xref: /openbmc/linux/crypto/Kconfig (revision e5c86679)
1#
2# Generic algorithms support
3#
4config XOR_BLOCKS
5	tristate
6
7#
8# async_tx api: hardware offloaded memory transfer/transform support
9#
10source "crypto/async_tx/Kconfig"
11
12#
13# Cryptographic API Configuration
14#
15menuconfig CRYPTO
16	tristate "Cryptographic API"
17	help
18	  This option provides the core Cryptographic API.
19
20if CRYPTO
21
22comment "Crypto core or helper"
23
24config CRYPTO_FIPS
25	bool "FIPS 200 compliance"
26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27	depends on (MODULE_SIG || !MODULES)
28	help
29	  This options enables the fips boot option which is
30	  required if you want to system to operate in a FIPS 200
31	  certification.  You should say no unless you know what
32	  this is.
33
34config CRYPTO_ALGAPI
35	tristate
36	select CRYPTO_ALGAPI2
37	help
38	  This option provides the API for cryptographic algorithms.
39
40config CRYPTO_ALGAPI2
41	tristate
42
43config CRYPTO_AEAD
44	tristate
45	select CRYPTO_AEAD2
46	select CRYPTO_ALGAPI
47
48config CRYPTO_AEAD2
49	tristate
50	select CRYPTO_ALGAPI2
51	select CRYPTO_NULL2
52	select CRYPTO_RNG2
53
54config CRYPTO_BLKCIPHER
55	tristate
56	select CRYPTO_BLKCIPHER2
57	select CRYPTO_ALGAPI
58
59config CRYPTO_BLKCIPHER2
60	tristate
61	select CRYPTO_ALGAPI2
62	select CRYPTO_RNG2
63	select CRYPTO_WORKQUEUE
64
65config CRYPTO_HASH
66	tristate
67	select CRYPTO_HASH2
68	select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71	tristate
72	select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75	tristate
76	select CRYPTO_RNG2
77	select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80	tristate
81	select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84	tristate
85	select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88	tristate
89	select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92	tristate
93	select CRYPTO_AKCIPHER2
94	select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97	tristate
98	select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101	tristate
102	select CRYPTO_ALGAPI
103	select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106	tristate
107	select CRYPTO_ALGAPI2
108
109config CRYPTO_ACOMP
110	tristate
111	select CRYPTO_ALGAPI
112	select CRYPTO_ACOMP2
113
114config CRYPTO_RSA
115	tristate "RSA algorithm"
116	select CRYPTO_AKCIPHER
117	select CRYPTO_MANAGER
118	select MPILIB
119	select ASN1
120	help
121	  Generic implementation of the RSA public key algorithm.
122
123config CRYPTO_DH
124	tristate "Diffie-Hellman algorithm"
125	select CRYPTO_KPP
126	select MPILIB
127	help
128	  Generic implementation of the Diffie-Hellman algorithm.
129
130config CRYPTO_ECDH
131	tristate "ECDH algorithm"
132	select CRYTPO_KPP
133	help
134	  Generic implementation of the ECDH algorithm
135
136config CRYPTO_MANAGER
137	tristate "Cryptographic algorithm manager"
138	select CRYPTO_MANAGER2
139	help
140	  Create default cryptographic template instantiations such as
141	  cbc(aes).
142
143config CRYPTO_MANAGER2
144	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
145	select CRYPTO_AEAD2
146	select CRYPTO_HASH2
147	select CRYPTO_BLKCIPHER2
148	select CRYPTO_AKCIPHER2
149	select CRYPTO_KPP2
150	select CRYPTO_ACOMP2
151
152config CRYPTO_USER
153	tristate "Userspace cryptographic algorithm configuration"
154	depends on NET
155	select CRYPTO_MANAGER
156	help
157	  Userspace configuration for cryptographic instantiations such as
158	  cbc(aes).
159
160config CRYPTO_MANAGER_DISABLE_TESTS
161	bool "Disable run-time self tests"
162	default y
163	depends on CRYPTO_MANAGER2
164	help
165	  Disable run-time self tests that normally take place at
166	  algorithm registration.
167
168config CRYPTO_GF128MUL
169	tristate "GF(2^128) multiplication functions"
170	help
171	  Efficient table driven implementation of multiplications in the
172	  field GF(2^128).  This is needed by some cypher modes. This
173	  option will be selected automatically if you select such a
174	  cipher mode.  Only select this option by hand if you expect to load
175	  an external module that requires these functions.
176
177config CRYPTO_NULL
178	tristate "Null algorithms"
179	select CRYPTO_NULL2
180	help
181	  These are 'Null' algorithms, used by IPsec, which do nothing.
182
183config CRYPTO_NULL2
184	tristate
185	select CRYPTO_ALGAPI2
186	select CRYPTO_BLKCIPHER2
187	select CRYPTO_HASH2
188
189config CRYPTO_PCRYPT
190	tristate "Parallel crypto engine"
191	depends on SMP
192	select PADATA
193	select CRYPTO_MANAGER
194	select CRYPTO_AEAD
195	help
196	  This converts an arbitrary crypto algorithm into a parallel
197	  algorithm that executes in kernel threads.
198
199config CRYPTO_WORKQUEUE
200       tristate
201
202config CRYPTO_CRYPTD
203	tristate "Software async crypto daemon"
204	select CRYPTO_BLKCIPHER
205	select CRYPTO_HASH
206	select CRYPTO_MANAGER
207	select CRYPTO_WORKQUEUE
208	help
209	  This is a generic software asynchronous crypto daemon that
210	  converts an arbitrary synchronous software crypto algorithm
211	  into an asynchronous algorithm that executes in a kernel thread.
212
213config CRYPTO_MCRYPTD
214	tristate "Software async multi-buffer crypto daemon"
215	select CRYPTO_BLKCIPHER
216	select CRYPTO_HASH
217	select CRYPTO_MANAGER
218	select CRYPTO_WORKQUEUE
219	help
220	  This is a generic software asynchronous crypto daemon that
221	  provides the kernel thread to assist multi-buffer crypto
222	  algorithms for submitting jobs and flushing jobs in multi-buffer
223	  crypto algorithms.  Multi-buffer crypto algorithms are executed
224	  in the context of this kernel thread and drivers can post
225	  their crypto request asynchronously to be processed by this daemon.
