xref: /openbmc/linux/crypto/Kconfig (revision ec8f7f48)
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6	tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17	tristate "Cryptographic API"
18	select LIB_MEMNEQ
19	help
20	  This option provides the core Cryptographic API.
21
22if CRYPTO
23
24comment "Crypto core or helper"
25
26config CRYPTO_FIPS
27	bool "FIPS 200 compliance"
28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
29	depends on (MODULE_SIG || !MODULES)
30	help
31	  This option enables the fips boot option which is
32	  required if you want the system to operate in a FIPS 200
33	  certification.  You should say no unless you know what
34	  this is.
35
36config CRYPTO_FIPS_NAME
37	string "FIPS Module Name"
38	default "Linux Kernel Cryptographic API"
39	depends on CRYPTO_FIPS
40	help
41	  This option sets the FIPS Module name reported by the Crypto API via
42	  the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45	bool "Use Custom FIPS Module Version"
46	depends on CRYPTO_FIPS
47	default n
48
49config CRYPTO_FIPS_VERSION
50	string "FIPS Module Version"
51	default "(none)"
52	depends on CRYPTO_FIPS_CUSTOM_VERSION
53	help
54	  This option provides the ability to override the FIPS Module Version.
55	  By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58	tristate
59	select CRYPTO_ALGAPI2
60	help
61	  This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64	tristate
65
66config CRYPTO_AEAD
67	tristate
68	select CRYPTO_AEAD2
69	select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72	tristate
73	select CRYPTO_ALGAPI2
74	select CRYPTO_NULL2
75	select CRYPTO_RNG2
76
77config CRYPTO_SKCIPHER
78	tristate
79	select CRYPTO_SKCIPHER2
80	select CRYPTO_ALGAPI
81
82config CRYPTO_SKCIPHER2
83	tristate
84	select CRYPTO_ALGAPI2
85	select CRYPTO_RNG2
86
87config CRYPTO_HASH
88	tristate
89	select CRYPTO_HASH2
90	select CRYPTO_ALGAPI
91
92config CRYPTO_HASH2
93	tristate
94	select CRYPTO_ALGAPI2
95
96config CRYPTO_RNG
97	tristate
98	select CRYPTO_RNG2
99	select CRYPTO_ALGAPI
100
101config CRYPTO_RNG2
102	tristate
103	select CRYPTO_ALGAPI2
104
105config CRYPTO_RNG_DEFAULT
106	tristate
107	select CRYPTO_DRBG_MENU
108
109config CRYPTO_AKCIPHER2
110	tristate
111	select CRYPTO_ALGAPI2
112
113config CRYPTO_AKCIPHER
114	tristate
115	select CRYPTO_AKCIPHER2
116	select CRYPTO_ALGAPI
117
118config CRYPTO_KPP2
119	tristate
120	select CRYPTO_ALGAPI2
121
122config CRYPTO_KPP
123	tristate
124	select CRYPTO_ALGAPI
125	select CRYPTO_KPP2
126
127config CRYPTO_ACOMP2
128	tristate
129	select CRYPTO_ALGAPI2
130	select SGL_ALLOC
131
132config CRYPTO_ACOMP
133	tristate
134	select CRYPTO_ALGAPI
135	select CRYPTO_ACOMP2
136
137config CRYPTO_MANAGER
138	tristate "Cryptographic algorithm manager"
139	select CRYPTO_MANAGER2
140	help
141	  Create default cryptographic template instantiations such as
142	  cbc(aes).
143
144config CRYPTO_MANAGER2
145	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
146	select CRYPTO_AEAD2
147	select CRYPTO_HASH2
148	select CRYPTO_SKCIPHER2
149	select CRYPTO_AKCIPHER2
150	select CRYPTO_KPP2
151	select CRYPTO_ACOMP2
152
153config CRYPTO_USER
154	tristate "Userspace cryptographic algorithm configuration"
155	depends on NET
156	select CRYPTO_MANAGER
157	help
158	  Userspace configuration for cryptographic instantiations such as
159	  cbc(aes).
160
161config CRYPTO_MANAGER_DISABLE_TESTS
162	bool "Disable run-time self tests"
163	default y
164	help
165	  Disable run-time self tests that normally take place at
166	  algorithm registration.
167
168config CRYPTO_MANAGER_EXTRA_TESTS
169	bool "Enable extra run-time crypto self tests"
170	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
171	help
172	  Enable extra run-time self tests of registered crypto algorithms,
173	  including randomized fuzz tests.
174
175	  This is intended for developer use only, as these tests take much
176	  longer to run than the normal self tests.
177
178config CRYPTO_GF128MUL
179	tristate
180
181config CRYPTO_NULL
182	tristate "Null algorithms"
183	select CRYPTO_NULL2
184	help
185	  These are 'Null' algorithms, used by IPsec, which do nothing.
186
187config CRYPTO_NULL2
188	tristate
189	select CRYPTO_ALGAPI2
190	select CRYPTO_SKCIPHER2
191	select CRYPTO_HASH2
192
193config CRYPTO_PCRYPT
194	tristate "Parallel crypto engine"
195	depends on SMP
196	select PADATA
197	select CRYPTO_MANAGER
198	select CRYPTO_AEAD
199	help
200	  This converts an arbitrary crypto algorithm into a parallel
201	  algorithm that executes in kernel threads.
202
203config CRYPTO_CRYPTD
204	tristate "Software async crypto daemon"
205	select CRYPTO_SKCIPHER
206	select CRYPTO_HASH
207	select CRYPTO_MANAGER
208	help
209	  This is a generic software asynchronous crypto daemon that
210	  converts an arbitrary synchronous software crypto algorithm
211	  into an asynchronous algorithm that executes in a kernel thread.
212
213config CRYPTO_AUTHENC
214	tristate "Authenc support"
215	select CRYPTO_AEAD
216	select CRYPTO_SKCIPHER
217	select CRYPTO_MANAGER
218	select CRYPTO_HASH
219	select CRYPTO_NULL
220	help
221	  Authenc: Combined mode wrapper for IPsec.
222	  This is required for IPSec.
223
224config CRYPTO_TEST
225	tristate "Testing module"
226	depends on m || EXPERT
227	select CRYPTO_MANAGER
228	help
229	  Quick & dirty crypto test module.
230
231config CRYPTO_SIMD
232	tristate
233	select CRYPTO_CRYPTD
234
235config CRYPTO_ENGINE
236	tristate
237
238comment "Public-key cryptography"
239
240config CRYPTO_RSA
241	tristate "RSA algorithm"
242	select CRYPTO_AKCIPHER
243	select CRYPTO_MANAGER
244	select MPILIB
245	select ASN1
246	help
247	  Generic implementation of the RSA public key algorithm.
248
249config CRYPTO_DH
250	tristate "Diffie-Hellman algorithm"
251	select CRYPTO_KPP
252	select MPILIB
253	help
254	  Generic implementation of the Diffie-Hellman algorithm.
255
256config CRYPTO_DH_RFC7919_GROUPS
257	bool "Support for RFC 7919 FFDHE group parameters"
258	depends on CRYPTO_DH
259	select CRYPTO_RNG_DEFAULT
260	help
261	  Provide support for RFC 7919 FFDHE group parameters. If unsure, say N.
262
263config CRYPTO_ECC
264	tristate
265	select CRYPTO_RNG_DEFAULT
266
267config CRYPTO_ECDH
268	tristate "ECDH algorithm"
269	select CRYPTO_ECC
270	select CRYPTO_KPP
271	help
272	  Generic implementation of the ECDH algorithm
273
274config CRYPTO_ECDSA
275	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
276	select CRYPTO_ECC
277	select CRYPTO_AKCIPHER
278	select ASN1
279	help
280	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
281	  is A NIST cryptographic standard algorithm. Only signature verification
282	  is implemented.
283
284config CRYPTO_ECRDSA
285	tristate "EC-RDSA (GOST 34.10) algorithm"
286	select CRYPTO_ECC
287	select CRYPTO_AKCIPHER
288	select CRYPTO_STREEBOG
289	select OID_REGISTRY
290	select ASN1
291	help
292	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
293	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
294	  standard algorithms (called GOST algorithms). Only signature verification
295	  is implemented.
296
297config CRYPTO_SM2
298	tristate "SM2 algorithm"
299	select CRYPTO_SM3
300	select CRYPTO_AKCIPHER
301	select CRYPTO_MANAGER
302	select MPILIB
303	select ASN1
304	help
305	  Generic implementation of the SM2 public key algorithm. It was
306	  published by State Encryption Management Bureau, China.
