1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 select LIB_MEMNEQ 19 help 20 This option provides the core Cryptographic API. 21 22if CRYPTO 23 24comment "Crypto core or helper" 25 26config CRYPTO_FIPS 27 bool "FIPS 200 compliance" 28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 29 depends on (MODULE_SIG || !MODULES) 30 help 31 This option enables the fips boot option which is 32 required if you want the system to operate in a FIPS 200 33 certification. You should say no unless you know what 34 this is. 35 36config CRYPTO_ALGAPI 37 tristate 38 select CRYPTO_ALGAPI2 39 help 40 This option provides the API for cryptographic algorithms. 41 42config CRYPTO_ALGAPI2 43 tristate 44 45config CRYPTO_AEAD 46 tristate 47 select CRYPTO_AEAD2 48 select CRYPTO_ALGAPI 49 50config CRYPTO_AEAD2 51 tristate 52 select CRYPTO_ALGAPI2 53 select CRYPTO_NULL2 54 select CRYPTO_RNG2 55 56config CRYPTO_SKCIPHER 57 tristate 58 select CRYPTO_SKCIPHER2 59 select CRYPTO_ALGAPI 60 61config CRYPTO_SKCIPHER2 62 tristate 63 select CRYPTO_ALGAPI2 64 select CRYPTO_RNG2 65 66config CRYPTO_HASH 67 tristate 68 select CRYPTO_HASH2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_HASH2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_RNG 76 tristate 77 select CRYPTO_RNG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_RNG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_RNG_DEFAULT 85 tristate 86 select CRYPTO_DRBG_MENU 87 88config CRYPTO_AKCIPHER2 89 tristate 90 select CRYPTO_ALGAPI2 91 92config CRYPTO_AKCIPHER 93 tristate 94 select CRYPTO_AKCIPHER2 95 select CRYPTO_ALGAPI 96 97config CRYPTO_KPP2 98 tristate 99 select CRYPTO_ALGAPI2 100 101config CRYPTO_KPP 102 tristate 103 select CRYPTO_ALGAPI 104 select CRYPTO_KPP2 105 106config CRYPTO_ACOMP2 107 tristate 108 select CRYPTO_ALGAPI2 109 select SGL_ALLOC 110 111config CRYPTO_ACOMP 112 tristate 113 select CRYPTO_ALGAPI 114 select CRYPTO_ACOMP2 115 116config CRYPTO_MANAGER 117 tristate "Cryptographic algorithm manager" 118 select CRYPTO_MANAGER2 119 help 120 Create default cryptographic template instantiations such as 121 cbc(aes). 122 123config CRYPTO_MANAGER2 124 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 125 select CRYPTO_AEAD2 126 select CRYPTO_HASH2 127 select CRYPTO_SKCIPHER2 128 select CRYPTO_AKCIPHER2 129 select CRYPTO_KPP2 130 select CRYPTO_ACOMP2 131 132config CRYPTO_USER 133 tristate "Userspace cryptographic algorithm configuration" 134 depends on NET 135 select CRYPTO_MANAGER 136 help 137 Userspace configuration for cryptographic instantiations such as 138 cbc(aes). 139 140config CRYPTO_MANAGER_DISABLE_TESTS 141 bool "Disable run-time self tests" 142 default y 143 help 144 Disable run-time self tests that normally take place at 145 algorithm registration. 146 147config CRYPTO_MANAGER_EXTRA_TESTS 148 bool "Enable extra run-time crypto self tests" 149 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER 150 help 151 Enable extra run-time self tests of registered crypto algorithms, 152 including randomized fuzz tests. 153 154 This is intended for developer use only, as these tests take much 155 longer to run than the normal self tests. 156 157config CRYPTO_GF128MUL 158 tristate 159 160config CRYPTO_NULL 161 tristate "Null algorithms" 162 select CRYPTO_NULL2 163 help 164 These are 'Null' algorithms, used by IPsec, which do nothing. 165 166config CRYPTO_NULL2 167 tristate 168 select CRYPTO_ALGAPI2 169 select CRYPTO_SKCIPHER2 170 select CRYPTO_HASH2 171 172config CRYPTO_PCRYPT 173 tristate "Parallel crypto engine" 174 depends on SMP 175 select PADATA 176 select CRYPTO_MANAGER 177 select CRYPTO_AEAD 178 help 179 This converts an arbitrary crypto algorithm into a parallel 180 algorithm that executes in kernel threads. 