1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 help 19 This option provides the core Cryptographic API. 20 21if CRYPTO 22 23comment "Crypto core or helper" 24 25config CRYPTO_FIPS 26 bool "FIPS 200 compliance" 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 28 depends on (MODULE_SIG || !MODULES) 29 help 30 This options enables the fips boot option which is 31 required if you want to system to operate in a FIPS 200 32 certification. You should say no unless you know what 33 this is. 34 35config CRYPTO_ALGAPI 36 tristate 37 select CRYPTO_ALGAPI2 38 help 39 This option provides the API for cryptographic algorithms. 40 41config CRYPTO_ALGAPI2 42 tristate 43 44config CRYPTO_AEAD 45 tristate 46 select CRYPTO_AEAD2 47 select CRYPTO_ALGAPI 48 49config CRYPTO_AEAD2 50 tristate 51 select CRYPTO_ALGAPI2 52 select CRYPTO_NULL2 53 select CRYPTO_RNG2 54 55config CRYPTO_BLKCIPHER 56 tristate 57 select CRYPTO_BLKCIPHER2 58 select CRYPTO_ALGAPI 59 60config CRYPTO_BLKCIPHER2 61 tristate 62 select CRYPTO_ALGAPI2 63 select CRYPTO_RNG2 64 select CRYPTO_WORKQUEUE 65 66config CRYPTO_HASH 67 tristate 68 select CRYPTO_HASH2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_HASH2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_RNG 76 tristate 77 select CRYPTO_RNG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_RNG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_RNG_DEFAULT 85 tristate 86 select CRYPTO_DRBG_MENU 87 88config CRYPTO_AKCIPHER2 89 tristate 90 select CRYPTO_ALGAPI2 91 92config CRYPTO_AKCIPHER 93 tristate 94 select CRYPTO_AKCIPHER2 95 select CRYPTO_ALGAPI 96 97config CRYPTO_KPP2 98 tristate 99 select CRYPTO_ALGAPI2 100 101config CRYPTO_KPP 102 tristate 103 select CRYPTO_ALGAPI 104 select CRYPTO_KPP2 105 106config CRYPTO_ACOMP2 107 tristate 108 select CRYPTO_ALGAPI2 109 select SGL_ALLOC 110 111config CRYPTO_ACOMP 112 tristate 113 select CRYPTO_ALGAPI 114 select CRYPTO_ACOMP2 115 116config CRYPTO_RSA 117 tristate "RSA algorithm" 118 select CRYPTO_AKCIPHER 119 select CRYPTO_MANAGER 120 select MPILIB 121 select ASN1 122 help 123 Generic implementation of the RSA public key algorithm. 124 125config CRYPTO_DH 126 tristate "Diffie-Hellman algorithm" 127 select CRYPTO_KPP 128 select MPILIB 129 help 130 Generic implementation of the Diffie-Hellman algorithm. 131 132config CRYPTO_ECDH 133 tristate "ECDH algorithm" 134 select CRYPTO_KPP 135 select CRYPTO_RNG_DEFAULT 136 help 137 Generic implementation of the ECDH algorithm 138 139config CRYPTO_MANAGER 140 tristate "Cryptographic algorithm manager" 141 select CRYPTO_MANAGER2 142 help 143 Create default cryptographic template instantiations such as 144 cbc(aes). 145 146config CRYPTO_MANAGER2 147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 148 select CRYPTO_AEAD2 149 select CRYPTO_HASH2 150 select CRYPTO_BLKCIPHER2 151 select CRYPTO_AKCIPHER2 152 select CRYPTO_KPP2 153 select CRYPTO_ACOMP2 154 155config CRYPTO_USER 156 tristate "Userspace cryptographic algorithm configuration" 157 depends on NET 158 select CRYPTO_MANAGER 159 help 160 Userspace configuration for cryptographic instantiations such as 161 cbc(aes). 162 163config CRYPTO_MANAGER_DISABLE_TESTS 164 bool "Disable run-time self tests" 165 default y 166 depends on CRYPTO_MANAGER2 167 help 168 Disable run-time self tests that normally take place at 169 algorithm registration. 170 171config CRYPTO_GF128MUL 172 tristate "GF(2^128) multiplication functions" 173 help 174 Efficient table driven implementation of multiplications in the 175 field GF(2^128). This is needed by some cypher modes. This 176 option will be selected automatically if you select such a 177 cipher mode. Only select this option by hand if you expect to load 178 an external module that requires these functions. 179 180config CRYPTO_NULL 181 tristate "Null algorithms" 182 select CRYPTO_NULL2 183 help 184 These are 'Null' algorithms, used by IPsec, which do nothing. 185 186config CRYPTO_NULL2 187 tristate 188 select CRYPTO_ALGAPI2 189 select CRYPTO_BLKCIPHER2 190 select CRYPTO_HASH2 191 192config CRYPTO_PCRYPT 193 tristate "Parallel crypto engine" 194 depends on SMP 195 select PADATA 196 select CRYPTO_MANAGER 197 select CRYPTO_AEAD 198 help 199 This converts an arbitrary crypto algorithm into a parallel 200 algorithm that executes in kernel threads. 201 202config CRYPTO_WORKQUEUE 203 tristate 204 205config CRYPTO_CRYPTD 206 tristate "Software async crypto daemon" 207 select CRYPTO_BLKCIPHER 208 select CRYPTO_HASH 209 select CRYPTO_MANAGER 210 select CRYPTO_WORKQUEUE 211 help 212 This is a generic software asynchronous crypto daemon that 213 converts an arbitrary synchronous software crypto algorithm 214 into an asynchronous algorithm that executes in a kernel thread. 215 216config CRYPTO_AUTHENC 217 tristate "Authenc support" 218 select CRYPTO_AEAD 219 select CRYPTO_BLKCIPHER 220 select CRYPTO_MANAGER 221 select CRYPTO_HASH 222 select CRYPTO_NULL 223 help 224 Authenc: Combined mode wrapper for IPsec. 225 This is required for IPSec. 226 227config CRYPTO_TEST 228 tristate "Testing module" 229 depends on m 230 select CRYPTO_MANAGER 231 help 232 Quick & dirty crypto test module. 233 234config CRYPTO_SIMD 235 tristate 236 select CRYPTO_CRYPTD 237 238config CRYPTO_GLUE_HELPER_X86 239 tristate 240 depends on X86 241 select CRYPTO_BLKCIPHER 242 243config CRYPTO_ENGINE 244 tristate 245 246comment "Authenticated Encryption with Associated Data" 247 248config CRYPTO_CCM 249 tristate "CCM support" 250 select CRYPTO_CTR 251 select CRYPTO_HASH 252 select CRYPTO_AEAD 253 help 254 Support for Counter with CBC MAC. Required for IPsec. 255 256config CRYPTO_GCM 257 tristate "GCM/GMAC support" 258 select CRYPTO_CTR 259 select CRYPTO_AEAD 260 select CRYPTO_GHASH 261 select CRYPTO_NULL 262 help 263 Support for Galois/Counter Mode (GCM) and Galois Message 264 Authentication Code (GMAC). Required for IPSec. 265 266config CRYPTO_CHACHA20POLY1305 267 tristate "ChaCha20-Poly1305 AEAD support" 268 select CRYPTO_CHACHA20 269 select CRYPTO_POLY1305 270 select CRYPTO_AEAD 271 help 272 ChaCha20-Poly1305 AEAD support, RFC7539. 273 274 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 275 with the Poly1305 authenticator. It is defined in RFC7539 for use in 276 IETF protocols. 277 278config CRYPTO_AEGIS128 279 tristate "AEGIS-128 AEAD algorithm" 280 select CRYPTO_AEAD 281 select CRYPTO_AES # for AES S-box tables 282 help 283 Support for the AEGIS-128 dedicated AEAD algorithm. 284 285config CRYPTO_AEGIS128L 286 tristate "AEGIS-128L AEAD algorithm" 287 select CRYPTO_AEAD 288 select CRYPTO_AES # for AES S-box tables 289 help 290 Support for the AEGIS-128L dedicated AEAD algorithm. 291 292config CRYPTO_AEGIS256 293 tristate "AEGIS-256 AEAD algorithm" 294 select CRYPTO_AEAD 295 select CRYPTO_AES # for AES S-box tables 296 help 297 Support for the AEGIS-256 dedicated AEAD algorithm. 