226
227config CRYPTO_AUTHENC
228	tristate "Authenc support"
229	select CRYPTO_AEAD
230	select CRYPTO_BLKCIPHER
231	select CRYPTO_MANAGER
232	select CRYPTO_HASH
233	select CRYPTO_NULL
234	help
235	  Authenc: Combined mode wrapper for IPsec.
236	  This is required for IPSec.
237
238config CRYPTO_TEST
239	tristate "Testing module"
240	depends on m
241	select CRYPTO_MANAGER
242	help
243	  Quick & dirty crypto test module.
244
245config CRYPTO_ABLK_HELPER
246	tristate
247	select CRYPTO_CRYPTD
248
249config CRYPTO_SIMD
250	tristate
251	select CRYPTO_CRYPTD
252
253config CRYPTO_GLUE_HELPER_X86
254	tristate
255	depends on X86
256	select CRYPTO_BLKCIPHER
257
258config CRYPTO_ENGINE
259	tristate
260
261comment "Authenticated Encryption with Associated Data"
262
263config CRYPTO_CCM
264	tristate "CCM support"
265	select CRYPTO_CTR
266	select CRYPTO_HASH
267	select CRYPTO_AEAD
268	help
269	  Support for Counter with CBC MAC. Required for IPsec.
270
271config CRYPTO_GCM
272	tristate "GCM/GMAC support"
273	select CRYPTO_CTR
274	select CRYPTO_AEAD
275	select CRYPTO_GHASH
276	select CRYPTO_NULL
277	help
278	  Support for Galois/Counter Mode (GCM) and Galois Message
279	  Authentication Code (GMAC). Required for IPSec.
280
281config CRYPTO_CHACHA20POLY1305
282	tristate "ChaCha20-Poly1305 AEAD support"
283	select CRYPTO_CHACHA20
284	select CRYPTO_POLY1305
285	select CRYPTO_AEAD
286	help
287	  ChaCha20-Poly1305 AEAD support, RFC7539.
288
289	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
290	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
291	  IETF protocols.
292
293config CRYPTO_SEQIV
294	tristate "Sequence Number IV Generator"
295	select CRYPTO_AEAD
296	select CRYPTO_BLKCIPHER
297	select CRYPTO_NULL
298	select CRYPTO_RNG_DEFAULT
299	help
300	  This IV generator generates an IV based on a sequence number by
301	  xoring it with a salt.  This algorithm is mainly useful for CTR
302
303config CRYPTO_ECHAINIV
304	tristate "Encrypted Chain IV Generator"
305	select CRYPTO_AEAD
306	select CRYPTO_NULL
307	select CRYPTO_RNG_DEFAULT
308	default m
309	help
310	  This IV generator generates an IV based on the encryption of
311	  a sequence number xored with a salt.  This is the default
312	  algorithm for CBC.
313
314comment "Block modes"
315
316config CRYPTO_CBC
317	tristate "CBC support"
318	select CRYPTO_BLKCIPHER
319	select CRYPTO_MANAGER
320	help
321	  CBC: Cipher Block Chaining mode
322	  This block cipher algorithm is required for IPSec.
323
324config CRYPTO_CTR
325	tristate "CTR support"
326	select CRYPTO_BLKCIPHER
327	select CRYPTO_SEQIV
328	select CRYPTO_MANAGER
329	help
330	  CTR: Counter mode
331	  This block cipher algorithm is required for IPSec.
332
333config CRYPTO_CTS
334	tristate "CTS support"
335	select CRYPTO_BLKCIPHER
336	help
337	  CTS: Cipher Text Stealing
338	  This is the Cipher Text Stealing mode as described by
339	  Section 8 of rfc2040 and referenced by rfc3962.
340	  (rfc3962 includes errata information in its Appendix A)
341	  This mode is required for Kerberos gss mechanism support
342	  for AES encryption.
343
344config CRYPTO_ECB
345	tristate "ECB support"
346	select CRYPTO_BLKCIPHER
347	select CRYPTO_MANAGER
348	help
349	  ECB: Electronic CodeBook mode
350	  This is the simplest block cipher algorithm.  It simply encrypts
351	  the input block by block.
352
353config CRYPTO_LRW
354	tristate "LRW support"
355	select CRYPTO_BLKCIPHER
356	select CRYPTO_MANAGER
357	select CRYPTO_GF128MUL
358	help
359	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
360	  narrow block cipher mode for dm-crypt.  Use it with cipher
361	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
362	  The first 128, 192 or 256 bits in the key are used for AES and the
363	  rest is used to tie each cipher block to its logical position.
364
365config CRYPTO_PCBC
366	tristate "PCBC support"
367	select CRYPTO_BLKCIPHER
368	select CRYPTO_MANAGER
369	help
370	  PCBC: Propagating Cipher Block Chaining mode
371	  This block cipher algorithm is required for RxRPC.
372
373config CRYPTO_XTS
374	tristate "XTS support"
375	select CRYPTO_BLKCIPHER
376	select CRYPTO_MANAGER
377	select CRYPTO_GF128MUL
378	select CRYPTO_ECB
379	help
380	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
381	  key size 256, 384 or 512 bits. This implementation currently
382	  can't handle a sectorsize which is not a multiple of 16 bytes.
383
384config CRYPTO_KEYWRAP
385	tristate "Key wrapping support"
386	select CRYPTO_BLKCIPHER
387	help
388	  Support for key wrapping (NIST SP800-38F / RFC3394) without
389	  padding.
390
391comment "Hash modes"
392
393config CRYPTO_CMAC
394	tristate "CMAC support"
395	select CRYPTO_HASH
396	select CRYPTO_MANAGER
397	help
398	  Cipher-based Message Authentication Code (CMAC) specified by
399	  The National Institute of Standards and Technology (NIST).
400
401	  https://tools.ietf.org/html/rfc4493
402	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
403
404config CRYPTO_HMAC
405	tristate "HMAC support"
406	select CRYPTO_HASH
407	select CRYPTO_MANAGER
408	help
409	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
410	  This is required for IPSec.
411
412config CRYPTO_XCBC
413	tristate "XCBC support"
414	select CRYPTO_HASH
415	select CRYPTO_MANAGER
416	help
417	  XCBC: Keyed-Hashing with encryption algorithm
418		http://www.ietf.org/rfc/rfc3566.txt
419		http://csrc.nist.gov/encryption/modes/proposedmodes/
420		 xcbc-mac/xcbc-mac-spec.pdf
421
422config CRYPTO_VMAC
423	tristate "VMAC support"
424	select CRYPTO_HASH
425	select CRYPTO_MANAGER
426	help
427	  VMAC is a message authentication algorithm designed for
428	  very high speed on 64-bit architectures.
429
430	  See also:
431	  <http://fastcrypto.org/vmac>
432
433comment "Digest"
434
435config CRYPTO_CRC32C
436	tristate "CRC32c CRC algorithm"
437	select CRYPTO_HASH
438	select CRC32
439	help
440	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
441	  by iSCSI for header and data digests and by others.
442	  See Castagnoli93.  Module will be crc32c.
443
444config CRYPTO_CRC32C_INTEL
445	tristate "CRC32c INTEL hardware acceleration"
446	depends on X86
447	select CRYPTO_HASH
448	help
449	  In Intel processor with SSE4.2 supported, the processor will
450	  support CRC32C implementation using hardware accelerated CRC32
451	  instruction. This option will create 'crc32c-intel' module,
452	  which will enable any routine to use the CRC32 instruction to
453	  gain performance compared with software implementation.
454	  Module will be crc32c-intel.
455
456config CRYPTO_CRC32C_VPMSUM
457	tristate "CRC32c CRC algorithm (powerpc64)"
458	depends on PPC64 && ALTIVEC
459	select CRYPTO_HASH
460	select CRC32
461	help
462	  CRC32c algorithm implemented using vector polynomial multiply-sum
463	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
464	  and newer processors for improved performance.
465
466
467config CRYPTO_CRC32C_SPARC64
468	tristate "CRC32c CRC algorithm (SPARC64)"
469	depends on SPARC64
470	select CRYPTO_HASH
471	select CRC32
472	help
473	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
474	  when available.