181 182config CRYPTO_CRYPTD 183 tristate "Software async crypto daemon" 184 select CRYPTO_SKCIPHER 185 select CRYPTO_HASH 186 select CRYPTO_MANAGER 187 help 188 This is a generic software asynchronous crypto daemon that 189 converts an arbitrary synchronous software crypto algorithm 190 into an asynchronous algorithm that executes in a kernel thread. 191 192config CRYPTO_AUTHENC 193 tristate "Authenc support" 194 select CRYPTO_AEAD 195 select CRYPTO_SKCIPHER 196 select CRYPTO_MANAGER 197 select CRYPTO_HASH 198 select CRYPTO_NULL 199 help 200 Authenc: Combined mode wrapper for IPsec. 201 This is required for IPSec. 202 203config CRYPTO_TEST 204 tristate "Testing module" 205 depends on m || EXPERT 206 select CRYPTO_MANAGER 207 help 208 Quick & dirty crypto test module. 209 210config CRYPTO_SIMD 211 tristate 212 select CRYPTO_CRYPTD 213 214config CRYPTO_ENGINE 215 tristate 216 217comment "Public-key cryptography" 218 219config CRYPTO_RSA 220 tristate "RSA algorithm" 221 select CRYPTO_AKCIPHER 222 select CRYPTO_MANAGER 223 select MPILIB 224 select ASN1 225 help 226 Generic implementation of the RSA public key algorithm. 227 228config CRYPTO_DH 229 tristate "Diffie-Hellman algorithm" 230 select CRYPTO_KPP 231 select MPILIB 232 help 233 Generic implementation of the Diffie-Hellman algorithm. 234 235config CRYPTO_DH_RFC7919_GROUPS 236 bool "Support for RFC 7919 FFDHE group parameters" 237 depends on CRYPTO_DH 238 select CRYPTO_RNG_DEFAULT 239 help 240 Provide support for RFC 7919 FFDHE group parameters. If unsure, say N. 241 242config CRYPTO_ECC 243 tristate 244 select CRYPTO_RNG_DEFAULT 245 246config CRYPTO_ECDH 247 tristate "ECDH algorithm" 248 select CRYPTO_ECC 249 select CRYPTO_KPP 250 help 251 Generic implementation of the ECDH algorithm 252 253config CRYPTO_ECDSA 254 tristate "ECDSA (NIST P192, P256 etc.) algorithm" 255 select CRYPTO_ECC 256 select CRYPTO_AKCIPHER 257 select ASN1 258 help 259 Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) 260 is A NIST cryptographic standard algorithm. Only signature verification 261 is implemented. 262 263config CRYPTO_ECRDSA 264 tristate "EC-RDSA (GOST 34.10) algorithm" 265 select CRYPTO_ECC 266 select CRYPTO_AKCIPHER 267 select CRYPTO_STREEBOG 268 select OID_REGISTRY 269 select ASN1 270 help 271 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 272 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 273 standard algorithms (called GOST algorithms). Only signature verification 274 is implemented. 275 276config CRYPTO_SM2 277 tristate "SM2 algorithm" 278 select CRYPTO_SM3 279 select CRYPTO_AKCIPHER 280 select CRYPTO_MANAGER 281 select MPILIB 282 select ASN1 283 help 284 Generic implementation of the SM2 public key algorithm. It was 285 published by State Encryption Management Bureau, China. 286 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012. 287 288 References: 289 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02 290 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml 291 http://www.gmbz.org.cn/main/bzlb.html 292 293config CRYPTO_CURVE25519 294 tristate "Curve25519 algorithm" 295 select CRYPTO_KPP 296 select CRYPTO_LIB_CURVE25519_GENERIC 297 298config CRYPTO_CURVE25519_X86 299 tristate "x86_64 accelerated Curve25519 scalar multiplication library" 300 depends on X86 && 64BIT 301 select CRYPTO_LIB_CURVE25519_GENERIC 302 select CRYPTO_ARCH_HAVE_LIB_CURVE25519 303 304comment "Authenticated Encryption with Associated Data" 305 306config CRYPTO_CCM 307 tristate "CCM support" 308 select CRYPTO_CTR 309 select CRYPTO_HASH 310 select CRYPTO_AEAD 311 select CRYPTO_MANAGER 312 help 313 Support for Counter with CBC MAC. Required for IPsec. 314 315config CRYPTO_GCM 316 tristate "GCM/GMAC support" 317 select CRYPTO_CTR 318 select CRYPTO_AEAD 319 select CRYPTO_GHASH 320 select CRYPTO_NULL 321 select CRYPTO_MANAGER 322 help 323 Support for Galois/Counter Mode (GCM) and Galois Message 324 Authentication Code (GMAC). Required for IPSec. 