298 299config CRYPTO_AEGIS128_AESNI_SSE2 300 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 301 depends on X86 && 64BIT 302 select CRYPTO_AEAD 303 select CRYPTO_CRYPTD 304 help 305 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm. 306 307config CRYPTO_AEGIS128L_AESNI_SSE2 308 tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 309 depends on X86 && 64BIT 310 select CRYPTO_AEAD 311 select CRYPTO_CRYPTD 312 help 313 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm. 314 315config CRYPTO_AEGIS256_AESNI_SSE2 316 tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 317 depends on X86 && 64BIT 318 select CRYPTO_AEAD 319 select CRYPTO_CRYPTD 320 help 321 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm. 322 323config CRYPTO_MORUS640 324 tristate "MORUS-640 AEAD algorithm" 325 select CRYPTO_AEAD 326 help 327 Support for the MORUS-640 dedicated AEAD algorithm. 328 329config CRYPTO_MORUS640_GLUE 330 tristate 331 depends on X86 332 select CRYPTO_AEAD 333 select CRYPTO_CRYPTD 334 help 335 Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 336 algorithm. 337 338config CRYPTO_MORUS640_SSE2 339 tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 340 depends on X86 && 64BIT 341 select CRYPTO_AEAD 342 select CRYPTO_MORUS640_GLUE 343 help 344 SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 345 346config CRYPTO_MORUS1280 347 tristate "MORUS-1280 AEAD algorithm" 348 select CRYPTO_AEAD 349 help 350 Support for the MORUS-1280 dedicated AEAD algorithm. 351 352config CRYPTO_MORUS1280_GLUE 353 tristate 354 depends on X86 355 select CRYPTO_AEAD 356 select CRYPTO_CRYPTD 357 help 358 Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 359 algorithm. 360 361config CRYPTO_MORUS1280_SSE2 362 tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 363 depends on X86 && 64BIT 364 select CRYPTO_AEAD 365 select CRYPTO_MORUS1280_GLUE 366 help 367 SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 368 algorithm. 369 370config CRYPTO_MORUS1280_AVX2 371 tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 372 depends on X86 && 64BIT 373 select CRYPTO_AEAD 374 select CRYPTO_MORUS1280_GLUE 375 help 376 AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 377 algorithm. 378 379config CRYPTO_SEQIV 380 tristate "Sequence Number IV Generator" 381 select CRYPTO_AEAD 382 select CRYPTO_BLKCIPHER 383 select CRYPTO_NULL 384 select CRYPTO_RNG_DEFAULT 385 help 386 This IV generator generates an IV based on a sequence number by 387 xoring it with a salt. This algorithm is mainly useful for CTR 388 389config CRYPTO_ECHAINIV 390 tristate "Encrypted Chain IV Generator" 391 select CRYPTO_AEAD 392 select CRYPTO_NULL 393 select CRYPTO_RNG_DEFAULT 394 default m 395 help 396 This IV generator generates an IV based on the encryption of 397 a sequence number xored with a salt. This is the default 398 algorithm for CBC. 399 400comment "Block modes" 401 402config CRYPTO_CBC 403 tristate "CBC support" 404 select CRYPTO_BLKCIPHER 405 select CRYPTO_MANAGER 406 help 407 CBC: Cipher Block Chaining mode 408 This block cipher algorithm is required for IPSec. 409 410config CRYPTO_CFB 411 tristate "CFB support" 412 select CRYPTO_BLKCIPHER 413 select CRYPTO_MANAGER 414 help 415 CFB: Cipher FeedBack mode 416 This block cipher algorithm is required for TPM2 Cryptography. 417 418config CRYPTO_CTR 419 tristate "CTR support" 420 select CRYPTO_BLKCIPHER 421 select CRYPTO_SEQIV 422 select CRYPTO_MANAGER 423 help 424 CTR: Counter mode 425 This block cipher algorithm is required for IPSec. 426 427config CRYPTO_CTS 428 tristate "CTS support" 429 select CRYPTO_BLKCIPHER 430 help 431 CTS: Cipher Text Stealing 432 This is the Cipher Text Stealing mode as described by 433 Section 8 of rfc2040 and referenced by rfc3962. 434 (rfc3962 includes errata information in its Appendix A) 435 This mode is required for Kerberos gss mechanism support 436 for AES encryption. 437 438config CRYPTO_ECB 439 tristate "ECB support" 440 select CRYPTO_BLKCIPHER 441 select CRYPTO_MANAGER 442 help 443 ECB: Electronic CodeBook mode 444 This is the simplest block cipher algorithm. It simply encrypts 445 the input block by block. 446 447config CRYPTO_LRW 448 tristate "LRW support" 449 select CRYPTO_BLKCIPHER 450 select CRYPTO_MANAGER 451 select CRYPTO_GF128MUL 452 help 453 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 454 narrow block cipher mode for dm-crypt. Use it with cipher 455 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 456 The first 128, 192 or 256 bits in the key are used for AES and the 457 rest is used to tie each cipher block to its logical position. 458 459config CRYPTO_OFB 460 tristate "OFB support" 461 select CRYPTO_BLKCIPHER 462 select CRYPTO_MANAGER 463 help 464 OFB: the Output Feedback mode makes a block cipher into a synchronous 465 stream cipher. It generates keystream blocks, which are then XORed 466 with the plaintext blocks to get the ciphertext. Flipping a bit in the 467 ciphertext produces a flipped bit in the plaintext at the same 468 location. This property allows many error correcting codes to function 469 normally even when applied before encryption. 470 471config CRYPTO_PCBC 472 tristate "PCBC support" 473 select CRYPTO_BLKCIPHER 474 select CRYPTO_MANAGER 475 help 476 PCBC: Propagating Cipher Block Chaining mode 477 This block cipher algorithm is required for RxRPC. 478 479config CRYPTO_XTS 480 tristate "XTS support" 481 select CRYPTO_BLKCIPHER 482 select CRYPTO_MANAGER 483 select CRYPTO_ECB 484 help 485 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 486 key size 256, 384 or 512 bits. This implementation currently 487 can't handle a sectorsize which is not a multiple of 16 bytes. 488 489config CRYPTO_KEYWRAP 490 tristate "Key wrapping support" 491 select CRYPTO_BLKCIPHER 492 help 493 Support for key wrapping (NIST SP800-38F / RFC3394) without 494 padding. 495 496comment "Hash modes" 497 498config CRYPTO_CMAC 499 tristate "CMAC support" 500 select CRYPTO_HASH 501 select CRYPTO_MANAGER 502 help 503 Cipher-based Message Authentication Code (CMAC) specified by 504 The National Institute of Standards and Technology (NIST). 505 506 https://tools.ietf.org/html/rfc4493 507 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 508 509config CRYPTO_HMAC 510 tristate "HMAC support" 511 select CRYPTO_HASH 512 select CRYPTO_MANAGER 513 help 514 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 515 This is required for IPSec. 516 517config CRYPTO_XCBC 518 tristate "XCBC support" 519 select CRYPTO_HASH 520 select CRYPTO_MANAGER 521 help 522 XCBC: Keyed-Hashing with encryption algorithm 523 http://www.ietf.org/rfc/rfc3566.txt 524 http://csrc.nist.gov/encryption/modes/proposedmodes/ 525 xcbc-mac/xcbc-mac-spec.pdf 526 527config CRYPTO_VMAC 528 tristate "VMAC support" 529 select CRYPTO_HASH 530 select CRYPTO_MANAGER 531 help 532 VMAC is a message authentication algorithm designed for 533 very high speed on 64-bit architectures. 534 535 See also: 536 <http://fastcrypto.org/vmac> 537 538comment "Digest" 539 540config CRYPTO_CRC32C 541 tristate "CRC32c CRC algorithm" 542 select CRYPTO_HASH 543 select CRC32 544 help 545 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 546 by iSCSI for header and data digests and by others. 