307	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
308
309	  References:
310	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
311	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
312	  http://www.gmbz.org.cn/main/bzlb.html
313
314config CRYPTO_CURVE25519
315	tristate "Curve25519 algorithm"
316	select CRYPTO_KPP
317	select CRYPTO_LIB_CURVE25519_GENERIC
318
319config CRYPTO_CURVE25519_X86
320	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
321	depends on X86 && 64BIT
322	select CRYPTO_LIB_CURVE25519_GENERIC
323	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
324
325comment "Authenticated Encryption with Associated Data"
326
327config CRYPTO_CCM
328	tristate "CCM support"
329	select CRYPTO_CTR
330	select CRYPTO_HASH
331	select CRYPTO_AEAD
332	select CRYPTO_MANAGER
333	help
334	  Support for Counter with CBC MAC. Required for IPsec.
335
336config CRYPTO_GCM
337	tristate "GCM/GMAC support"
338	select CRYPTO_CTR
339	select CRYPTO_AEAD
340	select CRYPTO_GHASH
341	select CRYPTO_NULL
342	select CRYPTO_MANAGER
343	help
344	  Support for Galois/Counter Mode (GCM) and Galois Message
345	  Authentication Code (GMAC). Required for IPSec.
346
347config CRYPTO_CHACHA20POLY1305
348	tristate "ChaCha20-Poly1305 AEAD support"
349	select CRYPTO_CHACHA20
350	select CRYPTO_POLY1305
351	select CRYPTO_AEAD
352	select CRYPTO_MANAGER
353	help
354	  ChaCha20-Poly1305 AEAD support, RFC7539.
355
356	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
357	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
358	  IETF protocols.
359
360config CRYPTO_AEGIS128
361	tristate "AEGIS-128 AEAD algorithm"
362	select CRYPTO_AEAD
363	select CRYPTO_AES  # for AES S-box tables
364	help
365	 Support for the AEGIS-128 dedicated AEAD algorithm.
366
367config CRYPTO_AEGIS128_SIMD
368	bool "Support SIMD acceleration for AEGIS-128"
369	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
370	default y
371
372config CRYPTO_AEGIS128_AESNI_SSE2
373	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
374	depends on X86 && 64BIT
375	select CRYPTO_AEAD
376	select CRYPTO_SIMD
377	help
378	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
379
380config CRYPTO_SEQIV
381	tristate "Sequence Number IV Generator"
382	select CRYPTO_AEAD
383	select CRYPTO_SKCIPHER
384	select CRYPTO_NULL
385	select CRYPTO_RNG_DEFAULT
386	select CRYPTO_MANAGER
387	help
388	  This IV generator generates an IV based on a sequence number by
389	  xoring it with a salt.  This algorithm is mainly useful for CTR
390
391config CRYPTO_ECHAINIV
392	tristate "Encrypted Chain IV Generator"
393	select CRYPTO_AEAD
394	select CRYPTO_NULL
395	select CRYPTO_RNG_DEFAULT
396	select CRYPTO_MANAGER
397	help
398	  This IV generator generates an IV based on the encryption of
399	  a sequence number xored with a salt.  This is the default
400	  algorithm for CBC.
401
402comment "Block modes"
403
404config CRYPTO_CBC
405	tristate "CBC support"
406	select CRYPTO_SKCIPHER
407	select CRYPTO_MANAGER
408	help
409	  CBC: Cipher Block Chaining mode
410	  This block cipher algorithm is required for IPSec.
411
412config CRYPTO_CFB
413	tristate "CFB support"
414	select CRYPTO_SKCIPHER
415	select CRYPTO_MANAGER
416	help
417	  CFB: Cipher FeedBack mode
418	  This block cipher algorithm is required for TPM2 Cryptography.
419
420config CRYPTO_CTR
421	tristate "CTR support"
422	select CRYPTO_SKCIPHER
423	select CRYPTO_MANAGER
424	help
425	  CTR: Counter mode
426	  This block cipher algorithm is required for IPSec.
427
428config CRYPTO_CTS
429	tristate "CTS support"
430	select CRYPTO_SKCIPHER
431	select CRYPTO_MANAGER
432	help
433	  CTS: Cipher Text Stealing
434	  This is the Cipher Text Stealing mode as described by
435	  Section 8 of rfc2040 and referenced by rfc3962
436	  (rfc3962 includes errata information in its Appendix A) or
437	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
438	  This mode is required for Kerberos gss mechanism support
439	  for AES encryption.
440
441	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
442
443config CRYPTO_ECB
444	tristate "ECB support"
445	select CRYPTO_SKCIPHER
446	select CRYPTO_MANAGER
447	help
448	  ECB: Electronic CodeBook mode
449	  This is the simplest block cipher algorithm.  It simply encrypts
450	  the input block by block.
451
452config CRYPTO_LRW
453	tristate "LRW support"
454	select CRYPTO_SKCIPHER
455	select CRYPTO_MANAGER
456	select CRYPTO_GF128MUL
457	select CRYPTO_ECB
458	help
459	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
460	  narrow block cipher mode for dm-crypt.  Use it with cipher
461	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
462	  The first 128, 192 or 256 bits in the key are used for AES and the
463	  rest is used to tie each cipher block to its logical position.
464
465config CRYPTO_OFB
466	tristate "OFB support"
467	select CRYPTO_SKCIPHER
468	select CRYPTO_MANAGER
469	help
470	  OFB: the Output Feedback mode makes a block cipher into a synchronous
471	  stream cipher. It generates keystream blocks, which are then XORed
472	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
473	  ciphertext produces a flipped bit in the plaintext at the same
474	  location. This property allows many error correcting codes to function
475	  normally even when applied before encryption.
476
477config CRYPTO_PCBC
478	tristate "PCBC support"
479	select CRYPTO_SKCIPHER
480	select CRYPTO_MANAGER
481	help
482	  PCBC: Propagating Cipher Block Chaining mode
483	  This block cipher algorithm is required for RxRPC.
484
485config CRYPTO_XCTR
486	tristate
487	select CRYPTO_SKCIPHER
488	select CRYPTO_MANAGER
489	help
490	  XCTR: XOR Counter mode. This blockcipher mode is a variant of CTR mode
491	  using XORs and little-endian addition rather than big-endian arithmetic.
492	  XCTR mode is used to implement HCTR2.
493
494config CRYPTO_XTS
495	tristate "XTS support"
496	select CRYPTO_SKCIPHER
497	select CRYPTO_MANAGER
498	select CRYPTO_ECB
499	help
500	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
501	  key size 256, 384 or 512 bits. This implementation currently
502	  can't handle a sectorsize which is not a multiple of 16 bytes.
503
504config CRYPTO_KEYWRAP
505	tristate "Key wrapping support"
506	select CRYPTO_SKCIPHER
507	select CRYPTO_MANAGER
508	help
509	  Support for key wrapping (NIST SP800-38F / RFC3394) without
510	  padding.
511
512config CRYPTO_NHPOLY1305
513	tristate
514	select CRYPTO_HASH
515	select CRYPTO_LIB_POLY1305_GENERIC
516
517config CRYPTO_NHPOLY1305_SSE2
518	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
519	depends on X86 && 64BIT
520	select CRYPTO_NHPOLY1305
521	help
522	  SSE2 optimized implementation of the hash function used by the
523	  Adiantum encryption mode.
524
525config CRYPTO_NHPOLY1305_AVX2
526	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
527	depends on X86 && 64BIT
528	select CRYPTO_NHPOLY1305
529	help
530	  AVX2 optimized implementation of the hash function used by the
531	  Adiantum encryption mode.
532
533config CRYPTO_ADIANTUM
534	tristate "Adiantum support"
535	select CRYPTO_CHACHA20
536	select CRYPTO_LIB_POLY1305_GENERIC
537	select CRYPTO_NHPOLY1305
538	select CRYPTO_MANAGER
539	help
540	  Adiantum is a tweakable, length-preserving encryption mode
541	  designed for fast and secure disk encryption, especially on
542	  CPUs without dedicated crypto instructions.  It encrypts
543	  each sector using the XChaCha12 stream cipher, two passes of
544	  an ε-almost-∆-universal hash function, and an invocation of
545	  the AES-256 block cipher on a single 16-byte block.  On CPUs
546	  without AES instructions, Adiantum is much faster than
547	  AES-XTS.
548
549	  Adiantum's security is provably reducible to that of its
550	  underlying stream and block ciphers, subject to a security
551	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
552	  mode, so it actually provides an even stronger notion of
553	  security than XTS, subject to the security bound.