325 326config CRYPTO_CHACHA20POLY1305 327 tristate "ChaCha20-Poly1305 AEAD support" 328 select CRYPTO_CHACHA20 329 select CRYPTO_POLY1305 330 select CRYPTO_AEAD 331 select CRYPTO_MANAGER 332 help 333 ChaCha20-Poly1305 AEAD support, RFC7539. 334 335 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 336 with the Poly1305 authenticator. It is defined in RFC7539 for use in 337 IETF protocols. 338 339config CRYPTO_AEGIS128 340 tristate "AEGIS-128 AEAD algorithm" 341 select CRYPTO_AEAD 342 select CRYPTO_AES # for AES S-box tables 343 help 344 Support for the AEGIS-128 dedicated AEAD algorithm. 345 346config CRYPTO_AEGIS128_SIMD 347 bool "Support SIMD acceleration for AEGIS-128" 348 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 349 default y 350 351config CRYPTO_AEGIS128_AESNI_SSE2 352 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 353 depends on X86 && 64BIT 354 select CRYPTO_AEAD 355 select CRYPTO_SIMD 356 help 357 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 358 359config CRYPTO_SEQIV 360 tristate "Sequence Number IV Generator" 361 select CRYPTO_AEAD 362 select CRYPTO_SKCIPHER 363 select CRYPTO_NULL 364 select CRYPTO_RNG_DEFAULT 365 select CRYPTO_MANAGER 366 help 367 This IV generator generates an IV based on a sequence number by 368 xoring it with a salt. This algorithm is mainly useful for CTR 369 370config CRYPTO_ECHAINIV 371 tristate "Encrypted Chain IV Generator" 372 select CRYPTO_AEAD 373 select CRYPTO_NULL 374 select CRYPTO_RNG_DEFAULT 375 select CRYPTO_MANAGER 376 help 377 This IV generator generates an IV based on the encryption of 378 a sequence number xored with a salt. This is the default 379 algorithm for CBC. 380 381comment "Block modes" 382 383config CRYPTO_CBC 384 tristate "CBC support" 385 select CRYPTO_SKCIPHER 386 select CRYPTO_MANAGER 387 help 388 CBC: Cipher Block Chaining mode 389 This block cipher algorithm is required for IPSec. 390 391config CRYPTO_CFB 392 tristate "CFB support" 393 select CRYPTO_SKCIPHER 394 select CRYPTO_MANAGER 395 help 396 CFB: Cipher FeedBack mode 397 This block cipher algorithm is required for TPM2 Cryptography. 398 399config CRYPTO_CTR 400 tristate "CTR support" 401 select CRYPTO_SKCIPHER 402 select CRYPTO_MANAGER 403 help 404 CTR: Counter mode 405 This block cipher algorithm is required for IPSec. 406 407config CRYPTO_CTS 408 tristate "CTS support" 409 select CRYPTO_SKCIPHER 410 select CRYPTO_MANAGER 411 help 412 CTS: Cipher Text Stealing 413 This is the Cipher Text Stealing mode as described by 414 Section 8 of rfc2040 and referenced by rfc3962 415 (rfc3962 includes errata information in its Appendix A) or 416 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 417 This mode is required for Kerberos gss mechanism support 418 for AES encryption. 419 420 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 421 422config CRYPTO_ECB 423 tristate "ECB support" 424 select CRYPTO_SKCIPHER 425 select CRYPTO_MANAGER 426 help 427 ECB: Electronic CodeBook mode 428 This is the simplest block cipher algorithm. It simply encrypts 429 the input block by block. 430 431config CRYPTO_LRW 432 tristate "LRW support" 433 select CRYPTO_SKCIPHER 434 select CRYPTO_MANAGER 435 select CRYPTO_GF128MUL 436 select CRYPTO_ECB 437 help 438 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 439 narrow block cipher mode for dm-crypt. Use it with cipher 440 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 441 The first 128, 192 or 256 bits in the key are used for AES and the 442 rest is used to tie each cipher block to its logical position. 443 444config CRYPTO_OFB 445 tristate "OFB support" 446 select CRYPTO_SKCIPHER 447 select CRYPTO_MANAGER 448 help 449 OFB: the Output Feedback mode makes a block cipher into a synchronous 450 stream cipher. It generates keystream blocks, which are then XORed 451 with the plaintext blocks to get the ciphertext. Flipping a bit in the 452 ciphertext produces a flipped bit in the plaintext at the same 453 location. This property allows many error correcting codes to function 454 normally even when applied before encryption. 