547 See Castagnoli93. Module will be crc32c. 548 549config CRYPTO_CRC32C_INTEL 550 tristate "CRC32c INTEL hardware acceleration" 551 depends on X86 552 select CRYPTO_HASH 553 help 554 In Intel processor with SSE4.2 supported, the processor will 555 support CRC32C implementation using hardware accelerated CRC32 556 instruction. This option will create 'crc32c-intel' module, 557 which will enable any routine to use the CRC32 instruction to 558 gain performance compared with software implementation. 559 Module will be crc32c-intel. 560 561config CRYPTO_CRC32C_VPMSUM 562 tristate "CRC32c CRC algorithm (powerpc64)" 563 depends on PPC64 && ALTIVEC 564 select CRYPTO_HASH 565 select CRC32 566 help 567 CRC32c algorithm implemented using vector polynomial multiply-sum 568 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 569 and newer processors for improved performance. 570 571 572config CRYPTO_CRC32C_SPARC64 573 tristate "CRC32c CRC algorithm (SPARC64)" 574 depends on SPARC64 575 select CRYPTO_HASH 576 select CRC32 577 help 578 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 579 when available. 580 581config CRYPTO_CRC32 582 tristate "CRC32 CRC algorithm" 583 select CRYPTO_HASH 584 select CRC32 585 help 586 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 587 Shash crypto api wrappers to crc32_le function. 588 589config CRYPTO_CRC32_PCLMUL 590 tristate "CRC32 PCLMULQDQ hardware acceleration" 591 depends on X86 592 select CRYPTO_HASH 593 select CRC32 594 help 595 From Intel Westmere and AMD Bulldozer processor with SSE4.2 596 and PCLMULQDQ supported, the processor will support 597 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 598 instruction. This option will create 'crc32-plcmul' module, 599 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 600 and gain better performance as compared with the table implementation. 601 602config CRYPTO_CRC32_MIPS 603 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 604 depends on MIPS_CRC_SUPPORT 605 select CRYPTO_HASH 606 help 607 CRC32c and CRC32 CRC algorithms implemented using mips crypto 608 instructions, when available. 609 610 611config CRYPTO_CRCT10DIF 612 tristate "CRCT10DIF algorithm" 613 select CRYPTO_HASH 614 help 615 CRC T10 Data Integrity Field computation is being cast as 616 a crypto transform. This allows for faster crc t10 diff 617 transforms to be used if they are available. 618 619config CRYPTO_CRCT10DIF_PCLMUL 620 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 621 depends on X86 && 64BIT && CRC_T10DIF 622 select CRYPTO_HASH 623 help 624 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 625 CRC T10 DIF PCLMULQDQ computation can be hardware 626 accelerated PCLMULQDQ instruction. This option will create 627 'crct10dif-plcmul' module, which is faster when computing the 628 crct10dif checksum as compared with the generic table implementation. 629 630config CRYPTO_CRCT10DIF_VPMSUM 631 tristate "CRC32T10DIF powerpc64 hardware acceleration" 632 depends on PPC64 && ALTIVEC && CRC_T10DIF 633 select CRYPTO_HASH 634 help 635 CRC10T10DIF algorithm implemented using vector polynomial 636 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 637 POWER8 and newer processors for improved performance. 638 639config CRYPTO_VPMSUM_TESTER 640 tristate "Powerpc64 vpmsum hardware acceleration tester" 641 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 642 help 643 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 644 POWER8 vpmsum instructions. 645 Unless you are testing these algorithms, you don't need this. 646 647config CRYPTO_GHASH 648 tristate "GHASH digest algorithm" 649 select CRYPTO_GF128MUL 650 select CRYPTO_HASH 651 help 652 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 653 654config CRYPTO_POLY1305 655 tristate "Poly1305 authenticator algorithm" 656 select CRYPTO_HASH 657 help 658 Poly1305 authenticator algorithm, RFC7539. 659 660 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 661 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 662 in IETF protocols. This is the portable C implementation of Poly1305. 663 664config CRYPTO_POLY1305_X86_64 665 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 666 depends on X86 && 64BIT 667 select CRYPTO_POLY1305 668 help 669 Poly1305 authenticator algorithm, RFC7539. 670 671 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 672 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 673 in IETF protocols. This is the x86_64 assembler implementation using SIMD 674 instructions. 675 676config CRYPTO_MD4 677 tristate "MD4 digest algorithm" 678 select CRYPTO_HASH 679 help 680 MD4 message digest algorithm (RFC1320). 681 682config CRYPTO_MD5 683 tristate "MD5 digest algorithm" 684 select CRYPTO_HASH 685 help 686 MD5 message digest algorithm (RFC1321). 687 688config CRYPTO_MD5_OCTEON 689 tristate "MD5 digest algorithm (OCTEON)" 690 depends on CPU_CAVIUM_OCTEON 691 select CRYPTO_MD5 692 select CRYPTO_HASH 693 help 694 MD5 message digest algorithm (RFC1321) implemented 695 using OCTEON crypto instructions, when available. 696 697config CRYPTO_MD5_PPC 698 tristate "MD5 digest algorithm (PPC)" 699 depends on PPC 700 select CRYPTO_HASH 701 help 702 MD5 message digest algorithm (RFC1321) implemented 703 in PPC assembler. 704 705config CRYPTO_MD5_SPARC64 706 tristate "MD5 digest algorithm (SPARC64)" 707 depends on SPARC64 708 select CRYPTO_MD5 709 select CRYPTO_HASH 710 help 711 MD5 message digest algorithm (RFC1321) implemented 712 using sparc64 crypto instructions, when available. 713 714config CRYPTO_MICHAEL_MIC 715 tristate "Michael MIC keyed digest algorithm" 716 select CRYPTO_HASH 717 help 718 Michael MIC is used for message integrity protection in TKIP 719 (IEEE 802.11i). This algorithm is required for TKIP, but it 720 should not be used for other purposes because of the weakness 721 of the algorithm. 722 723config CRYPTO_RMD128 724 tristate "RIPEMD-128 digest algorithm" 725 select CRYPTO_HASH 726 help 727 RIPEMD-128 (ISO/IEC 10118-3:2004). 728 729 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 730 be used as a secure replacement for RIPEMD. For other use cases, 731 RIPEMD-160 should be used. 732 733 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 734 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 735 736config CRYPTO_RMD160 737 tristate "RIPEMD-160 digest algorithm" 738 select CRYPTO_HASH 739 help 740 RIPEMD-160 (ISO/IEC 10118-3:2004). 741 742 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 743 to be used as a secure replacement for the 128-bit hash functions 744 MD4, MD5 and it's predecessor RIPEMD 745 (not to be confused with RIPEMD-128). 746 747 It's speed is comparable to SHA1 and there are no known attacks 748 against RIPEMD-160. 749 750 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 751 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 752 753config CRYPTO_RMD256 754 tristate "RIPEMD-256 digest algorithm" 755 select CRYPTO_HASH 756 help 757 RIPEMD-256 is an optional extension of RIPEMD-128 with a 758 256 bit hash. It is intended for applications that require 759 longer hash-results, without needing a larger security level 760 (than RIPEMD-128). 