verify numbers for asymmetric operations 2070 - generate/seed numbers for rng operations 2071 2072config CRYPTO_HASH_INFO 2073 bool 2074 2075source "drivers/crypto/Kconfig" 2076source "crypto/asymmetric_keys/Kconfig" 2077source "certs/Kconfig" 2078 2079endif # if CRYPTO 2080