455 456config CRYPTO_PCBC 457 tristate "PCBC support" 458 select CRYPTO_SKCIPHER 459 select CRYPTO_MANAGER 460 help 461 PCBC: Propagating Cipher Block Chaining mode 462 This block cipher algorithm is required for RxRPC. 463 464config CRYPTO_XTS 465 tristate "XTS support" 466 select CRYPTO_SKCIPHER 467 select CRYPTO_MANAGER 468 select CRYPTO_ECB 469 help 470 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 471 key size 256, 384 or 512 bits. This implementation currently 472 can't handle a sectorsize which is not a multiple of 16 bytes. 473 474config CRYPTO_KEYWRAP 475 tristate "Key wrapping support" 476 select CRYPTO_SKCIPHER 477 select CRYPTO_MANAGER 478 help 479 Support for key wrapping (NIST SP800-38F / RFC3394) without 480 padding. 481 482config CRYPTO_NHPOLY1305 483 tristate 484 select CRYPTO_HASH 485 select CRYPTO_LIB_POLY1305_GENERIC 486 487config CRYPTO_NHPOLY1305_SSE2 488 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 489 depends on X86 && 64BIT 490 select CRYPTO_NHPOLY1305 491 help 492 SSE2 optimized implementation of the hash function used by the 493 Adiantum encryption mode. 494 495config CRYPTO_NHPOLY1305_AVX2 496 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 497 depends on X86 && 64BIT 498 select CRYPTO_NHPOLY1305 499 help 500 AVX2 optimized implementation of the hash function used by the 501 Adiantum encryption mode. 502 503config CRYPTO_ADIANTUM 504 tristate "Adiantum support" 505 select CRYPTO_CHACHA20 506 select CRYPTO_LIB_POLY1305_GENERIC 507 select CRYPTO_NHPOLY1305 508 select CRYPTO_MANAGER 509 help 510 Adiantum is a tweakable, length-preserving encryption mode 511 designed for fast and secure disk encryption, especially on 512 CPUs without dedicated crypto instructions. It encrypts 513 each sector using the XChaCha12 stream cipher, two passes of 514 an ε-almost-∆-universal hash function, and an invocation of 515 the AES-256 block cipher on a single 16-byte block. On CPUs 516 without AES instructions, Adiantum is much faster than 517 AES-XTS. 518 519 Adiantum's security is provably reducible to that of its 520 underlying stream and block ciphers, subject to a security 521 bound. Unlike XTS, Adiantum is a true wide-block encryption 522 mode, so it actually provides an even stronger notion of 523 security than XTS, subject to the security bound. 524 525 If unsure, say N. 526 527config CRYPTO_ESSIV 528 tristate "ESSIV support for block encryption" 529 select CRYPTO_AUTHENC 530 help 531 Encrypted salt-sector initialization vector (ESSIV) is an IV 532 generation method that is used in some cases by fscrypt and/or 533 dm-crypt. It uses the hash of the block encryption key as the 534 symmetric key for a block encryption pass applied to the input 535 IV, making low entropy IV sources more suitable for block 536 encryption. 537 538 This driver implements a crypto API template that can be 539 instantiated either as an skcipher or as an AEAD (depending on the 540 type of the first template argument), and which defers encryption 541 and decryption requests to the encapsulated cipher after applying 542 ESSIV to the input IV. Note that in the AEAD case, it is assumed 543 that the keys are presented in the same format used by the authenc 544 template, and that the IV appears at the end of the authenticated 545 associated data (AAD) region (which is how dm-crypt uses it.) 546 547 Note that the use of ESSIV is not recommended for new deployments, 548 and so this only needs to be enabled when interoperability with 549 existing encrypted volumes of filesystems is required, or when 550 building for a particular system that requires it (e.g., when 551 the SoC in question has accelerated CBC but not XTS, making CBC 552 combined with ESSIV the only feasible mode for h/w accelerated 553 block encryption) 554 555comment "Hash modes" 556 557config CRYPTO_CMAC 558 tristate "CMAC support" 559 select CRYPTO_HASH 560 select CRYPTO_MANAGER 561 help 562 Cipher-based Message Authentication Code (CMAC) specified by 563 The National Institute of Standards and Technology (NIST). 