475
476config CRYPTO_CRC32
477	tristate "CRC32 CRC algorithm"
478	select CRYPTO_HASH
479	select CRC32
480	help
481	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
482	  Shash crypto api wrappers to crc32_le function.
483
484config CRYPTO_CRC32_PCLMUL
485	tristate "CRC32 PCLMULQDQ hardware acceleration"
486	depends on X86
487	select CRYPTO_HASH
488	select CRC32
489	help
490	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
491	  and PCLMULQDQ supported, the processor will support
492	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
493	  instruction. This option will create 'crc32-plcmul' module,
494	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
495	  and gain better performance as compared with the table implementation.
496
497config CRYPTO_CRCT10DIF
498	tristate "CRCT10DIF algorithm"
499	select CRYPTO_HASH
500	help
501	  CRC T10 Data Integrity Field computation is being cast as
502	  a crypto transform.  This allows for faster crc t10 diff
503	  transforms to be used if they are available.
504
505config CRYPTO_CRCT10DIF_PCLMUL
506	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
507	depends on X86 && 64BIT && CRC_T10DIF
508	select CRYPTO_HASH
509	help
510	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
511	  CRC T10 DIF PCLMULQDQ computation can be hardware
512	  accelerated PCLMULQDQ instruction. This option will create
513	  'crct10dif-plcmul' module, which is faster when computing the
514	  crct10dif checksum as compared with the generic table implementation.
515
516config CRYPTO_GHASH
517	tristate "GHASH digest algorithm"
518	select CRYPTO_GF128MUL
519	select CRYPTO_HASH
520	help
521	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
522
523config CRYPTO_POLY1305
524	tristate "Poly1305 authenticator algorithm"
525	select CRYPTO_HASH
526	help
527	  Poly1305 authenticator algorithm, RFC7539.
528
529	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
530	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
531	  in IETF protocols. This is the portable C implementation of Poly1305.
532
533config CRYPTO_POLY1305_X86_64
534	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
535	depends on X86 && 64BIT
536	select CRYPTO_POLY1305
537	help
538	  Poly1305 authenticator algorithm, RFC7539.
539
540	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
541	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
542	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
543	  instructions.
544
545config CRYPTO_MD4
546	tristate "MD4 digest algorithm"
547	select CRYPTO_HASH
548	help
549	  MD4 message digest algorithm (RFC1320).
550
551config CRYPTO_MD5
552	tristate "MD5 digest algorithm"
553	select CRYPTO_HASH
554	help
555	  MD5 message digest algorithm (RFC1321).
556
557config CRYPTO_MD5_OCTEON
558	tristate "MD5 digest algorithm (OCTEON)"
559	depends on CPU_CAVIUM_OCTEON
560	select CRYPTO_MD5
561	select CRYPTO_HASH
562	help
563	  MD5 message digest algorithm (RFC1321) implemented
564	  using OCTEON crypto instructions, when available.
565
566config CRYPTO_MD5_PPC
567	tristate "MD5 digest algorithm (PPC)"
568	depends on PPC
569	select CRYPTO_HASH
570	help
571	  MD5 message digest algorithm (RFC1321) implemented
572	  in PPC assembler.
573
574config CRYPTO_MD5_SPARC64
575	tristate "MD5 digest algorithm (SPARC64)"
576	depends on SPARC64
577	select CRYPTO_MD5
578	select CRYPTO_HASH
579	help
580	  MD5 message digest algorithm (RFC1321) implemented
581	  using sparc64 crypto instructions, when available.
582
583config CRYPTO_MICHAEL_MIC
584	tristate "Michael MIC keyed digest algorithm"
585	select CRYPTO_HASH
586	help
587	  Michael MIC is used for message integrity protection in TKIP
588	  (IEEE 802.11i). This algorithm is required for TKIP, but it
589	  should not be used for other purposes because of the weakness
590	  of the algorithm.
591
592config CRYPTO_RMD128
593	tristate "RIPEMD-128 digest algorithm"
594	select CRYPTO_HASH
595	help
596	  RIPEMD-128 (ISO/IEC 10118-3:2004).
597
598	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
599	  be used as a secure replacement for RIPEMD. For other use cases,
600	  RIPEMD-160 should be used.
601
602	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
603	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
604
605config CRYPTO_RMD160
606	tristate "RIPEMD-160 digest algorithm"
607	select CRYPTO_HASH
608	help
609	  RIPEMD-160 (ISO/IEC 10118-3:2004).
610
611	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
612	  to be used as a secure replacement for the 128-bit hash functions
613	  MD4, MD5 and it's predecessor RIPEMD
614	  (not to be confused with RIPEMD-128).
615
616	  It's speed is comparable to SHA1 and there are no known attacks
617	  against RIPEMD-160.
618
619	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
620	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
621
622config CRYPTO_RMD256
623	tristate "RIPEMD-256 digest algorithm"
624	select CRYPTO_HASH
625	help
626	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
627	  256 bit hash. It is intended for applications that require
628	  longer hash-results, without needing a larger security level
629	  (than RIPEMD-128).
630
631	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
632	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
633
634config CRYPTO_RMD320
635	tristate "RIPEMD-320 digest algorithm"
636	select CRYPTO_HASH
637	help
638	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
639	  320 bit hash. It is intended for applications that require
640	  longer hash-results, without needing a larger security level
641	  (than RIPEMD-160).
642
643	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
644	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
645
646config CRYPTO_SHA1
647	tristate "SHA1 digest algorithm"
648	select CRYPTO_HASH
649	help
650	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
651
652config CRYPTO_SHA1_SSSE3
653	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
654	depends on X86 && 64BIT
655	select CRYPTO_SHA1
656	select CRYPTO_HASH
657	help
658	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
659	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
660	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
661	  when available.
662
663config CRYPTO_SHA256_SSSE3
664	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
665	depends on X86 && 64BIT
666	select CRYPTO_SHA256
667	select CRYPTO_HASH
668	help
669	  SHA-256 secure hash standard (DFIPS 180-2) implemented
670	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
671	  Extensions version 1 (AVX1), or Advanced Vector Extensions
672	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
673	  Instructions) when available.
674
675config CRYPTO_SHA512_SSSE3
676	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
677	depends on X86 && 64BIT
678	select CRYPTO_SHA512
679	select CRYPTO_HASH
680	help
681	  SHA-512 secure hash standard (DFIPS 180-2) implemented
682	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
683	  Extensions version 1 (AVX1), or Advanced Vector Extensions
684	  version 2 (AVX2) instructions, when available.
685
686config CRYPTO_SHA1_OCTEON
687	tristate "SHA1 digest algorithm (OCTEON)"
688	depends on CPU_CAVIUM_OCTEON
689	select CRYPTO_SHA1
690	select CRYPTO_HASH
691	help
692	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
693	  using OCTEON crypto instructions, when available.
694
695config CRYPTO_SHA1_SPARC64
696	tristate "SHA1 digest algorithm (SPARC64)"
697	depends on SPARC64
698	select CRYPTO_SHA1
699	select CRYPTO_HASH
700	help
701	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
702	  using sparc64 crypto instructions, when available.