554
555	  If unsure, say N.
556
557config CRYPTO_HCTR2
558	tristate "HCTR2 support"
559	select CRYPTO_XCTR
560	select CRYPTO_POLYVAL
561	select CRYPTO_MANAGER
562	help
563	  HCTR2 is a length-preserving encryption mode for storage encryption that
564	  is efficient on processors with instructions to accelerate AES and
565	  carryless multiplication, e.g. x86 processors with AES-NI and CLMUL, and
566	  ARM processors with the ARMv8 crypto extensions.
567
568config CRYPTO_ESSIV
569	tristate "ESSIV support for block encryption"
570	select CRYPTO_AUTHENC
571	help
572	  Encrypted salt-sector initialization vector (ESSIV) is an IV
573	  generation method that is used in some cases by fscrypt and/or
574	  dm-crypt. It uses the hash of the block encryption key as the
575	  symmetric key for a block encryption pass applied to the input
576	  IV, making low entropy IV sources more suitable for block
577	  encryption.
578
579	  This driver implements a crypto API template that can be
580	  instantiated either as an skcipher or as an AEAD (depending on the
581	  type of the first template argument), and which defers encryption
582	  and decryption requests to the encapsulated cipher after applying
583	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
584	  that the keys are presented in the same format used by the authenc
585	  template, and that the IV appears at the end of the authenticated
586	  associated data (AAD) region (which is how dm-crypt uses it.)
587
588	  Note that the use of ESSIV is not recommended for new deployments,
589	  and so this only needs to be enabled when interoperability with
590	  existing encrypted volumes of filesystems is required, or when
591	  building for a particular system that requires it (e.g., when
592	  the SoC in question has accelerated CBC but not XTS, making CBC
593	  combined with ESSIV the only feasible mode for h/w accelerated
594	  block encryption)
595
596comment "Hash modes"
597
598config CRYPTO_CMAC
599	tristate "CMAC support"
600	select CRYPTO_HASH
601	select CRYPTO_MANAGER
602	help
603	  Cipher-based Message Authentication Code (CMAC) specified by
604	  The National Institute of Standards and Technology (NIST).
605
606	  https://tools.ietf.org/html/rfc4493
607	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
608
609config CRYPTO_HMAC
610	tristate "HMAC support"
611	select CRYPTO_HASH
612	select CRYPTO_MANAGER
613	help
614	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
615	  This is required for IPSec.
616
617config CRYPTO_XCBC
618	tristate "XCBC support"
619	select CRYPTO_HASH
620	select CRYPTO_MANAGER
621	help
622	  XCBC: Keyed-Hashing with encryption algorithm
623		https://www.ietf.org/rfc/rfc3566.txt
624		http://csrc.nist.gov/encryption/modes/proposedmodes/
625		 xcbc-mac/xcbc-mac-spec.pdf
626
627config CRYPTO_VMAC
628	tristate "VMAC support"
629	select CRYPTO_HASH
630	select CRYPTO_MANAGER
631	help
632	  VMAC is a message authentication algorithm designed for
633	  very high speed on 64-bit architectures.
634
635	  See also:
636	  <https://fastcrypto.org/vmac>
637
638comment "Digest"
639
640config CRYPTO_CRC32C
641	tristate "CRC32c CRC algorithm"
642	select CRYPTO_HASH
643	select CRC32
644	help
645	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
646	  by iSCSI for header and data digests and by others.
647	  See Castagnoli93.  Module will be crc32c.
648
649config CRYPTO_CRC32C_INTEL
650	tristate "CRC32c INTEL hardware acceleration"
651	depends on X86
652	select CRYPTO_HASH
653	help
654	  In Intel processor with SSE4.2 supported, the processor will
655	  support CRC32C implementation using hardware accelerated CRC32
656	  instruction. This option will create 'crc32c-intel' module,
657	  which will enable any routine to use the CRC32 instruction to
658	  gain performance compared with software implementation.
659	  Module will be crc32c-intel.
660
661config CRYPTO_CRC32C_VPMSUM
662	tristate "CRC32c CRC algorithm (powerpc64)"
663	depends on PPC64 && ALTIVEC
664	select CRYPTO_HASH
665	select CRC32
666	help
667	  CRC32c algorithm implemented using vector polynomial multiply-sum
668	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
669	  and newer processors for improved performance.
670
671
672config CRYPTO_CRC32C_SPARC64
673	tristate "CRC32c CRC algorithm (SPARC64)"
674	depends on SPARC64
675	select CRYPTO_HASH
676	select CRC32
677	help
678	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
679	  when available.
680
681config CRYPTO_CRC32
682	tristate "CRC32 CRC algorithm"
683	select CRYPTO_HASH
684	select CRC32
685	help
686	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
687	  Shash crypto api wrappers to crc32_le function.
688
689config CRYPTO_CRC32_PCLMUL
690	tristate "CRC32 PCLMULQDQ hardware acceleration"
691	depends on X86
692	select CRYPTO_HASH
693	select CRC32
694	help
695	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
696	  and PCLMULQDQ supported, the processor will support
697	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
698	  instruction. This option will create 'crc32-pclmul' module,
699	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
700	  and gain better performance as compared with the table implementation.
701
702config CRYPTO_CRC32_MIPS
703	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
704	depends on MIPS_CRC_SUPPORT
705	select CRYPTO_HASH
706	help
707	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
708	  instructions, when available.
709
710
711config CRYPTO_XXHASH
712	tristate "xxHash hash algorithm"
713	select CRYPTO_HASH
714	select XXHASH
715	help
716	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
717	  speeds close to RAM limits.
718
719config CRYPTO_BLAKE2B
720	tristate "BLAKE2b digest algorithm"
721	select CRYPTO_HASH
722	help
723	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
724	  optimized for 64bit platforms and can produce digests of any size
725	  between 1 to 64.  The keyed hash is also implemented.
726
727	  This module provides the following algorithms:
728
729	  - blake2b-160
730	  - blake2b-256
731	  - blake2b-384
732	  - blake2b-512
733
734	  See https://blake2.net for further information.
735
736config CRYPTO_BLAKE2S_X86
737	bool "BLAKE2s digest algorithm (x86 accelerated version)"
738	depends on X86 && 64BIT
739	select CRYPTO_LIB_BLAKE2S_GENERIC
740	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
741
742config CRYPTO_CRCT10DIF
743	tristate "CRCT10DIF algorithm"
744	select CRYPTO_HASH
745	help
746	  CRC T10 Data Integrity Field computation is being cast as
747	  a crypto transform.  This allows for faster crc t10 diff
748	  transforms to be used if they are available.
749
750config CRYPTO_CRCT10DIF_PCLMUL
751	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
752	depends on X86 && 64BIT && CRC_T10DIF
753	select CRYPTO_HASH
754	help
755	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
756	  CRC T10 DIF PCLMULQDQ computation can be hardware
757	  accelerated PCLMULQDQ instruction. This option will create
758	  'crct10dif-pclmul' module, which is faster when computing the
759	  crct10dif checksum as compared with the generic table implementation.
760
761config CRYPTO_CRCT10DIF_VPMSUM
762	tristate "CRC32T10DIF powerpc64 hardware acceleration"
763	depends on PPC64 && ALTIVEC && CRC_T10DIF
764	select CRYPTO_HASH
765	help
766	  CRC10T10DIF algorithm implemented using vector polynomial
767	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
768	  POWER8 and newer processors for improved performance.
769
770config CRYPTO_CRC64_ROCKSOFT
771	tristate "Rocksoft Model CRC64 algorithm"
772	depends on CRC64
773	select CRYPTO_HASH
774
775config CRYPTO_VPMSUM_TESTER
776	tristate "Powerpc64 vpmsum hardware acceleration tester"
777	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
778	help
779	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
780	  POWER8 vpmsum instructions.
781	  Unless you are testing these algorithms, you don't need this.
782
783config CRYPTO_GHASH
784	tristate "GHASH hash function"
785	select CRYPTO_GF128MUL
786	select CRYPTO_HASH
787	help
788	  GHASH is the hash function used in GCM (Galois/Counter Mode).
789	  It is not a general-purpose cryptographic hash function.
790
791config CRYPTO_POLYVAL
792	tristate
793	select CRYPTO_GF128MUL
794	select CRYPTO_HASH
795	help
796	  POLYVAL is the hash function used in HCTR2.  It is not a general-purpose
797	  cryptographic hash function.