564 565 https://tools.ietf.org/html/rfc4493 566 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 567 568config CRYPTO_HMAC 569 tristate "HMAC support" 570 select CRYPTO_HASH 571 select CRYPTO_MANAGER 572 help 573 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 574 This is required for IPSec. 575 576config CRYPTO_XCBC 577 tristate "XCBC support" 578 select CRYPTO_HASH 579 select CRYPTO_MANAGER 580 help 581 XCBC: Keyed-Hashing with encryption algorithm 582 https://www.ietf.org/rfc/rfc3566.txt 583 http://csrc.nist.gov/encryption/modes/proposedmodes/ 584 xcbc-mac/xcbc-mac-spec.pdf 585 586config CRYPTO_VMAC 587 tristate "VMAC support" 588 select CRYPTO_HASH 589 select CRYPTO_MANAGER 590 help 591 VMAC is a message authentication algorithm designed for 592 very high speed on 64-bit architectures. 593 594 See also: 595 <https://fastcrypto.org/vmac> 596 597comment "Digest" 598 599config CRYPTO_CRC32C 600 tristate "CRC32c CRC algorithm" 601 select CRYPTO_HASH 602 select CRC32 603 help 604 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 605 by iSCSI for header and data digests and by others. 606 See Castagnoli93. Module will be crc32c. 607 608config CRYPTO_CRC32C_INTEL 609 tristate "CRC32c INTEL hardware acceleration" 610 depends on X86 611 select CRYPTO_HASH 612 help 613 In Intel processor with SSE4.2 supported, the processor will 614 support CRC32C implementation using hardware accelerated CRC32 615 instruction. This option will create 'crc32c-intel' module, 616 which will enable any routine to use the CRC32 instruction to 617 gain performance compared with software implementation. 618 Module will be crc32c-intel. 619 620config CRYPTO_CRC32C_VPMSUM 621 tristate "CRC32c CRC algorithm (powerpc64)" 622 depends on PPC64 && ALTIVEC 623 select CRYPTO_HASH 624 select CRC32 625 help 626 CRC32c algorithm implemented using vector polynomial multiply-sum 627 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 628 and newer processors for improved performance. 629 630 631config CRYPTO_CRC32C_SPARC64 632 tristate "CRC32c CRC algorithm (SPARC64)" 633 depends on SPARC64 634 select CRYPTO_HASH 635 select CRC32 636 help 637 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 638 when available. 639 640config CRYPTO_CRC32 641 tristate "CRC32 CRC algorithm" 642 select CRYPTO_HASH 643 select CRC32 644 help 645 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 646 Shash crypto api wrappers to crc32_le function. 647 648config CRYPTO_CRC32_PCLMUL 649 tristate "CRC32 PCLMULQDQ hardware acceleration" 650 depends on X86 651 select CRYPTO_HASH 652 select CRC32 653 help 654 From Intel Westmere and AMD Bulldozer processor with SSE4.2 655 and PCLMULQDQ supported, the processor will support 656 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 657 instruction. This option will create 'crc32-pclmul' module, 658 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 659 and gain better performance as compared with the table implementation. 660 661config CRYPTO_CRC32_MIPS 662 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 663 depends on MIPS_CRC_SUPPORT 664 select CRYPTO_HASH 665 help 666 CRC32c and CRC32 CRC algorithms implemented using mips crypto 667 instructions, when available. 668 669 670config CRYPTO_XXHASH 671 tristate "xxHash hash algorithm" 672 select CRYPTO_HASH 673 select XXHASH 674 help 675 xxHash non-cryptographic hash algorithm. Extremely fast, working at 676 speeds close to RAM limits. 