761 762 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 763 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 764 765config CRYPTO_RMD320 766 tristate "RIPEMD-320 digest algorithm" 767 select CRYPTO_HASH 768 help 769 RIPEMD-320 is an optional extension of RIPEMD-160 with a 770 320 bit hash. It is intended for applications that require 771 longer hash-results, without needing a larger security level 772 (than RIPEMD-160). 773 774 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 775 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 776 777config CRYPTO_SHA1 778 tristate "SHA1 digest algorithm" 779 select CRYPTO_HASH 780 help 781 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 782 783config CRYPTO_SHA1_SSSE3 784 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 785 depends on X86 && 64BIT 786 select CRYPTO_SHA1 787 select CRYPTO_HASH 788 help 789 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 790 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 791 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 792 when available. 793 794config CRYPTO_SHA256_SSSE3 795 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 796 depends on X86 && 64BIT 797 select CRYPTO_SHA256 798 select CRYPTO_HASH 799 help 800 SHA-256 secure hash standard (DFIPS 180-2) implemented 801 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 802 Extensions version 1 (AVX1), or Advanced Vector Extensions 803 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 804 Instructions) when available. 805 806config CRYPTO_SHA512_SSSE3 807 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 808 depends on X86 && 64BIT 809 select CRYPTO_SHA512 810 select CRYPTO_HASH 811 help 812 SHA-512 secure hash standard (DFIPS 180-2) implemented 813 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 814 Extensions version 1 (AVX1), or Advanced Vector Extensions 815 version 2 (AVX2) instructions, when available. 816 817config CRYPTO_SHA1_OCTEON 818 tristate "SHA1 digest algorithm (OCTEON)" 819 depends on CPU_CAVIUM_OCTEON 820 select CRYPTO_SHA1 821 select CRYPTO_HASH 822 help 823 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 824 using OCTEON crypto instructions, when available. 825 826config CRYPTO_SHA1_SPARC64 827 tristate "SHA1 digest algorithm (SPARC64)" 828 depends on SPARC64 829 select CRYPTO_SHA1 830 select CRYPTO_HASH 831 help 832 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 833 using sparc64 crypto instructions, when available. 834 835config CRYPTO_SHA1_PPC 836 tristate "SHA1 digest algorithm (powerpc)" 837 depends on PPC 838 help 839 This is the powerpc hardware accelerated implementation of the 840 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 841 842config CRYPTO_SHA1_PPC_SPE 843 tristate "SHA1 digest algorithm (PPC SPE)" 844 depends on PPC && SPE 845 help 846 SHA-1 secure hash standard (DFIPS 180-4) implemented 847 using powerpc SPE SIMD instruction set. 848 849config CRYPTO_SHA256 850 tristate "SHA224 and SHA256 digest algorithm" 851 select CRYPTO_HASH 852 help 853 SHA256 secure hash standard (DFIPS 180-2). 854 855 This version of SHA implements a 256 bit hash with 128 bits of 856 security against collision attacks. 857 858 This code also includes SHA-224, a 224 bit hash with 112 bits 859 of security against collision attacks. 860 861config CRYPTO_SHA256_PPC_SPE 862 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 863 depends on PPC && SPE 864 select CRYPTO_SHA256 865 select CRYPTO_HASH 866 help 867 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 868 implemented using powerpc SPE SIMD instruction set. 869 870config CRYPTO_SHA256_OCTEON 871 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 872 depends on CPU_CAVIUM_OCTEON 873 select CRYPTO_SHA256 874 select CRYPTO_HASH 875 help 876 SHA-256 secure hash standard (DFIPS 180-2) implemented 877 using OCTEON crypto instructions, when available. 878 879config CRYPTO_SHA256_SPARC64 880 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 881 depends on SPARC64 882 select CRYPTO_SHA256 883 select CRYPTO_HASH 884 help 885 SHA-256 secure hash standard (DFIPS 180-2) implemented 886 using sparc64 crypto instructions, when available. 887 888config CRYPTO_SHA512 889 tristate "SHA384 and SHA512 digest algorithms" 890 select CRYPTO_HASH 891 help 892 SHA512 secure hash standard (DFIPS 180-2). 893 894 This version of SHA implements a 512 bit hash with 256 bits of 895 security against collision attacks. 896 897 This code also includes SHA-384, a 384 bit hash with 192 bits 898 of security against collision attacks. 899 900config CRYPTO_SHA512_OCTEON 901 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 902 depends on CPU_CAVIUM_OCTEON 903 select CRYPTO_SHA512 904 select CRYPTO_HASH 905 help 906 SHA-512 secure hash standard (DFIPS 180-2) implemented 907 using OCTEON crypto instructions, when available. 908 909config CRYPTO_SHA512_SPARC64 910 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 911 depends on SPARC64 912 select CRYPTO_SHA512 913 select CRYPTO_HASH 914 help 915 SHA-512 secure hash standard (DFIPS 180-2) implemented 916 using sparc64 crypto instructions, when available. 917 918config CRYPTO_SHA3 919 tristate "SHA3 digest algorithm" 920 select CRYPTO_HASH 921 help 922 SHA-3 secure hash standard (DFIPS 202). It's based on 923 cryptographic sponge function family called Keccak. 924 925 References: 926 http://keccak.noekeon.org/ 927 928config CRYPTO_SM3 929 tristate "SM3 digest algorithm" 930 select CRYPTO_HASH 931 help 932 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 933 It is part of the Chinese Commercial Cryptography suite. 934 935 References: 936 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 937 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 938 939config CRYPTO_TGR192 940 tristate "Tiger digest algorithms" 941 select CRYPTO_HASH 942 help 943 Tiger hash algorithm 192, 160 and 128-bit hashes 944 945 Tiger is a hash function optimized for 64-bit processors while 946 still having decent performance on 32-bit processors. 947 Tiger was developed by Ross Anderson and Eli Biham. 948 949 See also: 950 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 951 952config CRYPTO_WP512 953 tristate "Whirlpool digest algorithms" 954 select CRYPTO_HASH 955 help 956 Whirlpool hash algorithm 512, 384 and 256-bit hashes 957 958 Whirlpool-512 is part of the NESSIE cryptographic primitives. 959 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 960 961 See also: 962 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 963 964config CRYPTO_GHASH_CLMUL_NI_INTEL 965 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 966 depends on X86 && 64BIT 967 select CRYPTO_CRYPTD 968 help 969 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 970 The implementation is accelerated by CLMUL-NI of Intel. 971 972comment "Ciphers" 973 974config CRYPTO_AES 975 tristate "AES cipher algorithms" 976 select CRYPTO_ALGAPI 977 help 978 AES cipher algorithms (FIPS-197). AES uses the Rijndael 979 algorithm. 