798
799config CRYPTO_POLYVAL_CLMUL_NI
800	tristate "POLYVAL hash function (CLMUL-NI accelerated)"
801	depends on X86 && 64BIT
802	select CRYPTO_POLYVAL
803	help
804	  This is the x86_64 CLMUL-NI accelerated implementation of POLYVAL. It is
805	  used to efficiently implement HCTR2 on x86-64 processors that support
806	  carry-less multiplication instructions.
807
808config CRYPTO_POLY1305
809	tristate "Poly1305 authenticator algorithm"
810	select CRYPTO_HASH
811	select CRYPTO_LIB_POLY1305_GENERIC
812	help
813	  Poly1305 authenticator algorithm, RFC7539.
814
815	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
816	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
817	  in IETF protocols. This is the portable C implementation of Poly1305.
818
819config CRYPTO_POLY1305_X86_64
820	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
821	depends on X86 && 64BIT
822	select CRYPTO_LIB_POLY1305_GENERIC
823	select CRYPTO_ARCH_HAVE_LIB_POLY1305
824	help
825	  Poly1305 authenticator algorithm, RFC7539.
826
827	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
828	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
829	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
830	  instructions.
831
832config CRYPTO_POLY1305_MIPS
833	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
834	depends on MIPS
835	select CRYPTO_ARCH_HAVE_LIB_POLY1305
836
837config CRYPTO_MD4
838	tristate "MD4 digest algorithm"
839	select CRYPTO_HASH
840	help
841	  MD4 message digest algorithm (RFC1320).
842
843config CRYPTO_MD5
844	tristate "MD5 digest algorithm"
845	select CRYPTO_HASH
846	help
847	  MD5 message digest algorithm (RFC1321).
848
849config CRYPTO_MD5_OCTEON
850	tristate "MD5 digest algorithm (OCTEON)"
851	depends on CPU_CAVIUM_OCTEON
852	select CRYPTO_MD5
853	select CRYPTO_HASH
854	help
855	  MD5 message digest algorithm (RFC1321) implemented
856	  using OCTEON crypto instructions, when available.
857
858config CRYPTO_MD5_PPC
859	tristate "MD5 digest algorithm (PPC)"
860	depends on PPC
861	select CRYPTO_HASH
862	help
863	  MD5 message digest algorithm (RFC1321) implemented
864	  in PPC assembler.
865
866config CRYPTO_MD5_SPARC64
867	tristate "MD5 digest algorithm (SPARC64)"
868	depends on SPARC64
869	select CRYPTO_MD5
870	select CRYPTO_HASH
871	help
872	  MD5 message digest algorithm (RFC1321) implemented
873	  using sparc64 crypto instructions, when available.
874
875config CRYPTO_MICHAEL_MIC
876	tristate "Michael MIC keyed digest algorithm"
877	select CRYPTO_HASH
878	help
879	  Michael MIC is used for message integrity protection in TKIP
880	  (IEEE 802.11i). This algorithm is required for TKIP, but it
881	  should not be used for other purposes because of the weakness
882	  of the algorithm.
883
884config CRYPTO_RMD160
885	tristate "RIPEMD-160 digest algorithm"
886	select CRYPTO_HASH
887	help
888	  RIPEMD-160 (ISO/IEC 10118-3:2004).
889
890	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
891	  to be used as a secure replacement for the 128-bit hash functions
892	  MD4, MD5 and it's predecessor RIPEMD
893	  (not to be confused with RIPEMD-128).
894
895	  It's speed is comparable to SHA1 and there are no known attacks
896	  against RIPEMD-160.
897
898	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
899	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
900
901config CRYPTO_SHA1
902	tristate "SHA1 digest algorithm"
903	select CRYPTO_HASH
904	select CRYPTO_LIB_SHA1
905	help
906	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
907
908config CRYPTO_SHA1_SSSE3
909	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
910	depends on X86 && 64BIT
911	select CRYPTO_SHA1
912	select CRYPTO_HASH
913	help
914	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
915	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
916	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
917	  when available.
918
919config CRYPTO_SHA256_SSSE3
920	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
921	depends on X86 && 64BIT
922	select CRYPTO_SHA256
923	select CRYPTO_HASH
924	help
925	  SHA-256 secure hash standard (DFIPS 180-2) implemented
926	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
927	  Extensions version 1 (AVX1), or Advanced Vector Extensions
928	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
929	  Instructions) when available.
930
931config CRYPTO_SHA512_SSSE3
932	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
933	depends on X86 && 64BIT
934	select CRYPTO_SHA512
935	select CRYPTO_HASH
936	help
937	  SHA-512 secure hash standard (DFIPS 180-2) implemented
938	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
939	  Extensions version 1 (AVX1), or Advanced Vector Extensions
940	  version 2 (AVX2) instructions, when available.
941
942config CRYPTO_SHA1_OCTEON
943	tristate "SHA1 digest algorithm (OCTEON)"
944	depends on CPU_CAVIUM_OCTEON
945	select CRYPTO_SHA1
946	select CRYPTO_HASH
947	help
948	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
949	  using OCTEON crypto instructions, when available.
950
951config CRYPTO_SHA1_SPARC64
952	tristate "SHA1 digest algorithm (SPARC64)"
953	depends on SPARC64
954	select CRYPTO_SHA1
955	select CRYPTO_HASH
956	help
957	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
958	  using sparc64 crypto instructions, when available.
959
960config CRYPTO_SHA1_PPC
961	tristate "SHA1 digest algorithm (powerpc)"
962	depends on PPC
963	help
964	  This is the powerpc hardware accelerated implementation of the
965	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
966
967config CRYPTO_SHA1_PPC_SPE
968	tristate "SHA1 digest algorithm (PPC SPE)"
969	depends on PPC && SPE
970	help
971	  SHA-1 secure hash standard (DFIPS 180-4) implemented
972	  using powerpc SPE SIMD instruction set.
973
974config CRYPTO_SHA256
975	tristate "SHA224 and SHA256 digest algorithm"
976	select CRYPTO_HASH
977	select CRYPTO_LIB_SHA256
978	help
979	  SHA256 secure hash standard (DFIPS 180-2).
980
981	  This version of SHA implements a 256 bit hash with 128 bits of
982	  security against collision attacks.
983
984	  This code also includes SHA-224, a 224 bit hash with 112 bits
985	  of security against collision attacks.
986
987config CRYPTO_SHA256_PPC_SPE
988	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
989	depends on PPC && SPE
990	select CRYPTO_SHA256
991	select CRYPTO_HASH
992	help
993	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
994	  implemented using powerpc SPE SIMD instruction set.
995
996config CRYPTO_SHA256_OCTEON
997	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
998	depends on CPU_CAVIUM_OCTEON
999	select CRYPTO_SHA256
1000	select CRYPTO_HASH
1001	help
1002	  SHA-256 secure hash standard (DFIPS 180-2) implemented
1003	  using OCTEON crypto instructions, when available.
1004
1005config CRYPTO_SHA256_SPARC64
1006	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
1007	depends on SPARC64
1008	select CRYPTO_SHA256
1009	select CRYPTO_HASH
1010	help
1011	  SHA-256 secure hash standard (DFIPS 180-2) implemented
1012	  using sparc64 crypto instructions, when available.
1013
1014config CRYPTO_SHA512
1015	tristate "SHA384 and SHA512 digest algorithms"
1016	select CRYPTO_HASH
1017	help
1018	  SHA512 secure hash standard (DFIPS 180-2).
1019
1020	  This version of SHA implements a 512 bit hash with 256 bits of
1021	  security against collision attacks.
1022
1023	  This code also includes SHA-384, a 384 bit hash with 192 bits
1024	  of security against collision attacks.
1025
1026config CRYPTO_SHA512_OCTEON
1027	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
1028	depends on CPU_CAVIUM_OCTEON
1029	select CRYPTO_SHA512
1030	select CRYPTO_HASH
1031	help
1032	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1033	  using OCTEON crypto instructions, when available.
1034
1035config CRYPTO_SHA512_SPARC64
1036	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
1037	depends on SPARC64
1038	select CRYPTO_SHA512
1039	select CRYPTO_HASH
1040	help
1041	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1042	  using sparc64 crypto instructions, when available.