677 678config CRYPTO_BLAKE2B 679 tristate "BLAKE2b digest algorithm" 680 select CRYPTO_HASH 681 help 682 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 683 optimized for 64bit platforms and can produce digests of any size 684 between 1 to 64. The keyed hash is also implemented. 685 686 This module provides the following algorithms: 687 688 - blake2b-160 689 - blake2b-256 690 - blake2b-384 691 - blake2b-512 692 693 See https://blake2.net for further information. 694 695config CRYPTO_BLAKE2S 696 tristate "BLAKE2s digest algorithm" 697 select CRYPTO_LIB_BLAKE2S_GENERIC 698 select CRYPTO_HASH 699 help 700 Implementation of cryptographic hash function BLAKE2s 701 optimized for 8-32bit platforms and can produce digests of any size 702 between 1 to 32. The keyed hash is also implemented. 703 704 This module provides the following algorithms: 705 706 - blake2s-128 707 - blake2s-160 708 - blake2s-224 709 - blake2s-256 710 711 See https://blake2.net for further information. 712 713config CRYPTO_BLAKE2S_X86 714 tristate "BLAKE2s digest algorithm (x86 accelerated version)" 715 depends on X86 && 64BIT 716 select CRYPTO_LIB_BLAKE2S_GENERIC 717 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 718 719config CRYPTO_CRCT10DIF 720 tristate "CRCT10DIF algorithm" 721 select CRYPTO_HASH 722 help 723 CRC T10 Data Integrity Field computation is being cast as 724 a crypto transform. This allows for faster crc t10 diff 725 transforms to be used if they are available. 726 727config CRYPTO_CRCT10DIF_PCLMUL 728 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 729 depends on X86 && 64BIT && CRC_T10DIF 730 select CRYPTO_HASH 731 help 732 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 733 CRC T10 DIF PCLMULQDQ computation can be hardware 734 accelerated PCLMULQDQ instruction. This option will create 735 'crct10dif-pclmul' module, which is faster when computing the 736 crct10dif checksum as compared with the generic table implementation. 737 738config CRYPTO_CRCT10DIF_VPMSUM 739 tristate "CRC32T10DIF powerpc64 hardware acceleration" 740 depends on PPC64 && ALTIVEC && CRC_T10DIF 741 select CRYPTO_HASH 742 help 743 CRC10T10DIF algorithm implemented using vector polynomial 744 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 745 POWER8 and newer processors for improved performance. 746 747config CRYPTO_CRC64_ROCKSOFT 748 tristate "Rocksoft Model CRC64 algorithm" 749 depends on CRC64 750 select CRYPTO_HASH 751 752config CRYPTO_VPMSUM_TESTER 753 tristate "Powerpc64 vpmsum hardware acceleration tester" 754 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 755 help 756 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 757 POWER8 vpmsum instructions. 758 Unless you are testing these algorithms, you don't need this. 759 760config CRYPTO_GHASH 761 tristate "GHASH hash function" 762 select CRYPTO_GF128MUL 763 select CRYPTO_HASH 764 help 765 GHASH is the hash function used in GCM (Galois/Counter Mode). 766 It is not a general-purpose cryptographic hash function. 767 768config CRYPTO_POLY1305 769 tristate "Poly1305 authenticator algorithm" 770 select CRYPTO_HASH 771 select CRYPTO_LIB_POLY1305_GENERIC 772 help 773 Poly1305 authenticator algorithm, RFC7539. 774 775 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 776 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 777 in IETF protocols. This is the portable C implementation of Poly1305. 778 779config CRYPTO_POLY1305_X86_64 780 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 781 depends on X86 && 64BIT 782 select CRYPTO_LIB_POLY1305_GENERIC 783 select CRYPTO_ARCH_HAVE_LIB_POLY1305 784 help 785 Poly1305 authenticator algorithm, RFC7539. 786 787 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 788 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 789 in IETF protocols. This is the x86_64 assembler implementation using SIMD 790 instructions. 