980 981 Rijndael appears to be consistently a very good performer in 982 both hardware and software across a wide range of computing 983 environments regardless of its use in feedback or non-feedback 984 modes. Its key setup time is excellent, and its key agility is 985 good. Rijndael's very low memory requirements make it very well 986 suited for restricted-space environments, in which it also 987 demonstrates excellent performance. Rijndael's operations are 988 among the easiest to defend against power and timing attacks. 989 990 The AES specifies three key sizes: 128, 192 and 256 bits 991 992 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 993 994config CRYPTO_AES_TI 995 tristate "Fixed time AES cipher" 996 select CRYPTO_ALGAPI 997 help 998 This is a generic implementation of AES that attempts to eliminate 999 data dependent latencies as much as possible without affecting 1000 performance too much. It is intended for use by the generic CCM 1001 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1002 solely on encryption (although decryption is supported as well, but 1003 with a more dramatic performance hit) 1004 1005 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1006 8 for decryption), this implementation only uses just two S-boxes of 1007 256 bytes each, and attempts to eliminate data dependent latencies by 1008 prefetching the entire table into the cache at the start of each 1009 block. 1010 1011config CRYPTO_AES_586 1012 tristate "AES cipher algorithms (i586)" 1013 depends on (X86 || UML_X86) && !64BIT 1014 select CRYPTO_ALGAPI 1015 select CRYPTO_AES 1016 help 1017 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1018 algorithm. 1019 1020 Rijndael appears to be consistently a very good performer in 1021 both hardware and software across a wide range of computing 1022 environments regardless of its use in feedback or non-feedback 1023 modes. Its key setup time is excellent, and its key agility is 1024 good. Rijndael's very low memory requirements make it very well 1025 suited for restricted-space environments, in which it also 1026 demonstrates excellent performance. Rijndael's operations are 1027 among the easiest to defend against power and timing attacks. 1028 1029 The AES specifies three key sizes: 128, 192 and 256 bits 1030 1031 See <http://csrc.nist.gov/encryption/aes/> for more information. 1032 1033config CRYPTO_AES_X86_64 1034 tristate "AES cipher algorithms (x86_64)" 1035 depends on (X86 || UML_X86) && 64BIT 1036 select CRYPTO_ALGAPI 1037 select CRYPTO_AES 1038 help 1039 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1040 algorithm. 1041 1042 Rijndael appears to be consistently a very good performer in 1043 both hardware and software across a wide range of computing 1044 environments regardless of its use in feedback or non-feedback 1045 modes. Its key setup time is excellent, and its key agility is 1046 good. Rijndael's very low memory requirements make it very well 1047 suited for restricted-space environments, in which it also 1048 demonstrates excellent performance. Rijndael's operations are 1049 among the easiest to defend against power and timing attacks. 1050 1051 The AES specifies three key sizes: 128, 192 and 256 bits 1052 1053 See <http://csrc.nist.gov/encryption/aes/> for more information. 1054 1055config CRYPTO_AES_NI_INTEL 1056 tristate "AES cipher algorithms (AES-NI)" 1057 depends on X86 1058 select CRYPTO_AEAD 1059 select CRYPTO_AES_X86_64 if 64BIT 1060 select CRYPTO_AES_586 if !64BIT 1061 select CRYPTO_ALGAPI 1062 select CRYPTO_BLKCIPHER 1063 select CRYPTO_GLUE_HELPER_X86 if 64BIT 1064 select CRYPTO_SIMD 1065 help 1066 Use Intel AES-NI instructions for AES algorithm. 1067 1068 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1069 algorithm. 1070 1071 Rijndael appears to be consistently a very good performer in 1072 both hardware and software across a wide range of computing 1073 environments regardless of its use in feedback or non-feedback 1074 modes. Its key setup time is excellent, and its key agility is 1075 good. Rijndael's very low memory requirements make it very well 1076 suited for restricted-space environments, in which it also 1077 demonstrates excellent performance. Rijndael's operations are 1078 among the easiest to defend against power and timing attacks. 1079 1080 The AES specifies three key sizes: 128, 192 and 256 bits 1081 1082 See <http://csrc.nist.gov/encryption/aes/> for more information. 1083 1084 In addition to AES cipher algorithm support, the acceleration 1085 for some popular block cipher mode is supported too, including 1086 ECB, CBC, LRW, XTS. The 64 bit version has additional 1087 acceleration for CTR. 1088 1089config CRYPTO_AES_SPARC64 1090 tristate "AES cipher algorithms (SPARC64)" 1091 depends on SPARC64 1092 select CRYPTO_CRYPTD 1093 select CRYPTO_ALGAPI 1094 help 1095 Use SPARC64 crypto opcodes for AES algorithm. 1096 1097 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1098 algorithm. 1099 1100 Rijndael appears to be consistently a very good performer in 1101 both hardware and software across a wide range of computing 1102 environments regardless of its use in feedback or non-feedback 1103 modes. Its key setup time is excellent, and its key agility is 1104 good. Rijndael's very low memory requirements make it very well 1105 suited for restricted-space environments, in which it also 1106 demonstrates excellent performance. Rijndael's operations are 1107 among the easiest to defend against power and timing attacks. 1108 1109 The AES specifies three key sizes: 128, 192 and 256 bits 1110 1111 See <http://csrc.nist.gov/encryption/aes/> for more information. 1112 1113 In addition to AES cipher algorithm support, the acceleration 1114 for some popular block cipher mode is supported too, including 1115 ECB and CBC. 1116 1117config CRYPTO_AES_PPC_SPE 1118 tristate "AES cipher algorithms (PPC SPE)" 1119 depends on PPC && SPE 1120 help 1121 AES cipher algorithms (FIPS-197). Additionally the acceleration 1122 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1123 This module should only be used for low power (router) devices 1124 without hardware AES acceleration (e.g. caam crypto). It reduces the 1125 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1126 timining attacks. Nevertheless it might be not as secure as other 1127 architecture specific assembler implementations that work on 1KB 1128 tables or 256 bytes S-boxes. 1129 1130config CRYPTO_ANUBIS 1131 tristate "Anubis cipher algorithm" 1132 select CRYPTO_ALGAPI 1133 help 1134 Anubis cipher algorithm. 1135 1136 Anubis is a variable key length cipher which can use keys from 1137 128 bits to 320 bits in length. It was evaluated as a entrant 1138 in the NESSIE competition. 1139 1140 See also: 1141 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1142 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1143 1144config CRYPTO_ARC4 1145 tristate "ARC4 cipher algorithm" 1146 select CRYPTO_BLKCIPHER 1147 help 1148 ARC4 cipher algorithm. 1149 1150 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1151 bits in length. This algorithm is required for driver-based 1152 WEP, but it should not be for other purposes because of the 1153 weakness of the algorithm. 