1043
1044config CRYPTO_SHA3
1045	tristate "SHA3 digest algorithm"
1046	select CRYPTO_HASH
1047	help
1048	  SHA-3 secure hash standard (DFIPS 202). It's based on
1049	  cryptographic sponge function family called Keccak.
1050
1051	  References:
1052	  http://keccak.noekeon.org/
1053
1054config CRYPTO_SM3
1055	tristate
1056
1057config CRYPTO_SM3_GENERIC
1058	tristate "SM3 digest algorithm"
1059	select CRYPTO_HASH
1060	select CRYPTO_SM3
1061	help
1062	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1063	  It is part of the Chinese Commercial Cryptography suite.
1064
1065	  References:
1066	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1067	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1068
1069config CRYPTO_SM3_AVX_X86_64
1070	tristate "SM3 digest algorithm (x86_64/AVX)"
1071	depends on X86 && 64BIT
1072	select CRYPTO_HASH
1073	select CRYPTO_SM3
1074	help
1075	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1076	  It is part of the Chinese Commercial Cryptography suite. This is
1077	  SM3 optimized implementation using Advanced Vector Extensions (AVX)
1078	  when available.
1079
1080	  If unsure, say N.
1081
1082config CRYPTO_STREEBOG
1083	tristate "Streebog Hash Function"
1084	select CRYPTO_HASH
1085	help
1086	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1087	  cryptographic standard algorithms (called GOST algorithms).
1088	  This setting enables two hash algorithms with 256 and 512 bits output.
1089
1090	  References:
1091	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1092	  https://tools.ietf.org/html/rfc6986
1093
1094config CRYPTO_WP512
1095	tristate "Whirlpool digest algorithms"
1096	select CRYPTO_HASH
1097	help
1098	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1099
1100	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1101	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1102
1103	  See also:
1104	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1105
1106config CRYPTO_GHASH_CLMUL_NI_INTEL
1107	tristate "GHASH hash function (CLMUL-NI accelerated)"
1108	depends on X86 && 64BIT
1109	select CRYPTO_CRYPTD
1110	help
1111	  This is the x86_64 CLMUL-NI accelerated implementation of
1112	  GHASH, the hash function used in GCM (Galois/Counter mode).
1113
1114comment "Ciphers"
1115
1116config CRYPTO_AES
1117	tristate "AES cipher algorithms"
1118	select CRYPTO_ALGAPI
1119	select CRYPTO_LIB_AES
1120	help
1121	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1122	  algorithm.
1123
1124	  Rijndael appears to be consistently a very good performer in
1125	  both hardware and software across a wide range of computing
1126	  environments regardless of its use in feedback or non-feedback
1127	  modes. Its key setup time is excellent, and its key agility is
1128	  good. Rijndael's very low memory requirements make it very well
1129	  suited for restricted-space environments, in which it also
1130	  demonstrates excellent performance. Rijndael's operations are
1131	  among the easiest to defend against power and timing attacks.
1132
1133	  The AES specifies three key sizes: 128, 192 and 256 bits
1134
1135	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1136
1137config CRYPTO_AES_TI
1138	tristate "Fixed time AES cipher"
1139	select CRYPTO_ALGAPI
1140	select CRYPTO_LIB_AES
1141	help
1142	  This is a generic implementation of AES that attempts to eliminate
1143	  data dependent latencies as much as possible without affecting
1144	  performance too much. It is intended for use by the generic CCM
1145	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1146	  solely on encryption (although decryption is supported as well, but
1147	  with a more dramatic performance hit)
1148
1149	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1150	  8 for decryption), this implementation only uses just two S-boxes of
1151	  256 bytes each, and attempts to eliminate data dependent latencies by
1152	  prefetching the entire table into the cache at the start of each
1153	  block. Interrupts are also disabled to avoid races where cachelines
1154	  are evicted when the CPU is interrupted to do something else.
1155
1156config CRYPTO_AES_NI_INTEL
1157	tristate "AES cipher algorithms (AES-NI)"
1158	depends on X86
1159	select CRYPTO_AEAD
1160	select CRYPTO_LIB_AES
1161	select CRYPTO_ALGAPI
1162	select CRYPTO_SKCIPHER
1163	select CRYPTO_SIMD
1164	help
1165	  Use Intel AES-NI instructions for AES algorithm.
1166
1167	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1168	  algorithm.
1169
1170	  Rijndael appears to be consistently a very good performer in
1171	  both hardware and software across a wide range of computing
1172	  environments regardless of its use in feedback or non-feedback
1173	  modes. Its key setup time is excellent, and its key agility is
1174	  good. Rijndael's very low memory requirements make it very well
1175	  suited for restricted-space environments, in which it also
1176	  demonstrates excellent performance. Rijndael's operations are
1177	  among the easiest to defend against power and timing attacks.
1178
1179	  The AES specifies three key sizes: 128, 192 and 256 bits
1180
1181	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1182
1183	  In addition to AES cipher algorithm support, the acceleration
1184	  for some popular block cipher mode is supported too, including
1185	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1186	  acceleration for CTR and XCTR.
1187
1188config CRYPTO_AES_SPARC64
1189	tristate "AES cipher algorithms (SPARC64)"
1190	depends on SPARC64
1191	select CRYPTO_SKCIPHER
1192	help
1193	  Use SPARC64 crypto opcodes for AES algorithm.
1194
1195	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1196	  algorithm.
1197
1198	  Rijndael appears to be consistently a very good performer in
1199	  both hardware and software across a wide range of computing
1200	  environments regardless of its use in feedback or non-feedback
1201	  modes. Its key setup time is excellent, and its key agility is
1202	  good. Rijndael's very low memory requirements make it very well
1203	  suited for restricted-space environments, in which it also
1204	  demonstrates excellent performance. Rijndael's operations are
1205	  among the easiest to defend against power and timing attacks.
1206
1207	  The AES specifies three key sizes: 128, 192 and 256 bits
1208
1209	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1210
1211	  In addition to AES cipher algorithm support, the acceleration
1212	  for some popular block cipher mode is supported too, including
1213	  ECB and CBC.
1214
1215config CRYPTO_AES_PPC_SPE
1216	tristate "AES cipher algorithms (PPC SPE)"
1217	depends on PPC && SPE
1218	select CRYPTO_SKCIPHER
1219	help
1220	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1221	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1222	  This module should only be used for low power (router) devices
1223	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1224	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1225	  timining attacks. Nevertheless it might be not as secure as other
1226	  architecture specific assembler implementations that work on 1KB
1227	  tables or 256 bytes S-boxes.
1228
1229config CRYPTO_ANUBIS
1230	tristate "Anubis cipher algorithm"
1231	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1232	select CRYPTO_ALGAPI
1233	help
1234	  Anubis cipher algorithm.
1235
1236	  Anubis is a variable key length cipher which can use keys from
1237	  128 bits to 320 bits in length.  It was evaluated as a entrant
1238	  in the NESSIE competition.
1239
1240	  See also:
1241	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1242	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1243
1244config CRYPTO_ARC4
1245	tristate "ARC4 cipher algorithm"
1246	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1247	select CRYPTO_SKCIPHER
1248	select CRYPTO_LIB_ARC4
1249	help
1250	  ARC4 cipher algorithm.
1251
1252	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1253	  bits in length.  This algorithm is required for driver-based
1254	  WEP, but it should not be for other purposes because of the
1255	  weakness of the algorithm.
1256
1257config CRYPTO_BLOWFISH
1258	tristate "Blowfish cipher algorithm"
1259	select CRYPTO_ALGAPI
1260	select CRYPTO_BLOWFISH_COMMON
1261	help
1262	  Blowfish cipher algorithm, by Bruce Schneier.
1263
1264	  This is a variable key length cipher which can use keys from 32
1265	  bits to 448 bits in length.  It's fast, simple and specifically
1266	  designed for use on "large microprocessors".
1267
1268	  See also:
1269	  <https://www.schneier.com/blowfish.html>
1270
1271config CRYPTO_BLOWFISH_COMMON
1272	tristate
1273	help
1274	  Common parts of the Blowfish cipher algorithm shared by the
1275	  generic c and the assembler implementations.