791 792config CRYPTO_POLY1305_MIPS 793 tristate "Poly1305 authenticator algorithm (MIPS optimized)" 794 depends on MIPS 795 select CRYPTO_ARCH_HAVE_LIB_POLY1305 796 797config CRYPTO_MD4 798 tristate "MD4 digest algorithm" 799 select CRYPTO_HASH 800 help 801 MD4 message digest algorithm (RFC1320). 802 803config CRYPTO_MD5 804 tristate "MD5 digest algorithm" 805 select CRYPTO_HASH 806 help 807 MD5 message digest algorithm (RFC1321). 808 809config CRYPTO_MD5_OCTEON 810 tristate "MD5 digest algorithm (OCTEON)" 811 depends on CPU_CAVIUM_OCTEON 812 select CRYPTO_MD5 813 select CRYPTO_HASH 814 help 815 MD5 message digest algorithm (RFC1321) implemented 816 using OCTEON crypto instructions, when available. 817 818config CRYPTO_MD5_PPC 819 tristate "MD5 digest algorithm (PPC)" 820 depends on PPC 821 select CRYPTO_HASH 822 help 823 MD5 message digest algorithm (RFC1321) implemented 824 in PPC assembler. 825 826config CRYPTO_MD5_SPARC64 827 tristate "MD5 digest algorithm (SPARC64)" 828 depends on SPARC64 829 select CRYPTO_MD5 830 select CRYPTO_HASH 831 help 832 MD5 message digest algorithm (RFC1321) implemented 833 using sparc64 crypto instructions, when available. 834 835config CRYPTO_MICHAEL_MIC 836 tristate "Michael MIC keyed digest algorithm" 837 select CRYPTO_HASH 838 help 839 Michael MIC is used for message integrity protection in TKIP 840 (IEEE 802.11i). This algorithm is required for TKIP, but it 841 should not be used for other purposes because of the weakness 842 of the algorithm. 843 844config CRYPTO_RMD160 845 tristate "RIPEMD-160 digest algorithm" 846 select CRYPTO_HASH 847 help 848 RIPEMD-160 (ISO/IEC 10118-3:2004). 849 850 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 851 to be used as a secure replacement for the 128-bit hash functions 852 MD4, MD5 and it's predecessor RIPEMD 853 (not to be confused with RIPEMD-128). 854 855 It's speed is comparable to SHA1 and there are no known attacks 856 against RIPEMD-160. 857 858 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 859 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 860 861config CRYPTO_SHA1 862 tristate "SHA1 digest algorithm" 863 select CRYPTO_HASH 864 help 865 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 866 867config CRYPTO_SHA1_SSSE3 868 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 869 depends on X86 && 64BIT 870 select CRYPTO_SHA1 871 select CRYPTO_HASH 872 help 873 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 874 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 875 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 876 when available. 877 878config CRYPTO_SHA256_SSSE3 879 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 880 depends on X86 && 64BIT 881 select CRYPTO_SHA256 882 select CRYPTO_HASH 883 help 884 SHA-256 secure hash standard (DFIPS 180-2) implemented 885 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 886 Extensions version 1 (AVX1), or Advanced Vector Extensions 887 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 888 Instructions) when available. 889 890config CRYPTO_SHA512_SSSE3 891 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 892 depends on X86 && 64BIT 893 select CRYPTO_SHA512 894 select CRYPTO_HASH 895 help 896 SHA-512 secure hash standard (DFIPS 180-2) implemented 897 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 898 Extensions version 1 (AVX1), or Advanced Vector Extensions 899 version 2 (AVX2) instructions, when available. 900 901config CRYPTO_SHA1_OCTEON 902 tristate "SHA1 digest algorithm (OCTEON)" 903 depends on CPU_CAVIUM_OCTEON 904 select CRYPTO_SHA1 905 select CRYPTO_HASH 906 help 907 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 908 using OCTEON crypto instructions, when available. 909 910config CRYPTO_SHA1_SPARC64 911 tristate "SHA1 digest algorithm (SPARC64)" 912 depends on SPARC64 913 select CRYPTO_SHA1 914 select CRYPTO_HASH 915 help 916 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 917 using sparc64 crypto instructions, when available. 