1154 1155config CRYPTO_BLOWFISH 1156 tristate "Blowfish cipher algorithm" 1157 select CRYPTO_ALGAPI 1158 select CRYPTO_BLOWFISH_COMMON 1159 help 1160 Blowfish cipher algorithm, by Bruce Schneier. 1161 1162 This is a variable key length cipher which can use keys from 32 1163 bits to 448 bits in length. It's fast, simple and specifically 1164 designed for use on "large microprocessors". 1165 1166 See also: 1167 <http://www.schneier.com/blowfish.html> 1168 1169config CRYPTO_BLOWFISH_COMMON 1170 tristate 1171 help 1172 Common parts of the Blowfish cipher algorithm shared by the 1173 generic c and the assembler implementations. 1174 1175 See also: 1176 <http://www.schneier.com/blowfish.html> 1177 1178config CRYPTO_BLOWFISH_X86_64 1179 tristate "Blowfish cipher algorithm (x86_64)" 1180 depends on X86 && 64BIT 1181 select CRYPTO_BLKCIPHER 1182 select CRYPTO_BLOWFISH_COMMON 1183 help 1184 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1185 1186 This is a variable key length cipher which can use keys from 32 1187 bits to 448 bits in length. It's fast, simple and specifically 1188 designed for use on "large microprocessors". 1189 1190 See also: 1191 <http://www.schneier.com/blowfish.html> 1192 1193config CRYPTO_CAMELLIA 1194 tristate "Camellia cipher algorithms" 1195 depends on CRYPTO 1196 select CRYPTO_ALGAPI 1197 help 1198 Camellia cipher algorithms module. 1199 1200 Camellia is a symmetric key block cipher developed jointly 1201 at NTT and Mitsubishi Electric Corporation. 1202 1203 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1204 1205 See also: 1206 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1207 1208config CRYPTO_CAMELLIA_X86_64 1209 tristate "Camellia cipher algorithm (x86_64)" 1210 depends on X86 && 64BIT 1211 depends on CRYPTO 1212 select CRYPTO_BLKCIPHER 1213 select CRYPTO_GLUE_HELPER_X86 1214 help 1215 Camellia cipher algorithm module (x86_64). 1216 1217 Camellia is a symmetric key block cipher developed jointly 1218 at NTT and Mitsubishi Electric Corporation. 1219 1220 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1221 1222 See also: 1223 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1224 1225config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1226 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1227 depends on X86 && 64BIT 1228 depends on CRYPTO 1229 select CRYPTO_BLKCIPHER 1230 select CRYPTO_CAMELLIA_X86_64 1231 select CRYPTO_GLUE_HELPER_X86 1232 select CRYPTO_SIMD 1233 select CRYPTO_XTS 1234 help 1235 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1236 1237 Camellia is a symmetric key block cipher developed jointly 1238 at NTT and Mitsubishi Electric Corporation. 1239 1240 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1241 1242 See also: 1243 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1244 1245config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1246 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1247 depends on X86 && 64BIT 1248 depends on CRYPTO 1249 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1250 help 1251 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1252 1253 Camellia is a symmetric key block cipher developed jointly 1254 at NTT and Mitsubishi Electric Corporation. 1255 1256 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1257 1258 See also: 1259 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1260 1261config CRYPTO_CAMELLIA_SPARC64 1262 tristate "Camellia cipher algorithm (SPARC64)" 1263 depends on SPARC64 1264 depends on CRYPTO 1265 select CRYPTO_ALGAPI 1266 help 1267 Camellia cipher algorithm module (SPARC64). 1268 1269 Camellia is a symmetric key block cipher developed jointly 1270 at NTT and Mitsubishi Electric Corporation. 1271 1272 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1273 1274 See also: 1275 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1276 1277config CRYPTO_CAST_COMMON 1278 tristate 1279 help 1280 Common parts of the CAST cipher algorithms shared by the 1281 generic c and the assembler implementations. 1282 1283config CRYPTO_CAST5 1284 tristate "CAST5 (CAST-128) cipher algorithm" 1285 select CRYPTO_ALGAPI 1286 select CRYPTO_CAST_COMMON 1287 help 1288 The CAST5 encryption algorithm (synonymous with CAST-128) is 1289 described in RFC2144. 1290 1291config CRYPTO_CAST5_AVX_X86_64 1292 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1293 depends on X86 && 64BIT 1294 select CRYPTO_BLKCIPHER 1295 select CRYPTO_CAST5 1296 select CRYPTO_CAST_COMMON 1297 select CRYPTO_SIMD 1298 help 1299 The CAST5 encryption algorithm (synonymous with CAST-128) is 1300 described in RFC2144. 1301 1302 This module provides the Cast5 cipher algorithm that processes 1303 sixteen blocks parallel using the AVX instruction set. 1304 1305config CRYPTO_CAST6 1306 tristate "CAST6 (CAST-256) cipher algorithm" 1307 select CRYPTO_ALGAPI 1308 select CRYPTO_CAST_COMMON 1309 help 1310 The CAST6 encryption algorithm (synonymous with CAST-256) is 1311 described in RFC2612. 1312 1313config CRYPTO_CAST6_AVX_X86_64 1314 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1315 depends on X86 && 64BIT 1316 select CRYPTO_BLKCIPHER 1317 select CRYPTO_CAST6 1318 select CRYPTO_CAST_COMMON 1319 select CRYPTO_GLUE_HELPER_X86 1320 select CRYPTO_SIMD 1321 select CRYPTO_XTS 1322 help 1323 The CAST6 encryption algorithm (synonymous with CAST-256) is 1324 described in RFC2612. 1325 1326 This module provides the Cast6 cipher algorithm that processes 1327 eight blocks parallel using the AVX instruction set. 1328 1329config CRYPTO_DES 1330 tristate "DES and Triple DES EDE cipher algorithms" 1331 select CRYPTO_ALGAPI 1332 help 1333 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1334 1335config CRYPTO_DES_SPARC64 1336 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1337 depends on SPARC64 1338 select CRYPTO_ALGAPI 1339 select CRYPTO_DES 1340 help 1341 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1342 optimized using SPARC64 crypto opcodes. 1343 1344config CRYPTO_DES3_EDE_X86_64 1345 tristate "Triple DES EDE cipher algorithm (x86-64)" 1346 depends on X86 && 64BIT 1347 select CRYPTO_BLKCIPHER 1348 select CRYPTO_DES 1349 help 1350 Triple DES EDE (FIPS 46-3) algorithm. 1351 1352 This module provides implementation of the Triple DES EDE cipher 1353 algorithm that is optimized for x86-64 processors. Two versions of 1354 algorithm are provided; regular processing one input block and 1355 one that processes three blocks parallel. 1356 1357config CRYPTO_FCRYPT 1358 tristate "FCrypt cipher algorithm" 1359 select CRYPTO_ALGAPI 1360 select CRYPTO_BLKCIPHER 1361 help 1362 FCrypt algorithm used by RxRPC. 1363 1364config CRYPTO_KHAZAD 1365 tristate "Khazad cipher algorithm" 1366 select CRYPTO_ALGAPI 1367 help 1368 Khazad cipher algorithm. 1369 1370 Khazad was a finalist in the initial NESSIE competition. It is 1371 an algorithm optimized for 64-bit processors with good performance 1372 on 32-bit processors. Khazad uses an 128 bit key size. 1373 1374 See also: 1375 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1376 1377config CRYPTO_SALSA20 1378 tristate "Salsa20 stream cipher algorithm" 1379 select CRYPTO_BLKCIPHER 1380 help 1381 Salsa20 stream cipher algorithm. 