703
704config CRYPTO_SHA1_PPC
705	tristate "SHA1 digest algorithm (powerpc)"
706	depends on PPC
707	help
708	  This is the powerpc hardware accelerated implementation of the
709	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
710
711config CRYPTO_SHA1_PPC_SPE
712	tristate "SHA1 digest algorithm (PPC SPE)"
713	depends on PPC && SPE
714	help
715	  SHA-1 secure hash standard (DFIPS 180-4) implemented
716	  using powerpc SPE SIMD instruction set.
717
718config CRYPTO_SHA1_MB
719	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
720	depends on X86 && 64BIT
721	select CRYPTO_SHA1
722	select CRYPTO_HASH
723	select CRYPTO_MCRYPTD
724	help
725	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
726	  using multi-buffer technique.  This algorithm computes on
727	  multiple data lanes concurrently with SIMD instructions for
728	  better throughput.  It should not be enabled by default but
729	  used when there is significant amount of work to keep the keep
730	  the data lanes filled to get performance benefit.  If the data
731	  lanes remain unfilled, a flush operation will be initiated to
732	  process the crypto jobs, adding a slight latency.
733
734config CRYPTO_SHA256_MB
735	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
736	depends on X86 && 64BIT
737	select CRYPTO_SHA256
738	select CRYPTO_HASH
739	select CRYPTO_MCRYPTD
740	help
741	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
742	  using multi-buffer technique.  This algorithm computes on
743	  multiple data lanes concurrently with SIMD instructions for
744	  better throughput.  It should not be enabled by default but
745	  used when there is significant amount of work to keep the keep
746	  the data lanes filled to get performance benefit.  If the data
747	  lanes remain unfilled, a flush operation will be initiated to
748	  process the crypto jobs, adding a slight latency.
749
750config CRYPTO_SHA512_MB
751        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
752        depends on X86 && 64BIT
753        select CRYPTO_SHA512
754        select CRYPTO_HASH
755        select CRYPTO_MCRYPTD
756        help
757          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
758          using multi-buffer technique.  This algorithm computes on
759          multiple data lanes concurrently with SIMD instructions for
760          better throughput.  It should not be enabled by default but
761          used when there is significant amount of work to keep the keep
762          the data lanes filled to get performance benefit.  If the data
763          lanes remain unfilled, a flush operation will be initiated to
764          process the crypto jobs, adding a slight latency.
765
766config CRYPTO_SHA256
767	tristate "SHA224 and SHA256 digest algorithm"
768	select CRYPTO_HASH
769	help
770	  SHA256 secure hash standard (DFIPS 180-2).
771
772	  This version of SHA implements a 256 bit hash with 128 bits of
773	  security against collision attacks.
774
775	  This code also includes SHA-224, a 224 bit hash with 112 bits
776	  of security against collision attacks.
777
778config CRYPTO_SHA256_PPC_SPE
779	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
780	depends on PPC && SPE
781	select CRYPTO_SHA256
782	select CRYPTO_HASH
783	help
784	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
785	  implemented using powerpc SPE SIMD instruction set.
786
787config CRYPTO_SHA256_OCTEON
788	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
789	depends on CPU_CAVIUM_OCTEON
790	select CRYPTO_SHA256
791	select CRYPTO_HASH
792	help
793	  SHA-256 secure hash standard (DFIPS 180-2) implemented
794	  using OCTEON crypto instructions, when available.
795
796config CRYPTO_SHA256_SPARC64
797	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
798	depends on SPARC64
799	select CRYPTO_SHA256
800	select CRYPTO_HASH
801	help
802	  SHA-256 secure hash standard (DFIPS 180-2) implemented
803	  using sparc64 crypto instructions, when available.
804
805config CRYPTO_SHA512
806	tristate "SHA384 and SHA512 digest algorithms"
807	select CRYPTO_HASH
808	help
809	  SHA512 secure hash standard (DFIPS 180-2).
810
811	  This version of SHA implements a 512 bit hash with 256 bits of
812	  security against collision attacks.
813
814	  This code also includes SHA-384, a 384 bit hash with 192 bits
815	  of security against collision attacks.
816
817config CRYPTO_SHA512_OCTEON
818	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
819	depends on CPU_CAVIUM_OCTEON
820	select CRYPTO_SHA512
821	select CRYPTO_HASH
822	help
823	  SHA-512 secure hash standard (DFIPS 180-2) implemented
824	  using OCTEON crypto instructions, when available.
825
826config CRYPTO_SHA512_SPARC64
827	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
828	depends on SPARC64
829	select CRYPTO_SHA512
830	select CRYPTO_HASH
831	help
832	  SHA-512 secure hash standard (DFIPS 180-2) implemented
833	  using sparc64 crypto instructions, when available.
834
835config CRYPTO_SHA3
836	tristate "SHA3 digest algorithm"
837	select CRYPTO_HASH
838	help
839	  SHA-3 secure hash standard (DFIPS 202). It's based on
840	  cryptographic sponge function family called Keccak.
841
842	  References:
843	  http://keccak.noekeon.org/
844
845config CRYPTO_TGR192
846	tristate "Tiger digest algorithms"
847	select CRYPTO_HASH
848	help
849	  Tiger hash algorithm 192, 160 and 128-bit hashes
850
851	  Tiger is a hash function optimized for 64-bit processors while
852	  still having decent performance on 32-bit processors.
853	  Tiger was developed by Ross Anderson and Eli Biham.
854
855	  See also:
856	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
857
858config CRYPTO_WP512
859	tristate "Whirlpool digest algorithms"
860	select CRYPTO_HASH
861	help
862	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
863
864	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
865	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
866
867	  See also:
868	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
869
870config CRYPTO_GHASH_CLMUL_NI_INTEL
871	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
872	depends on X86 && 64BIT
873	select CRYPTO_CRYPTD
874	help
875	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
876	  The implementation is accelerated by CLMUL-NI of Intel.
877
878comment "Ciphers"
879
880config CRYPTO_AES
881	tristate "AES cipher algorithms"
882	select CRYPTO_ALGAPI
883	help
884	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
885	  algorithm.
886
887	  Rijndael appears to be consistently a very good performer in
888	  both hardware and software across a wide range of computing
889	  environments regardless of its use in feedback or non-feedback
890	  modes. Its key setup time is excellent, and its key agility is
891	  good. Rijndael's very low memory requirements make it very well
892	  suited for restricted-space environments, in which it also
893	  demonstrates excellent performance. Rijndael's operations are
894	  among the easiest to defend against power and timing attacks.
895
896	  The AES specifies three key sizes: 128, 192 and 256 bits
897
898	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
899
900config CRYPTO_AES_TI
901	tristate "Fixed time AES cipher"
902	select CRYPTO_ALGAPI
903	help
904	  This is a generic implementation of AES that attempts to eliminate
905	  data dependent latencies as much as possible without affecting
906	  performance too much. It is intended for use by the generic CCM
907	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
908	  solely on encryption (although decryption is supported as well, but
909	  with a more dramatic performance hit)
910
911	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
912	  8 for decryption), this implementation only uses just two S-boxes of
913	  256 bytes each, and attempts to eliminate data dependent latencies by
914	  prefetching the entire table into the cache at the start of each
915	  block.
916
917config CRYPTO_AES_586
918	tristate "AES cipher algorithms (i586)"
919	depends on (X86 || UML_X86) && !64BIT
920	select CRYPTO_ALGAPI
921	select CRYPTO_AES
922	help
923	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
924	  algorithm.