1276
1277	  See also:
1278	  <https://www.schneier.com/blowfish.html>
1279
1280config CRYPTO_BLOWFISH_X86_64
1281	tristate "Blowfish cipher algorithm (x86_64)"
1282	depends on X86 && 64BIT
1283	select CRYPTO_SKCIPHER
1284	select CRYPTO_BLOWFISH_COMMON
1285	imply CRYPTO_CTR
1286	help
1287	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1288
1289	  This is a variable key length cipher which can use keys from 32
1290	  bits to 448 bits in length.  It's fast, simple and specifically
1291	  designed for use on "large microprocessors".
1292
1293	  See also:
1294	  <https://www.schneier.com/blowfish.html>
1295
1296config CRYPTO_CAMELLIA
1297	tristate "Camellia cipher algorithms"
1298	select CRYPTO_ALGAPI
1299	help
1300	  Camellia cipher algorithms module.
1301
1302	  Camellia is a symmetric key block cipher developed jointly
1303	  at NTT and Mitsubishi Electric Corporation.
1304
1305	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1306
1307	  See also:
1308	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1309
1310config CRYPTO_CAMELLIA_X86_64
1311	tristate "Camellia cipher algorithm (x86_64)"
1312	depends on X86 && 64BIT
1313	select CRYPTO_SKCIPHER
1314	imply CRYPTO_CTR
1315	help
1316	  Camellia cipher algorithm module (x86_64).
1317
1318	  Camellia is a symmetric key block cipher developed jointly
1319	  at NTT and Mitsubishi Electric Corporation.
1320
1321	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1322
1323	  See also:
1324	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1325
1326config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1327	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1328	depends on X86 && 64BIT
1329	select CRYPTO_SKCIPHER
1330	select CRYPTO_CAMELLIA_X86_64
1331	select CRYPTO_SIMD
1332	imply CRYPTO_XTS
1333	help
1334	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1335
1336	  Camellia is a symmetric key block cipher developed jointly
1337	  at NTT and Mitsubishi Electric Corporation.
1338
1339	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1340
1341	  See also:
1342	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1343
1344config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1345	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1346	depends on X86 && 64BIT
1347	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1348	help
1349	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1350
1351	  Camellia is a symmetric key block cipher developed jointly
1352	  at NTT and Mitsubishi Electric Corporation.
1353
1354	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1355
1356	  See also:
1357	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1358
1359config CRYPTO_CAMELLIA_SPARC64
1360	tristate "Camellia cipher algorithm (SPARC64)"
1361	depends on SPARC64
1362	select CRYPTO_ALGAPI
1363	select CRYPTO_SKCIPHER
1364	help
1365	  Camellia cipher algorithm module (SPARC64).
1366
1367	  Camellia is a symmetric key block cipher developed jointly
1368	  at NTT and Mitsubishi Electric Corporation.
1369
1370	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1371
1372	  See also:
1373	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1374
1375config CRYPTO_CAST_COMMON
1376	tristate
1377	help
1378	  Common parts of the CAST cipher algorithms shared by the
1379	  generic c and the assembler implementations.
1380
1381config CRYPTO_CAST5
1382	tristate "CAST5 (CAST-128) cipher algorithm"
1383	select CRYPTO_ALGAPI
1384	select CRYPTO_CAST_COMMON
1385	help
1386	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1387	  described in RFC2144.
1388
1389config CRYPTO_CAST5_AVX_X86_64
1390	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1391	depends on X86 && 64BIT
1392	select CRYPTO_SKCIPHER
1393	select CRYPTO_CAST5
1394	select CRYPTO_CAST_COMMON
1395	select CRYPTO_SIMD
1396	imply CRYPTO_CTR
1397	help
1398	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1399	  described in RFC2144.
1400
1401	  This module provides the Cast5 cipher algorithm that processes
1402	  sixteen blocks parallel using the AVX instruction set.
1403
1404config CRYPTO_CAST6
1405	tristate "CAST6 (CAST-256) cipher algorithm"
1406	select CRYPTO_ALGAPI
1407	select CRYPTO_CAST_COMMON
1408	help
1409	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1410	  described in RFC2612.
1411
1412config CRYPTO_CAST6_AVX_X86_64
1413	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1414	depends on X86 && 64BIT
1415	select CRYPTO_SKCIPHER
1416	select CRYPTO_CAST6
1417	select CRYPTO_CAST_COMMON
1418	select CRYPTO_SIMD
1419	imply CRYPTO_XTS
1420	imply CRYPTO_CTR
1421	help
1422	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1423	  described in RFC2612.
1424
1425	  This module provides the Cast6 cipher algorithm that processes
1426	  eight blocks parallel using the AVX instruction set.
1427
1428config CRYPTO_DES
1429	tristate "DES and Triple DES EDE cipher algorithms"
1430	select CRYPTO_ALGAPI
1431	select CRYPTO_LIB_DES
1432	help
1433	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1434
1435config CRYPTO_DES_SPARC64
1436	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1437	depends on SPARC64
1438	select CRYPTO_ALGAPI
1439	select CRYPTO_LIB_DES
1440	select CRYPTO_SKCIPHER
1441	help
1442	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1443	  optimized using SPARC64 crypto opcodes.
1444
1445config CRYPTO_DES3_EDE_X86_64
1446	tristate "Triple DES EDE cipher algorithm (x86-64)"
1447	depends on X86 && 64BIT
1448	select CRYPTO_SKCIPHER
1449	select CRYPTO_LIB_DES
1450	imply CRYPTO_CTR
1451	help
1452	  Triple DES EDE (FIPS 46-3) algorithm.
1453
1454	  This module provides implementation of the Triple DES EDE cipher
1455	  algorithm that is optimized for x86-64 processors. Two versions of
1456	  algorithm are provided; regular processing one input block and
1457	  one that processes three blocks parallel.
1458
1459config CRYPTO_FCRYPT
1460	tristate "FCrypt cipher algorithm"
1461	select CRYPTO_ALGAPI
1462	select CRYPTO_SKCIPHER
1463	help
1464	  FCrypt algorithm used by RxRPC.
1465
1466config CRYPTO_KHAZAD
1467	tristate "Khazad cipher algorithm"
1468	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1469	select CRYPTO_ALGAPI
1470	help
1471	  Khazad cipher algorithm.
1472
1473	  Khazad was a finalist in the initial NESSIE competition.  It is
1474	  an algorithm optimized for 64-bit processors with good performance
1475	  on 32-bit processors.  Khazad uses an 128 bit key size.
1476
1477	  See also:
1478	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1479
1480config CRYPTO_CHACHA20
1481	tristate "ChaCha stream cipher algorithms"
1482	select CRYPTO_LIB_CHACHA_GENERIC
1483	select CRYPTO_SKCIPHER
1484	help
1485	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1486
1487	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1488	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1489	  This is the portable C implementation of ChaCha20.  See also:
1490	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1491
1492	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1493	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1494	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1495	  while provably retaining ChaCha20's security.  See also:
1496	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1497
1498	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1499	  reduced security margin but increased performance.  It can be needed
1500	  in some performance-sensitive scenarios.
1501
1502config CRYPTO_CHACHA20_X86_64
1503	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1504	depends on X86 && 64BIT
1505	select CRYPTO_SKCIPHER
1506	select CRYPTO_LIB_CHACHA_GENERIC
1507	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1508	help
1509	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1510	  XChaCha20, and XChaCha12 stream ciphers.
1511
1512config CRYPTO_CHACHA_MIPS
1513	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1514	depends on CPU_MIPS32_R2
1515	select CRYPTO_SKCIPHER
1516	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1517
1518config CRYPTO_SEED
1519	tristate "SEED cipher algorithm"
1520	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1521	select CRYPTO_ALGAPI
1522	help
1523	  SEED cipher algorithm (RFC4269).
1524
1525	  SEED is a 128-bit symmetric key block cipher that has been
1526	  developed by KISA (Korea Information Security Agency) as a
1527	  national standard encryption algorithm of the Republic of Korea.
1528	  It is a 16 round block cipher with the key size of 128 bit.
1529
1530	  See also:
1531	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1532
1533config CRYPTO_ARIA
1534	tristate "ARIA cipher algorithm"
1535	select CRYPTO_ALGAPI
1536	help
1537	  ARIA cipher algorithm (RFC5794).
1538
1539	  ARIA is a standard encryption algorithm of the Republic of Korea.
1540	  The ARIA specifies three key sizes and rounds.
1541	  128-bit: 12 rounds.
1542	  192-bit: 14 rounds.
1543	  256-bit: 16 rounds.