1382 1383 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1384 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1385 1386 The Salsa20 stream cipher algorithm is designed by Daniel J. 1387 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1388 1389config CRYPTO_CHACHA20 1390 tristate "ChaCha20 cipher algorithm" 1391 select CRYPTO_BLKCIPHER 1392 help 1393 ChaCha20 cipher algorithm, RFC7539. 1394 1395 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1396 Bernstein and further specified in RFC7539 for use in IETF protocols. 1397 This is the portable C implementation of ChaCha20. 1398 1399 See also: 1400 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1401 1402config CRYPTO_CHACHA20_X86_64 1403 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1404 depends on X86 && 64BIT 1405 select CRYPTO_BLKCIPHER 1406 select CRYPTO_CHACHA20 1407 help 1408 ChaCha20 cipher algorithm, RFC7539. 1409 1410 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1411 Bernstein and further specified in RFC7539 for use in IETF protocols. 1412 This is the x86_64 assembler implementation using SIMD instructions. 1413 1414 See also: 1415 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1416 1417config CRYPTO_SEED 1418 tristate "SEED cipher algorithm" 1419 select CRYPTO_ALGAPI 1420 help 1421 SEED cipher algorithm (RFC4269). 1422 1423 SEED is a 128-bit symmetric key block cipher that has been 1424 developed by KISA (Korea Information Security Agency) as a 1425 national standard encryption algorithm of the Republic of Korea. 1426 It is a 16 round block cipher with the key size of 128 bit. 1427 1428 See also: 1429 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1430 1431config CRYPTO_SERPENT 1432 tristate "Serpent cipher algorithm" 1433 select CRYPTO_ALGAPI 1434 help 1435 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1436 1437 Keys are allowed to be from 0 to 256 bits in length, in steps 1438 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1439 variant of Serpent for compatibility with old kerneli.org code. 1440 1441 See also: 1442 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1443 1444config CRYPTO_SERPENT_SSE2_X86_64 1445 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1446 depends on X86 && 64BIT 1447 select CRYPTO_BLKCIPHER 1448 select CRYPTO_GLUE_HELPER_X86 1449 select CRYPTO_SERPENT 1450 select CRYPTO_SIMD 1451 help 1452 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1453 1454 Keys are allowed to be from 0 to 256 bits in length, in steps 1455 of 8 bits. 1456 1457 This module provides Serpent cipher algorithm that processes eight 1458 blocks parallel using SSE2 instruction set. 1459 1460 See also: 1461 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1462 1463config CRYPTO_SERPENT_SSE2_586 1464 tristate "Serpent cipher algorithm (i586/SSE2)" 1465 depends on X86 && !64BIT 1466 select CRYPTO_BLKCIPHER 1467 select CRYPTO_GLUE_HELPER_X86 1468 select CRYPTO_SERPENT 1469 select CRYPTO_SIMD 1470 help 1471 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1472 1473 Keys are allowed to be from 0 to 256 bits in length, in steps 1474 of 8 bits. 1475 1476 This module provides Serpent cipher algorithm that processes four 1477 blocks parallel using SSE2 instruction set. 1478 1479 See also: 1480 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1481 1482config CRYPTO_SERPENT_AVX_X86_64 1483 tristate "Serpent cipher algorithm (x86_64/AVX)" 1484 depends on X86 && 64BIT 1485 select CRYPTO_BLKCIPHER 1486 select CRYPTO_GLUE_HELPER_X86 1487 select CRYPTO_SERPENT 1488 select CRYPTO_SIMD 1489 select CRYPTO_XTS 1490 help 1491 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1492 1493 Keys are allowed to be from 0 to 256 bits in length, in steps 1494 of 8 bits. 1495 1496 This module provides the Serpent cipher algorithm that processes 1497 eight blocks parallel using the AVX instruction set. 1498 1499 See also: 1500 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1501 1502config CRYPTO_SERPENT_AVX2_X86_64 1503 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1504 depends on X86 && 64BIT 1505 select CRYPTO_SERPENT_AVX_X86_64 1506 help 1507 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1508 1509 Keys are allowed to be from 0 to 256 bits in length, in steps 1510 of 8 bits. 1511 1512 This module provides Serpent cipher algorithm that processes 16 1513 blocks parallel using AVX2 instruction set. 1514 1515 See also: 1516 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1517 1518config CRYPTO_SM4 1519 tristate "SM4 cipher algorithm" 1520 select CRYPTO_ALGAPI 1521 help 1522 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1523 1524 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1525 Organization of State Commercial Administration of China (OSCCA) 1526 as an authorized cryptographic algorithms for the use within China. 1527 1528 SMS4 was originally created for use in protecting wireless 1529 networks, and is mandated in the Chinese National Standard for 1530 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1531 (GB.15629.11-2003). 1532 1533 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1534 standardized through TC 260 of the Standardization Administration 1535 of the People's Republic of China (SAC). 1536 1537 The input, output, and key of SMS4 are each 128 bits. 1538 1539 See also: <https://eprint.iacr.org/2008/329.pdf> 1540 1541 If unsure, say N. 1542 1543config CRYPTO_TEA 1544 tristate "TEA, XTEA and XETA cipher algorithms" 1545 select CRYPTO_ALGAPI 1546 help 1547 TEA cipher algorithm. 1548 1549 Tiny Encryption Algorithm is a simple cipher that uses 1550 many rounds for security. It is very fast and uses 1551 little memory. 1552 1553 Xtendend Tiny Encryption Algorithm is a modification to 1554 the TEA algorithm to address a potential key weakness 1555 in the TEA algorithm. 1556 1557 Xtendend Encryption Tiny Algorithm is a mis-implementation 1558 of the XTEA algorithm for compatibility purposes. 1559 1560config CRYPTO_TWOFISH 1561 tristate "Twofish cipher algorithm" 1562 select CRYPTO_ALGAPI 1563 select CRYPTO_TWOFISH_COMMON 1564 help 1565 Twofish cipher algorithm. 1566 1567 Twofish was submitted as an AES (Advanced Encryption Standard) 1568 candidate cipher by researchers at CounterPane Systems. It is a 1569 16 round block cipher supporting key sizes of 128, 192, and 256 1570 bits. 1571 1572 See also: 1573 <http://www.schneier.com/twofish.html> 1574 1575config CRYPTO_TWOFISH_COMMON 1576 tristate 1577 help 1578 Common parts of the Twofish cipher algorithm shared by the 1579 generic c and the assembler implementations. 1580 1581config CRYPTO_TWOFISH_586 1582 tristate "Twofish cipher algorithms (i586)" 1583 depends on (X86 || UML_X86) && !64BIT 1584 select CRYPTO_ALGAPI 1585 select CRYPTO_TWOFISH_COMMON 1586 help 1587 Twofish cipher algorithm. 1588 1589 Twofish was submitted as an AES (Advanced Encryption Standard) 1590 candidate cipher by researchers at CounterPane Systems. It is a 1591 16 round block cipher supporting key sizes of 128, 192, and 256 1592 bits. 1593 1594 See also: 1595 <http://www.schneier.com/twofish.html> 1596 1597config CRYPTO_TWOFISH_X86_64 1598 tristate "Twofish cipher algorithm (x86_64)" 1599 depends on (X86 || UML_X86) && 64BIT 1600 select CRYPTO_ALGAPI 1601 select CRYPTO_TWOFISH_COMMON 1602 help 1603 Twofish cipher algorithm (x86_64). 