925
926	  Rijndael appears to be consistently a very good performer in
927	  both hardware and software across a wide range of computing
928	  environments regardless of its use in feedback or non-feedback
929	  modes. Its key setup time is excellent, and its key agility is
930	  good. Rijndael's very low memory requirements make it very well
931	  suited for restricted-space environments, in which it also
932	  demonstrates excellent performance. Rijndael's operations are
933	  among the easiest to defend against power and timing attacks.
934
935	  The AES specifies three key sizes: 128, 192 and 256 bits
936
937	  See <http://csrc.nist.gov/encryption/aes/> for more information.
938
939config CRYPTO_AES_X86_64
940	tristate "AES cipher algorithms (x86_64)"
941	depends on (X86 || UML_X86) && 64BIT
942	select CRYPTO_ALGAPI
943	select CRYPTO_AES
944	help
945	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
946	  algorithm.
947
948	  Rijndael appears to be consistently a very good performer in
949	  both hardware and software across a wide range of computing
950	  environments regardless of its use in feedback or non-feedback
951	  modes. Its key setup time is excellent, and its key agility is
952	  good. Rijndael's very low memory requirements make it very well
953	  suited for restricted-space environments, in which it also
954	  demonstrates excellent performance. Rijndael's operations are
955	  among the easiest to defend against power and timing attacks.
956
957	  The AES specifies three key sizes: 128, 192 and 256 bits
958
959	  See <http://csrc.nist.gov/encryption/aes/> for more information.
960
961config CRYPTO_AES_NI_INTEL
962	tristate "AES cipher algorithms (AES-NI)"
963	depends on X86
964	select CRYPTO_AEAD
965	select CRYPTO_AES_X86_64 if 64BIT
966	select CRYPTO_AES_586 if !64BIT
967	select CRYPTO_ALGAPI
968	select CRYPTO_BLKCIPHER
969	select CRYPTO_GLUE_HELPER_X86 if 64BIT
970	select CRYPTO_SIMD
971	help
972	  Use Intel AES-NI instructions for AES algorithm.
973
974	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
975	  algorithm.
976
977	  Rijndael appears to be consistently a very good performer in
978	  both hardware and software across a wide range of computing
979	  environments regardless of its use in feedback or non-feedback
980	  modes. Its key setup time is excellent, and its key agility is
981	  good. Rijndael's very low memory requirements make it very well
982	  suited for restricted-space environments, in which it also
983	  demonstrates excellent performance. Rijndael's operations are
984	  among the easiest to defend against power and timing attacks.
985
986	  The AES specifies three key sizes: 128, 192 and 256 bits
987
988	  See <http://csrc.nist.gov/encryption/aes/> for more information.
989
990	  In addition to AES cipher algorithm support, the acceleration
991	  for some popular block cipher mode is supported too, including
992	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
993	  acceleration for CTR.
994
995config CRYPTO_AES_SPARC64
996	tristate "AES cipher algorithms (SPARC64)"
997	depends on SPARC64
998	select CRYPTO_CRYPTD
999	select CRYPTO_ALGAPI
1000	help
1001	  Use SPARC64 crypto opcodes for AES algorithm.
1002
1003	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1004	  algorithm.
1005
1006	  Rijndael appears to be consistently a very good performer in
1007	  both hardware and software across a wide range of computing
1008	  environments regardless of its use in feedback or non-feedback
1009	  modes. Its key setup time is excellent, and its key agility is
1010	  good. Rijndael's very low memory requirements make it very well
1011	  suited for restricted-space environments, in which it also
1012	  demonstrates excellent performance. Rijndael's operations are
1013	  among the easiest to defend against power and timing attacks.
1014
1015	  The AES specifies three key sizes: 128, 192 and 256 bits
1016
1017	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1018
1019	  In addition to AES cipher algorithm support, the acceleration
1020	  for some popular block cipher mode is supported too, including
1021	  ECB and CBC.
1022
1023config CRYPTO_AES_PPC_SPE
1024	tristate "AES cipher algorithms (PPC SPE)"
1025	depends on PPC && SPE
1026	help
1027	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1028	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1029	  This module should only be used for low power (router) devices
1030	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1031	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1032	  timining attacks. Nevertheless it might be not as secure as other
1033	  architecture specific assembler implementations that work on 1KB
1034	  tables or 256 bytes S-boxes.
1035
1036config CRYPTO_ANUBIS
1037	tristate "Anubis cipher algorithm"
1038	select CRYPTO_ALGAPI
1039	help
1040	  Anubis cipher algorithm.
1041
1042	  Anubis is a variable key length cipher which can use keys from
1043	  128 bits to 320 bits in length.  It was evaluated as a entrant
1044	  in the NESSIE competition.
1045
1046	  See also:
1047	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1048	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1049
1050config CRYPTO_ARC4
1051	tristate "ARC4 cipher algorithm"
1052	select CRYPTO_BLKCIPHER
1053	help
1054	  ARC4 cipher algorithm.
1055
1056	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1057	  bits in length.  This algorithm is required for driver-based
1058	  WEP, but it should not be for other purposes because of the
1059	  weakness of the algorithm.
1060
1061config CRYPTO_BLOWFISH
1062	tristate "Blowfish cipher algorithm"
1063	select CRYPTO_ALGAPI
1064	select CRYPTO_BLOWFISH_COMMON
1065	help
1066	  Blowfish cipher algorithm, by Bruce Schneier.
1067
1068	  This is a variable key length cipher which can use keys from 32
1069	  bits to 448 bits in length.  It's fast, simple and specifically
1070	  designed for use on "large microprocessors".
1071
1072	  See also:
1073	  <http://www.schneier.com/blowfish.html>
1074
1075config CRYPTO_BLOWFISH_COMMON
1076	tristate
1077	help
1078	  Common parts of the Blowfish cipher algorithm shared by the
1079	  generic c and the assembler implementations.
1080
1081	  See also:
1082	  <http://www.schneier.com/blowfish.html>
1083
1084config CRYPTO_BLOWFISH_X86_64
1085	tristate "Blowfish cipher algorithm (x86_64)"
1086	depends on X86 && 64BIT
1087	select CRYPTO_ALGAPI
1088	select CRYPTO_BLOWFISH_COMMON
1089	help
1090	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1091
1092	  This is a variable key length cipher which can use keys from 32
1093	  bits to 448 bits in length.  It's fast, simple and specifically
1094	  designed for use on "large microprocessors".
1095
1096	  See also:
1097	  <http://www.schneier.com/blowfish.html>
1098
1099config CRYPTO_CAMELLIA
1100	tristate "Camellia cipher algorithms"
1101	depends on CRYPTO
1102	select CRYPTO_ALGAPI
1103	help
1104	  Camellia cipher algorithms module.
1105
1106	  Camellia is a symmetric key block cipher developed jointly
1107	  at NTT and Mitsubishi Electric Corporation.