1544
1545	  See also:
1546	  <https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do>
1547
1548config CRYPTO_SERPENT
1549	tristate "Serpent cipher algorithm"
1550	select CRYPTO_ALGAPI
1551	help
1552	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1553
1554	  Keys are allowed to be from 0 to 256 bits in length, in steps
1555	  of 8 bits.
1556
1557	  See also:
1558	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1559
1560config CRYPTO_SERPENT_SSE2_X86_64
1561	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1562	depends on X86 && 64BIT
1563	select CRYPTO_SKCIPHER
1564	select CRYPTO_SERPENT
1565	select CRYPTO_SIMD
1566	imply CRYPTO_CTR
1567	help
1568	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1569
1570	  Keys are allowed to be from 0 to 256 bits in length, in steps
1571	  of 8 bits.
1572
1573	  This module provides Serpent cipher algorithm that processes eight
1574	  blocks parallel using SSE2 instruction set.
1575
1576	  See also:
1577	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1578
1579config CRYPTO_SERPENT_SSE2_586
1580	tristate "Serpent cipher algorithm (i586/SSE2)"
1581	depends on X86 && !64BIT
1582	select CRYPTO_SKCIPHER
1583	select CRYPTO_SERPENT
1584	select CRYPTO_SIMD
1585	imply CRYPTO_CTR
1586	help
1587	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1588
1589	  Keys are allowed to be from 0 to 256 bits in length, in steps
1590	  of 8 bits.
1591
1592	  This module provides Serpent cipher algorithm that processes four
1593	  blocks parallel using SSE2 instruction set.
1594
1595	  See also:
1596	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1597
1598config CRYPTO_SERPENT_AVX_X86_64
1599	tristate "Serpent cipher algorithm (x86_64/AVX)"
1600	depends on X86 && 64BIT
1601	select CRYPTO_SKCIPHER
1602	select CRYPTO_SERPENT
1603	select CRYPTO_SIMD
1604	imply CRYPTO_XTS
1605	imply CRYPTO_CTR
1606	help
1607	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1608
1609	  Keys are allowed to be from 0 to 256 bits in length, in steps
1610	  of 8 bits.
1611
1612	  This module provides the Serpent cipher algorithm that processes
1613	  eight blocks parallel using the AVX instruction set.
1614
1615	  See also:
1616	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1617
1618config CRYPTO_SERPENT_AVX2_X86_64
1619	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1620	depends on X86 && 64BIT
1621	select CRYPTO_SERPENT_AVX_X86_64
1622	help
1623	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1624
1625	  Keys are allowed to be from 0 to 256 bits in length, in steps
1626	  of 8 bits.
1627
1628	  This module provides Serpent cipher algorithm that processes 16
1629	  blocks parallel using AVX2 instruction set.
1630
1631	  See also:
1632	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1633
1634config CRYPTO_SM4
1635	tristate
1636
1637config CRYPTO_SM4_GENERIC
1638	tristate "SM4 cipher algorithm"
1639	select CRYPTO_ALGAPI
1640	select CRYPTO_SM4
1641	help
1642	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1643
1644	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1645	  Organization of State Commercial Administration of China (OSCCA)
1646	  as an authorized cryptographic algorithms for the use within China.
1647
1648	  SMS4 was originally created for use in protecting wireless
1649	  networks, and is mandated in the Chinese National Standard for
1650	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1651	  (GB.15629.11-2003).
1652
1653	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1654	  standardized through TC 260 of the Standardization Administration
1655	  of the People's Republic of China (SAC).
1656
1657	  The input, output, and key of SMS4 are each 128 bits.
1658
1659	  See also: <https://eprint.iacr.org/2008/329.pdf>
1660
1661	  If unsure, say N.
1662
1663config CRYPTO_SM4_AESNI_AVX_X86_64
1664	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)"
1665	depends on X86 && 64BIT
1666	select CRYPTO_SKCIPHER
1667	select CRYPTO_SIMD
1668	select CRYPTO_ALGAPI
1669	select CRYPTO_SM4
1670	help
1671	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX).
1672
1673	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1674	  Organization of State Commercial Administration of China (OSCCA)
1675	  as an authorized cryptographic algorithms for the use within China.
1676
1677	  This is SM4 optimized implementation using AES-NI/AVX/x86_64
1678	  instruction set for block cipher. Through two affine transforms,
1679	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1680	  effect of instruction acceleration.
1681
1682	  If unsure, say N.
1683
1684config CRYPTO_SM4_AESNI_AVX2_X86_64
1685	tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)"
1686	depends on X86 && 64BIT
1687	select CRYPTO_SKCIPHER
1688	select CRYPTO_SIMD
1689	select CRYPTO_ALGAPI
1690	select CRYPTO_SM4
1691	select CRYPTO_SM4_AESNI_AVX_X86_64
1692	help
1693	  SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2).
1694
1695	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1696	  Organization of State Commercial Administration of China (OSCCA)
1697	  as an authorized cryptographic algorithms for the use within China.
1698
1699	  This is SM4 optimized implementation using AES-NI/AVX2/x86_64
1700	  instruction set for block cipher. Through two affine transforms,
1701	  we can use the AES S-Box to simulate the SM4 S-Box to achieve the
1702	  effect of instruction acceleration.
1703
1704	  If unsure, say N.
1705
1706config CRYPTO_TEA
1707	tristate "TEA, XTEA and XETA cipher algorithms"
1708	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1709	select CRYPTO_ALGAPI
1710	help
1711	  TEA cipher algorithm.
1712
1713	  Tiny Encryption Algorithm is a simple cipher that uses
1714	  many rounds for security.  It is very fast and uses
1715	  little memory.
1716
1717	  Xtendend Tiny Encryption Algorithm is a modification to
1718	  the TEA algorithm to address a potential key weakness
1719	  in the TEA algorithm.
1720
1721	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1722	  of the XTEA algorithm for compatibility purposes.
1723
1724config CRYPTO_TWOFISH
1725	tristate "Twofish cipher algorithm"
1726	select CRYPTO_ALGAPI
1727	select CRYPTO_TWOFISH_COMMON
1728	help
1729	  Twofish cipher algorithm.
1730
1731	  Twofish was submitted as an AES (Advanced Encryption Standard)
1732	  candidate cipher by researchers at CounterPane Systems.  It is a
1733	  16 round block cipher supporting key sizes of 128, 192, and 256
1734	  bits.
1735
1736	  See also:
1737	  <https://www.schneier.com/twofish.html>
1738
1739config CRYPTO_TWOFISH_COMMON
1740	tristate
1741	help
1742	  Common parts of the Twofish cipher algorithm shared by the
1743	  generic c and the assembler implementations.
1744
1745config CRYPTO_TWOFISH_586
1746	tristate "Twofish cipher algorithms (i586)"
1747	depends on (X86 || UML_X86) && !64BIT
1748	select CRYPTO_ALGAPI
1749	select CRYPTO_TWOFISH_COMMON
1750	imply CRYPTO_CTR
1751	help
1752	  Twofish cipher algorithm.
1753
1754	  Twofish was submitted as an AES (Advanced Encryption Standard)
1755	  candidate cipher by researchers at CounterPane Systems.  It is a
1756	  16 round block cipher supporting key sizes of 128, 192, and 256
1757	  bits.
1758
1759	  See also:
1760	  <https://www.schneier.com/twofish.html>
1761
1762config CRYPTO_TWOFISH_X86_64
1763	tristate "Twofish cipher algorithm (x86_64)"
1764	depends on (X86 || UML_X86) && 64BIT
1765	select CRYPTO_ALGAPI
1766	select CRYPTO_TWOFISH_COMMON
1767	imply CRYPTO_CTR
1768	help
1769	  Twofish cipher algorithm (x86_64).
1770
1771	  Twofish was submitted as an AES (Advanced Encryption Standard)
1772	  candidate cipher by researchers at CounterPane Systems.  It is a
1773	  16 round block cipher supporting key sizes of 128, 192, and 256
1774	  bits.
1775
1776	  See also:
1777	  <https://www.schneier.com/twofish.html>
1778
1779config CRYPTO_TWOFISH_X86_64_3WAY
1780	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1781	depends on X86 && 64BIT
1782	select CRYPTO_SKCIPHER
1783	select CRYPTO_TWOFISH_COMMON
1784	select CRYPTO_TWOFISH_X86_64
1785	help
1786	  Twofish cipher algorithm (x86_64, 3-way parallel).
1787
1788	  Twofish was submitted as an AES (Advanced Encryption Standard)
1789	  candidate cipher by researchers at CounterPane Systems.  It is a
1790	  16 round block cipher supporting key sizes of 128, 192, and 256
1791	  bits.