1604 1605 Twofish was submitted as an AES (Advanced Encryption Standard) 1606 candidate cipher by researchers at CounterPane Systems. It is a 1607 16 round block cipher supporting key sizes of 128, 192, and 256 1608 bits. 1609 1610 See also: 1611 <http://www.schneier.com/twofish.html> 1612 1613config CRYPTO_TWOFISH_X86_64_3WAY 1614 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1615 depends on X86 && 64BIT 1616 select CRYPTO_BLKCIPHER 1617 select CRYPTO_TWOFISH_COMMON 1618 select CRYPTO_TWOFISH_X86_64 1619 select CRYPTO_GLUE_HELPER_X86 1620 help 1621 Twofish cipher algorithm (x86_64, 3-way parallel). 1622 1623 Twofish was submitted as an AES (Advanced Encryption Standard) 1624 candidate cipher by researchers at CounterPane Systems. It is a 1625 16 round block cipher supporting key sizes of 128, 192, and 256 1626 bits. 1627 1628 This module provides Twofish cipher algorithm that processes three 1629 blocks parallel, utilizing resources of out-of-order CPUs better. 1630 1631 See also: 1632 <http://www.schneier.com/twofish.html> 1633 1634config CRYPTO_TWOFISH_AVX_X86_64 1635 tristate "Twofish cipher algorithm (x86_64/AVX)" 1636 depends on X86 && 64BIT 1637 select CRYPTO_BLKCIPHER 1638 select CRYPTO_GLUE_HELPER_X86 1639 select CRYPTO_SIMD 1640 select CRYPTO_TWOFISH_COMMON 1641 select CRYPTO_TWOFISH_X86_64 1642 select CRYPTO_TWOFISH_X86_64_3WAY 1643 help 1644 Twofish cipher algorithm (x86_64/AVX). 1645 1646 Twofish was submitted as an AES (Advanced Encryption Standard) 1647 candidate cipher by researchers at CounterPane Systems. It is a 1648 16 round block cipher supporting key sizes of 128, 192, and 256 1649 bits. 1650 1651 This module provides the Twofish cipher algorithm that processes 1652 eight blocks parallel using the AVX Instruction Set. 1653 1654 See also: 1655 <http://www.schneier.com/twofish.html> 1656 1657comment "Compression" 1658 1659config CRYPTO_DEFLATE 1660 tristate "Deflate compression algorithm" 1661 select CRYPTO_ALGAPI 1662 select CRYPTO_ACOMP2 1663 select ZLIB_INFLATE 1664 select ZLIB_DEFLATE 1665 help 1666 This is the Deflate algorithm (RFC1951), specified for use in 1667 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1668 1669 You will most probably want this if using IPSec. 1670 1671config CRYPTO_LZO 1672 tristate "LZO compression algorithm" 1673 select CRYPTO_ALGAPI 1674 select CRYPTO_ACOMP2 1675 select LZO_COMPRESS 1676 select LZO_DECOMPRESS 1677 help 1678 This is the LZO algorithm. 1679 1680config CRYPTO_842 1681 tristate "842 compression algorithm" 1682 select CRYPTO_ALGAPI 1683 select CRYPTO_ACOMP2 1684 select 842_COMPRESS 1685 select 842_DECOMPRESS 1686 help 1687 This is the 842 algorithm. 1688 1689config CRYPTO_LZ4 1690 tristate "LZ4 compression algorithm" 1691 select CRYPTO_ALGAPI 1692 select CRYPTO_ACOMP2 1693 select LZ4_COMPRESS 1694 select LZ4_DECOMPRESS 1695 help 1696 This is the LZ4 algorithm. 1697 1698config CRYPTO_LZ4HC 1699 tristate "LZ4HC compression algorithm" 1700 select CRYPTO_ALGAPI 1701 select CRYPTO_ACOMP2 1702 select LZ4HC_COMPRESS 1703 select LZ4_DECOMPRESS 1704 help 1705 This is the LZ4 high compression mode algorithm. 1706 1707config CRYPTO_ZSTD 1708 tristate "Zstd compression algorithm" 1709 select CRYPTO_ALGAPI 1710 select CRYPTO_ACOMP2 1711 select ZSTD_COMPRESS 1712 select ZSTD_DECOMPRESS 1713 help 1714 This is the zstd algorithm. 1715 1716comment "Random Number Generation" 1717 1718config CRYPTO_ANSI_CPRNG 1719 tristate "Pseudo Random Number Generation for Cryptographic modules" 1720 select CRYPTO_AES 1721 select CRYPTO_RNG 1722 help 1723 This option enables the generic pseudo random number generator 1724 for cryptographic modules. Uses the Algorithm specified in 1725 ANSI X9.31 A.2.4. Note that this option must be enabled if 1726 CRYPTO_FIPS is selected 1727 1728menuconfig CRYPTO_DRBG_MENU 1729 tristate "NIST SP800-90A DRBG" 1730 help 1731 NIST SP800-90A compliant DRBG. In the following submenu, one or 1732 more of the DRBG types must be selected. 1733 1734if CRYPTO_DRBG_MENU 1735 1736config CRYPTO_DRBG_HMAC 1737 bool 1738 default y 1739 select CRYPTO_HMAC 1740 select CRYPTO_SHA256 1741 1742config CRYPTO_DRBG_HASH 1743 bool "Enable Hash DRBG" 1744 select CRYPTO_SHA256 1745 help 1746 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1747 1748config CRYPTO_DRBG_CTR 1749 bool "Enable CTR DRBG" 1750 select CRYPTO_AES 1751 depends on CRYPTO_CTR 1752 help 1753 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1754 1755config CRYPTO_DRBG 1756 tristate 1757 default CRYPTO_DRBG_MENU 1758 select CRYPTO_RNG 1759 select CRYPTO_JITTERENTROPY 1760 1761endif # if CRYPTO_DRBG_MENU 1762 1763config CRYPTO_JITTERENTROPY 1764 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1765 select CRYPTO_RNG 1766 help 1767 The Jitterentropy RNG is a noise that is intended 1768 to provide seed to another RNG. The RNG does not 1769 perform any cryptographic whitening of the generated 1770 random numbers. This Jitterentropy RNG registers with 1771 the kernel crypto API and can be used by any caller. 1772 1773config CRYPTO_USER_API 1774 tristate 1775 1776config CRYPTO_USER_API_HASH 1777 tristate "User-space interface for hash algorithms" 1778 depends on NET 1779 select CRYPTO_HASH 1780 select CRYPTO_USER_API 1781 help 1782 This option enables the user-spaces interface for hash 1783 algorithms. 1784 1785config CRYPTO_USER_API_SKCIPHER 1786 tristate "User-space interface for symmetric key cipher algorithms" 1787 depends on NET 1788 select CRYPTO_BLKCIPHER 1789 select CRYPTO_USER_API 1790 help 1791 This option enables the user-spaces interface for symmetric 1792 key cipher algorithms. 1793 1794config CRYPTO_USER_API_RNG 1795 tristate "User-space interface for random number generator algorithms" 1796 depends on NET 1797 select CRYPTO_RNG 1798 select CRYPTO_USER_API 1799 help 1800 This option enables the user-spaces interface for random 1801 number generator algorithms. 1802 1803config CRYPTO_USER_API_AEAD 1804 tristate "User-space interface for AEAD cipher algorithms" 1805 depends on NET 1806 select CRYPTO_AEAD 1807 select CRYPTO_BLKCIPHER 1808 select CRYPTO_NULL 1809 select CRYPTO_USER_API 1810 help 1811 This option enables the user-spaces interface for AEAD 1812 cipher algorithms. 1813 1814config CRYPTO_STATS 1815 bool "Crypto usage statistics for User-space" 1816 help 1817 This option enables the gathering of crypto stats. 1818 This will collect: 1819 - encrypt/decrypt size and numbers of symmeric operations 1820 - compress/decompress size and numbers of compress operations 1821 - size and numbers of hash operations 1822 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1823 - generate/seed numbers for rng operations 1824 1825config CRYPTO_HASH_INFO 1826 bool 1827 1828source "drivers/crypto/Kconfig" 1829source crypto/asymmetric_keys/Kconfig 1830source certs/Kconfig 1831 1832endif # if CRYPTO 1833