1108
1109	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1110
1111	  See also:
1112	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1113
1114config CRYPTO_CAMELLIA_X86_64
1115	tristate "Camellia cipher algorithm (x86_64)"
1116	depends on X86 && 64BIT
1117	depends on CRYPTO
1118	select CRYPTO_ALGAPI
1119	select CRYPTO_GLUE_HELPER_X86
1120	select CRYPTO_LRW
1121	select CRYPTO_XTS
1122	help
1123	  Camellia cipher algorithm module (x86_64).
1124
1125	  Camellia is a symmetric key block cipher developed jointly
1126	  at NTT and Mitsubishi Electric Corporation.
1127
1128	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1129
1130	  See also:
1131	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1132
1133config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1134	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1135	depends on X86 && 64BIT
1136	depends on CRYPTO
1137	select CRYPTO_ALGAPI
1138	select CRYPTO_CRYPTD
1139	select CRYPTO_ABLK_HELPER
1140	select CRYPTO_GLUE_HELPER_X86
1141	select CRYPTO_CAMELLIA_X86_64
1142	select CRYPTO_LRW
1143	select CRYPTO_XTS
1144	help
1145	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1146
1147	  Camellia is a symmetric key block cipher developed jointly
1148	  at NTT and Mitsubishi Electric Corporation.
1149
1150	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1151
1152	  See also:
1153	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1154
1155config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1156	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1157	depends on X86 && 64BIT
1158	depends on CRYPTO
1159	select CRYPTO_ALGAPI
1160	select CRYPTO_CRYPTD
1161	select CRYPTO_ABLK_HELPER
1162	select CRYPTO_GLUE_HELPER_X86
1163	select CRYPTO_CAMELLIA_X86_64
1164	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1165	select CRYPTO_LRW
1166	select CRYPTO_XTS
1167	help
1168	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1169
1170	  Camellia is a symmetric key block cipher developed jointly
1171	  at NTT and Mitsubishi Electric Corporation.
1172
1173	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1174
1175	  See also:
1176	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1177
1178config CRYPTO_CAMELLIA_SPARC64
1179	tristate "Camellia cipher algorithm (SPARC64)"
1180	depends on SPARC64
1181	depends on CRYPTO
1182	select CRYPTO_ALGAPI
1183	help
1184	  Camellia cipher algorithm module (SPARC64).
1185
1186	  Camellia is a symmetric key block cipher developed jointly
1187	  at NTT and Mitsubishi Electric Corporation.
1188
1189	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1190
1191	  See also:
1192	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1193
1194config CRYPTO_CAST_COMMON
1195	tristate
1196	help
1197	  Common parts of the CAST cipher algorithms shared by the
1198	  generic c and the assembler implementations.
1199
1200config CRYPTO_CAST5
1201	tristate "CAST5 (CAST-128) cipher algorithm"
1202	select CRYPTO_ALGAPI
1203	select CRYPTO_CAST_COMMON
1204	help
1205	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1206	  described in RFC2144.
1207
1208config CRYPTO_CAST5_AVX_X86_64
1209	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1210	depends on X86 && 64BIT
1211	select CRYPTO_ALGAPI
1212	select CRYPTO_CRYPTD
1213	select CRYPTO_ABLK_HELPER
1214	select CRYPTO_CAST_COMMON
1215	select CRYPTO_CAST5
1216	help
1217	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1218	  described in RFC2144.
1219
1220	  This module provides the Cast5 cipher algorithm that processes
1221	  sixteen blocks parallel using the AVX instruction set.
1222
1223config CRYPTO_CAST6
1224	tristate "CAST6 (CAST-256) cipher algorithm"
1225	select CRYPTO_ALGAPI
1226	select CRYPTO_CAST_COMMON
1227	help
1228	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1229	  described in RFC2612.
1230
1231config CRYPTO_CAST6_AVX_X86_64
1232	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1233	depends on X86 && 64BIT
1234	select CRYPTO_ALGAPI
1235	select CRYPTO_CRYPTD
1236	select CRYPTO_ABLK_HELPER
1237	select CRYPTO_GLUE_HELPER_X86
1238	select CRYPTO_CAST_COMMON
1239	select CRYPTO_CAST6
1240	select CRYPTO_LRW
1241	select CRYPTO_XTS
1242	help
1243	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1244	  described in RFC2612.
1245
1246	  This module provides the Cast6 cipher algorithm that processes
1247	  eight blocks parallel using the AVX instruction set.
1248
1249config CRYPTO_DES
1250	tristate "DES and Triple DES EDE cipher algorithms"
1251	select CRYPTO_ALGAPI
1252	help
1253	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1254
1255config CRYPTO_DES_SPARC64
1256	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1257	depends on SPARC64
1258	select CRYPTO_ALGAPI
1259	select CRYPTO_DES
1260	help
1261	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1262	  optimized using SPARC64 crypto opcodes.
1263
1264config CRYPTO_DES3_EDE_X86_64
1265	tristate "Triple DES EDE cipher algorithm (x86-64)"
1266	depends on X86 && 64BIT
1267	select CRYPTO_ALGAPI
1268	select CRYPTO_DES
1269	help
1270	  Triple DES EDE (FIPS 46-3) algorithm.
1271
1272	  This module provides implementation of the Triple DES EDE cipher
1273	  algorithm that is optimized for x86-64 processors. Two versions of
1274	  algorithm are provided; regular processing one input block and
1275	  one that processes three blocks parallel.
1276
1277config CRYPTO_FCRYPT
1278	tristate "FCrypt cipher algorithm"
1279	select CRYPTO_ALGAPI
1280	select CRYPTO_BLKCIPHER
1281	help
1282	  FCrypt algorithm used by RxRPC.
1283
1284config CRYPTO_KHAZAD
1285	tristate "Khazad cipher algorithm"
1286	select CRYPTO_ALGAPI
1287	help
1288	  Khazad cipher algorithm.
1289
1290	  Khazad was a finalist in the initial NESSIE competition.  It is
1291	  an algorithm optimized for 64-bit processors with good performance
1292	  on 32-bit processors.  Khazad uses an 128 bit key size.
1293
1294	  See also:
1295	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1296
1297config CRYPTO_SALSA20
1298	tristate "Salsa20 stream cipher algorithm"
1299	select CRYPTO_BLKCIPHER
1300	help
1301	  Salsa20 stream cipher algorithm.
1302
1303	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1304	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1305
1306	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1307	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1308
1309config CRYPTO_SALSA20_586
1310	tristate "Salsa20 stream cipher algorithm (i586)"
1311	depends on (X86 || UML_X86) && !64BIT
1312	select CRYPTO_BLKCIPHER
1313	help
1314	  Salsa20 stream cipher algorithm.
1315
1316	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1317	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1318
1319	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1320	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1321
1322config CRYPTO_SALSA20_X86_64
1323	tristate "Salsa20 stream cipher algorithm (x86_64)"
1324	depends on (X86 || UML_X86) && 64BIT
1325	select CRYPTO_BLKCIPHER
1326	help
1327	  Salsa20 stream cipher algorithm.
1328
1329	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1330	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1331
1332	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1333	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1334
1335config CRYPTO_CHACHA20
1336	tristate "ChaCha20 cipher algorithm"
1337	select CRYPTO_BLKCIPHER
1338	help
1339	  ChaCha20 cipher algorithm, RFC7539.
1340
1341	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1342	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1343	  This is the portable C implementation of ChaCha20.