1792
1793	  This module provides Twofish cipher algorithm that processes three
1794	  blocks parallel, utilizing resources of out-of-order CPUs better.
1795
1796	  See also:
1797	  <https://www.schneier.com/twofish.html>
1798
1799config CRYPTO_TWOFISH_AVX_X86_64
1800	tristate "Twofish cipher algorithm (x86_64/AVX)"
1801	depends on X86 && 64BIT
1802	select CRYPTO_SKCIPHER
1803	select CRYPTO_SIMD
1804	select CRYPTO_TWOFISH_COMMON
1805	select CRYPTO_TWOFISH_X86_64
1806	select CRYPTO_TWOFISH_X86_64_3WAY
1807	imply CRYPTO_XTS
1808	help
1809	  Twofish cipher algorithm (x86_64/AVX).
1810
1811	  Twofish was submitted as an AES (Advanced Encryption Standard)
1812	  candidate cipher by researchers at CounterPane Systems.  It is a
1813	  16 round block cipher supporting key sizes of 128, 192, and 256
1814	  bits.
1815
1816	  This module provides the Twofish cipher algorithm that processes
1817	  eight blocks parallel using the AVX Instruction Set.
1818
1819	  See also:
1820	  <https://www.schneier.com/twofish.html>
1821
1822comment "Compression"
1823
1824config CRYPTO_DEFLATE
1825	tristate "Deflate compression algorithm"
1826	select CRYPTO_ALGAPI
1827	select CRYPTO_ACOMP2
1828	select ZLIB_INFLATE
1829	select ZLIB_DEFLATE
1830	help
1831	  This is the Deflate algorithm (RFC1951), specified for use in
1832	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1833
1834	  You will most probably want this if using IPSec.
1835
1836config CRYPTO_LZO
1837	tristate "LZO compression algorithm"
1838	select CRYPTO_ALGAPI
1839	select CRYPTO_ACOMP2
1840	select LZO_COMPRESS
1841	select LZO_DECOMPRESS
1842	help
1843	  This is the LZO algorithm.
1844
1845config CRYPTO_842
1846	tristate "842 compression algorithm"
1847	select CRYPTO_ALGAPI
1848	select CRYPTO_ACOMP2
1849	select 842_COMPRESS
1850	select 842_DECOMPRESS
1851	help
1852	  This is the 842 algorithm.
1853
1854config CRYPTO_LZ4
1855	tristate "LZ4 compression algorithm"
1856	select CRYPTO_ALGAPI
1857	select CRYPTO_ACOMP2
1858	select LZ4_COMPRESS
1859	select LZ4_DECOMPRESS
1860	help
1861	  This is the LZ4 algorithm.
1862
1863config CRYPTO_LZ4HC
1864	tristate "LZ4HC compression algorithm"
1865	select CRYPTO_ALGAPI
1866	select CRYPTO_ACOMP2
1867	select LZ4HC_COMPRESS
1868	select LZ4_DECOMPRESS
1869	help
1870	  This is the LZ4 high compression mode algorithm.
1871
1872config CRYPTO_ZSTD
1873	tristate "Zstd compression algorithm"
1874	select CRYPTO_ALGAPI
1875	select CRYPTO_ACOMP2
1876	select ZSTD_COMPRESS
1877	select ZSTD_DECOMPRESS
1878	help
1879	  This is the zstd algorithm.
1880
1881comment "Random Number Generation"
1882
1883config CRYPTO_ANSI_CPRNG
1884	tristate "Pseudo Random Number Generation for Cryptographic modules"
1885	select CRYPTO_AES
1886	select CRYPTO_RNG
1887	help
1888	  This option enables the generic pseudo random number generator
1889	  for cryptographic modules.  Uses the Algorithm specified in
1890	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1891	  CRYPTO_FIPS is selected
1892
1893menuconfig CRYPTO_DRBG_MENU
1894	tristate "NIST SP800-90A DRBG"
1895	help
1896	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1897	  more of the DRBG types must be selected.
1898
1899if CRYPTO_DRBG_MENU
1900
1901config CRYPTO_DRBG_HMAC
1902	bool
1903	default y
1904	select CRYPTO_HMAC
1905	select CRYPTO_SHA512
1906
1907config CRYPTO_DRBG_HASH
1908	bool "Enable Hash DRBG"
1909	select CRYPTO_SHA256
1910	help
1911	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1912
1913config CRYPTO_DRBG_CTR
1914	bool "Enable CTR DRBG"
1915	select CRYPTO_AES
1916	select CRYPTO_CTR
1917	help
1918	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1919
1920config CRYPTO_DRBG
1921	tristate
1922	default CRYPTO_DRBG_MENU
1923	select CRYPTO_RNG
1924	select CRYPTO_JITTERENTROPY
1925
1926endif	# if CRYPTO_DRBG_MENU
1927
1928config CRYPTO_JITTERENTROPY
1929	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1930	select CRYPTO_RNG
1931	help
1932	  The Jitterentropy RNG is a noise that is intended
1933	  to provide seed to another RNG. The RNG does not
1934	  perform any cryptographic whitening of the generated
1935	  random numbers. This Jitterentropy RNG registers with
1936	  the kernel crypto API and can be used by any caller.
1937
1938config CRYPTO_KDF800108_CTR
1939	tristate
1940	select CRYPTO_HMAC
1941	select CRYPTO_SHA256
1942
1943config CRYPTO_USER_API
1944	tristate
1945
1946config CRYPTO_USER_API_HASH
1947	tristate "User-space interface for hash algorithms"
1948	depends on NET
1949	select CRYPTO_HASH
1950	select CRYPTO_USER_API
1951	help
1952	  This option enables the user-spaces interface for hash
1953	  algorithms.
1954
1955config CRYPTO_USER_API_SKCIPHER
1956	tristate "User-space interface for symmetric key cipher algorithms"
1957	depends on NET
1958	select CRYPTO_SKCIPHER
1959	select CRYPTO_USER_API
1960	help
1961	  This option enables the user-spaces interface for symmetric
1962	  key cipher algorithms.
1963
1964config CRYPTO_USER_API_RNG
1965	tristate "User-space interface for random number generator algorithms"
1966	depends on NET
1967	select CRYPTO_RNG
1968	select CRYPTO_USER_API
1969	help
1970	  This option enables the user-spaces interface for random
1971	  number generator algorithms.
1972
1973config CRYPTO_USER_API_RNG_CAVP
1974	bool "Enable CAVP testing of DRBG"
1975	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1976	help
1977	  This option enables extra API for CAVP testing via the user-space
1978	  interface: resetting of DRBG entropy, and providing Additional Data.
1979	  This should only be enabled for CAVP testing. You should say
1980	  no unless you know what this is.
1981
1982config CRYPTO_USER_API_AEAD
1983	tristate "User-space interface for AEAD cipher algorithms"
1984	depends on NET
1985	select CRYPTO_AEAD
1986	select CRYPTO_SKCIPHER
1987	select CRYPTO_NULL
1988	select CRYPTO_USER_API
1989	help
1990	  This option enables the user-spaces interface for AEAD
1991	  cipher algorithms.
1992
1993config CRYPTO_USER_API_ENABLE_OBSOLETE
1994	bool "Enable obsolete cryptographic algorithms for userspace"
1995	depends on CRYPTO_USER_API
1996	default y
1997	help
1998	  Allow obsolete cryptographic algorithms to be selected that have
1999	  already been phased out from internal use by the kernel, and are
2000	  only useful for userspace clients that still rely on them.
2001
2002config CRYPTO_STATS
2003	bool "Crypto usage statistics for User-space"
2004	depends on CRYPTO_USER
2005	help
2006	  This option enables the gathering of crypto stats.
2007	  This will collect:
2008	  - encrypt/decrypt size and numbers of symmeric operations
2009	  - compress/decompress size and numbers of compress operations
2010	  - size and numbers of hash operations
2011	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
2012	  - generate/seed numbers for rng operations
2013
2014config CRYPTO_HASH_INFO
2015	bool
2016
2017source "drivers/crypto/Kconfig"
2018source "crypto/asymmetric_keys/Kconfig"
2019source "certs/Kconfig"
2020
2021endif	# if CRYPTO
2022