1344
1345	  See also:
1346	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1347
1348config CRYPTO_CHACHA20_X86_64
1349	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1350	depends on X86 && 64BIT
1351	select CRYPTO_BLKCIPHER
1352	select CRYPTO_CHACHA20
1353	help
1354	  ChaCha20 cipher algorithm, RFC7539.
1355
1356	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1357	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1358	  This is the x86_64 assembler implementation using SIMD instructions.
1359
1360	  See also:
1361	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1362
1363config CRYPTO_SEED
1364	tristate "SEED cipher algorithm"
1365	select CRYPTO_ALGAPI
1366	help
1367	  SEED cipher algorithm (RFC4269).
1368
1369	  SEED is a 128-bit symmetric key block cipher that has been
1370	  developed by KISA (Korea Information Security Agency) as a
1371	  national standard encryption algorithm of the Republic of Korea.
1372	  It is a 16 round block cipher with the key size of 128 bit.
1373
1374	  See also:
1375	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1376
1377config CRYPTO_SERPENT
1378	tristate "Serpent cipher algorithm"
1379	select CRYPTO_ALGAPI
1380	help
1381	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1382
1383	  Keys are allowed to be from 0 to 256 bits in length, in steps
1384	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1385	  variant of Serpent for compatibility with old kerneli.org code.
1386
1387	  See also:
1388	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1389
1390config CRYPTO_SERPENT_SSE2_X86_64
1391	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1392	depends on X86 && 64BIT
1393	select CRYPTO_ALGAPI
1394	select CRYPTO_CRYPTD
1395	select CRYPTO_ABLK_HELPER
1396	select CRYPTO_GLUE_HELPER_X86
1397	select CRYPTO_SERPENT
1398	select CRYPTO_LRW
1399	select CRYPTO_XTS
1400	help
1401	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1402
1403	  Keys are allowed to be from 0 to 256 bits in length, in steps
1404	  of 8 bits.
1405
1406	  This module provides Serpent cipher algorithm that processes eight
1407	  blocks parallel using SSE2 instruction set.
1408
1409	  See also:
1410	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1411
1412config CRYPTO_SERPENT_SSE2_586
1413	tristate "Serpent cipher algorithm (i586/SSE2)"
1414	depends on X86 && !64BIT
1415	select CRYPTO_ALGAPI
1416	select CRYPTO_CRYPTD
1417	select CRYPTO_ABLK_HELPER
1418	select CRYPTO_GLUE_HELPER_X86
1419	select CRYPTO_SERPENT
1420	select CRYPTO_LRW
1421	select CRYPTO_XTS
1422	help
1423	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1424
1425	  Keys are allowed to be from 0 to 256 bits in length, in steps
1426	  of 8 bits.
1427
1428	  This module provides Serpent cipher algorithm that processes four
1429	  blocks parallel using SSE2 instruction set.
1430
1431	  See also:
1432	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1433
1434config CRYPTO_SERPENT_AVX_X86_64
1435	tristate "Serpent cipher algorithm (x86_64/AVX)"
1436	depends on X86 && 64BIT
1437	select CRYPTO_ALGAPI
1438	select CRYPTO_CRYPTD
1439	select CRYPTO_ABLK_HELPER
1440	select CRYPTO_GLUE_HELPER_X86
1441	select CRYPTO_SERPENT
1442	select CRYPTO_LRW
1443	select CRYPTO_XTS
1444	help
1445	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1446
1447	  Keys are allowed to be from 0 to 256 bits in length, in steps
1448	  of 8 bits.
1449
1450	  This module provides the Serpent cipher algorithm that processes
1451	  eight blocks parallel using the AVX instruction set.
1452
1453	  See also:
1454	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1455
1456config CRYPTO_SERPENT_AVX2_X86_64
1457	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1458	depends on X86 && 64BIT
1459	select CRYPTO_ALGAPI
1460	select CRYPTO_CRYPTD
1461	select CRYPTO_ABLK_HELPER
1462	select CRYPTO_GLUE_HELPER_X86
1463	select CRYPTO_SERPENT
1464	select CRYPTO_SERPENT_AVX_X86_64
1465	select CRYPTO_LRW
1466	select CRYPTO_XTS
1467	help
1468	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1469
1470	  Keys are allowed to be from 0 to 256 bits in length, in steps
1471	  of 8 bits.
1472
1473	  This module provides Serpent cipher algorithm that processes 16
1474	  blocks parallel using AVX2 instruction set.
1475
1476	  See also:
1477	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1478
1479config CRYPTO_TEA
1480	tristate "TEA, XTEA and XETA cipher algorithms"
1481	select CRYPTO_ALGAPI
1482	help
1483	  TEA cipher algorithm.
1484
1485	  Tiny Encryption Algorithm is a simple cipher that uses
1486	  many rounds for security.  It is very fast and uses
1487	  little memory.
1488
1489	  Xtendend Tiny Encryption Algorithm is a modification to
1490	  the TEA algorithm to address a potential key weakness
1491	  in the TEA algorithm.
1492
1493	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1494	  of the XTEA algorithm for compatibility purposes.
1495
1496config CRYPTO_TWOFISH
1497	tristate "Twofish cipher algorithm"
1498	select CRYPTO_ALGAPI
1499	select CRYPTO_TWOFISH_COMMON
1500	help
1501	  Twofish cipher algorithm.
1502
1503	  Twofish was submitted as an AES (Advanced Encryption Standard)
1504	  candidate cipher by researchers at CounterPane Systems.  It is a
1505	  16 round block cipher supporting key sizes of 128, 192, and 256
1506	  bits.
1507
1508	  See also:
1509	  <http://www.schneier.com/twofish.html>
1510
1511config CRYPTO_TWOFISH_COMMON
1512	tristate
1513	help
1514	  Common parts of the Twofish cipher algorithm shared by the
1515	  generic c and the assembler implementations.
1516
1517config CRYPTO_TWOFISH_586
1518	tristate "Twofish cipher algorithms (i586)"
1519	depends on (X86 || UML_X86) && !64BIT
1520	select CRYPTO_ALGAPI
1521	select CRYPTO_TWOFISH_COMMON
1522	help
1523	  Twofish cipher algorithm.
1524
1525	  Twofish was submitted as an AES (Advanced Encryption Standard)
1526	  candidate cipher by researchers at CounterPane Systems.  It is a
1527	  16 round block cipher supporting key sizes of 128, 192, and 256
1528	  bits.
1529
1530	  See also:
1531	  <http://www.schneier.com/twofish.html>
1532
1533config CRYPTO_TWOFISH_X86_64
1534	tristate "Twofish cipher algorithm (x86_64)"
1535	depends on (X86 || UML_X86) && 64BIT
1536	select CRYPTO_ALGAPI
1537	select CRYPTO_TWOFISH_COMMON
1538	help
1539	  Twofish cipher algorithm (x86_64).
1540
1541	  Twofish was submitted as an AES (Advanced Encryption Standard)
1542	  candidate cipher by researchers at CounterPane Systems.  It is a
1543	  16 round block cipher supporting key sizes of 128, 192, and 256
1544	  bits.
1545
1546	  See also:
1547	  <http://www.schneier.com/twofish.html>
1548
1549config CRYPTO_TWOFISH_X86_64_3WAY
1550	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1551	depends on X86 && 64BIT
1552	select CRYPTO_ALGAPI
1553	select CRYPTO_TWOFISH_COMMON
1554	select CRYPTO_TWOFISH_X86_64
1555	select CRYPTO_GLUE_HELPER_X86
1556	select CRYPTO_LRW
1557	select CRYPTO_XTS
1558	help
1559	  Twofish cipher algorithm (x86_64, 3-way parallel).
1560
1561	  Twofish was submitted as an AES (Advanced Encryption Standard)
1562	  candidate cipher by researchers at CounterPane Systems.  It is a
1563	  16 round block cipher supporting key sizes of 128, 192, and 256
1564	  bits.
1565
1566	  This module provides Twofish cipher algorithm that processes three
1567	  blocks parallel, utilizing resources of out-of-order CPUs better.
1568
1569	  See also:
1570	  <http://www.schneier.com/twofish.html>
1571
1572config CRYPTO_TWOFISH_AVX_X86_64
1573	tristate "Twofish cipher algorithm (x86_64/AVX)"
1574	depends on X86 && 64BIT
1575	select CRYPTO_ALGAPI
1576	select CRYPTO_CRYPTD
1577	select CRYPTO_ABLK_HELPER
1578	select CRYPTO_GLUE_HELPER_X86
1579	select CRYPTO_TWOFISH_COMMON
1580	select CRYPTO_TWOFISH_X86_64
1581	select CRYPTO_TWOFISH_X86_64_3WAY
1582	select CRYPTO_LRW
1583	select CRYPTO_XTS
1584	help
1585	  Twofish cipher algorithm (x86_64/AVX).
1586
1587	  Twofish was submitted as an AES (Advanced Encryption Standard)
1588	  candidate cipher by researchers at CounterPane Systems.  It is a
1589	  16 round block cipher supporting key sizes of 128, 192, and 256
1590	  bits.
1591
1592	  This module provides the Twofish cipher algorithm that processes
1593	  eight blocks parallel using the AVX Instruction Set.
1594
1595	  See also:
1596	  <http://www.schneier.com/twofish.html>
1597
1598comment "Compression"
1599
1600config CRYPTO_DEFLATE
1601	tristate "Deflate compression algorithm"
1602	select CRYPTO_ALGAPI
1603	select CRYPTO_ACOMP2
1604	select ZLIB_INFLATE
1605	select ZLIB_DEFLATE
1606	help
1607	  This is the Deflate algorithm (RFC1951), specified for use in
1608	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1609
1610	  You will most probably want this if using IPSec.
1611
1612config CRYPTO_LZO
1613	tristate "LZO compression algorithm"
1614	select CRYPTO_ALGAPI
1615	select CRYPTO_ACOMP2
1616	select LZO_COMPRESS
1617	select LZO_DECOMPRESS
1618	help
1619	  This is the LZO algorithm.
1620
1621config CRYPTO_842
1622	tristate "842 compression algorithm"
1623	select CRYPTO_ALGAPI
1624	select CRYPTO_ACOMP2
1625	select 842_COMPRESS
1626	select 842_DECOMPRESS
1627	help
1628	  This is the 842 algorithm.
1629
1630config CRYPTO_LZ4
1631	tristate "LZ4 compression algorithm"
1632	select CRYPTO_ALGAPI
1633	select CRYPTO_ACOMP2
1634	select LZ4_COMPRESS
1635	select LZ4_DECOMPRESS
1636	help
1637	  This is the LZ4 algorithm.
1638
1639config CRYPTO_LZ4HC
1640	tristate "LZ4HC compression algorithm"
1641	select CRYPTO_ALGAPI
1642	select CRYPTO_ACOMP2
1643	select LZ4HC_COMPRESS
1644	select LZ4_DECOMPRESS
1645	help
1646	  This is the LZ4 high compression mode algorithm.
1647
1648comment "Random Number Generation"
1649
1650config CRYPTO_ANSI_CPRNG
1651	tristate "Pseudo Random Number Generation for Cryptographic modules"
1652	select CRYPTO_AES
1653	select CRYPTO_RNG
1654	help
1655	  This option enables the generic pseudo random number generator
1656	  for cryptographic modules.  Uses the Algorithm specified in
1657	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1658	  CRYPTO_FIPS is selected
1659
1660menuconfig CRYPTO_DRBG_MENU
1661	tristate "NIST SP800-90A DRBG"
1662	help
1663	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1664	  more of the DRBG types must be selected.
1665
1666if CRYPTO_DRBG_MENU
1667
1668config CRYPTO_DRBG_HMAC
1669	bool
1670	default y
1671	select CRYPTO_HMAC
1672	select CRYPTO_SHA256
1673
1674config CRYPTO_DRBG_HASH
1675	bool "Enable Hash DRBG"
1676	select CRYPTO_SHA256
1677	help
1678	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1679
1680config CRYPTO_DRBG_CTR
1681	bool "Enable CTR DRBG"
1682	select CRYPTO_AES
1683	depends on CRYPTO_CTR
1684	help
1685	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1686
1687config CRYPTO_DRBG
1688	tristate
1689	default CRYPTO_DRBG_MENU
1690	select CRYPTO_RNG
1691	select CRYPTO_JITTERENTROPY
1692
1693endif	# if CRYPTO_DRBG_MENU
1694
1695config CRYPTO_JITTERENTROPY
1696	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1697	select CRYPTO_RNG
1698	help
1699	  The Jitterentropy RNG is a noise that is intended
1700	  to provide seed to another RNG. The RNG does not
1701	  perform any cryptographic whitening of the generated
1702	  random numbers. This Jitterentropy RNG registers with
1703	  the kernel crypto API and can be used by any caller.
1704
1705config CRYPTO_USER_API
1706	tristate
1707
1708config CRYPTO_USER_API_HASH
1709	tristate "User-space interface for hash algorithms"
1710	depends on NET
1711	select CRYPTO_HASH
1712	select CRYPTO_USER_API
1713	help
1714	  This option enables the user-spaces interface for hash
1715	  algorithms.
1716
1717config CRYPTO_USER_API_SKCIPHER
1718	tristate "User-space interface for symmetric key cipher algorithms"
1719	depends on NET
1720	select CRYPTO_BLKCIPHER
1721	select CRYPTO_USER_API
1722	help
1723	  This option enables the user-spaces interface for symmetric
1724	  key cipher algorithms.
1725
1726config CRYPTO_USER_API_RNG
1727	tristate "User-space interface for random number generator algorithms"
1728	depends on NET
1729	select CRYPTO_RNG
1730	select CRYPTO_USER_API
1731	help
1732	  This option enables the user-spaces interface for random
1733	  number generator algorithms.
1734
1735config CRYPTO_USER_API_AEAD
1736	tristate "User-space interface for AEAD cipher algorithms"
1737	depends on NET
1738	select CRYPTO_AEAD
1739	select CRYPTO_USER_API
1740	help
1741	  This option enables the user-spaces interface for AEAD
1742	  cipher algorithms.
1743
1744config CRYPTO_HASH_INFO
1745	bool
1746
1747source "drivers/crypto/Kconfig"
1748source crypto/asymmetric_keys/Kconfig
1749source certs/Kconfig
1750
1751endif	# if CRYPTO
1752