918 919config CRYPTO_SHA1_PPC 920 tristate "SHA1 digest algorithm (powerpc)" 921 depends on PPC 922 help 923 This is the powerpc hardware accelerated implementation of the 924 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 925 926config CRYPTO_SHA1_PPC_SPE 927 tristate "SHA1 digest algorithm (PPC SPE)" 928 depends on PPC && SPE 929 help 930 SHA-1 secure hash standard (DFIPS 180-4) implemented 931 using powerpc SPE SIMD instruction set. 932 933config CRYPTO_SHA256 934 tristate "SHA224 and SHA256 digest algorithm" 935 select CRYPTO_HASH 936 select CRYPTO_LIB_SHA256 937 help 938 SHA256 secure hash standard (DFIPS 180-2). 939 940 This version of SHA implements a 256 bit hash with 128 bits of 941 security against collision attacks. 942 943 This code also includes SHA-224, a 224 bit hash with 112 bits 944 of security against collision attacks. 945 946config CRYPTO_SHA256_PPC_SPE 947 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 948 depends on PPC && SPE 949 select CRYPTO_SHA256 950 select CRYPTO_HASH 951 help 952 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 953 implemented using powerpc SPE SIMD instruction set. 954 955config CRYPTO_SHA256_OCTEON 956 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 957 depends on CPU_CAVIUM_OCTEON 958 select CRYPTO_SHA256 959 select CRYPTO_HASH 960 help 961 SHA-256 secure hash standard (DFIPS 180-2) implemented 962 using OCTEON crypto instructions, when available. 963 964config CRYPTO_SHA256_SPARC64 965 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 966 depends on SPARC64 967 select CRYPTO_SHA256 968 select CRYPTO_HASH 969 help 970 SHA-256 secure hash standard (DFIPS 180-2) implemented 971 using sparc64 crypto instructions, when available. 972 973config CRYPTO_SHA512 974 tristate "SHA384 and SHA512 digest algorithms" 975 select CRYPTO_HASH 976 help 977 SHA512 secure hash standard (DFIPS 180-2). 978 979 This version of SHA implements a 512 bit hash with 256 bits of 980 security against collision attacks. 981 982 This code also includes SHA-384, a 384 bit hash with 192 bits 983 of security against collision attacks. 984 985config CRYPTO_SHA512_OCTEON 986 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 987 depends on CPU_CAVIUM_OCTEON 988 select CRYPTO_SHA512 989 select CRYPTO_HASH 990 help 991 SHA-512 secure hash standard (DFIPS 180-2) implemented 992 using OCTEON crypto instructions, when available. 993 994config CRYPTO_SHA512_SPARC64 995 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 996 depends on SPARC64 997 select CRYPTO_SHA512 998 select CRYPTO_HASH 999 help 1000 SHA-512 secure hash standard (DFIPS 180-2) implemented 1001 using sparc64 crypto instructions, when available. 1002 1003config CRYPTO_SHA3 1004 tristate "SHA3 digest algorithm" 1005 select CRYPTO_HASH 1006 help 1007 SHA-3 secure hash standard (DFIPS 202). It's based on 1008 cryptographic sponge function family called Keccak. 1009 1010 References: 1011 http://keccak.noekeon.org/ 1012 1013config CRYPTO_SM3 1014 tristate 1015 1016config CRYPTO_SM3_GENERIC 1017 tristate "SM3 digest algorithm" 1018 select CRYPTO_HASH 1019 select CRYPTO_SM3 1020 help 1021 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1022 It is part of the Chinese Commercial Cryptography suite. 1023 1024 References: 1025 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1026 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1027 1028config CRYPTO_SM3_AVX_X86_64 1029 tristate "SM3 digest algorithm (x86_64/AVX)" 1030 depends on X86 && 64BIT 1031 select CRYPTO_HASH 1032 select CRYPTO_SM3 1033 help 1034 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1035 It is part of the Chinese Commercial Cryptography suite. This is 1036 SM3 optimized implementation using Advanced Vector Extensions (AVX) 1037 when available. 1038 1039 If unsure, say N. 1040 1041config CRYPTO_STREEBOG 1042 tristate "Streebog Hash Function" 1043 select CRYPTO_HASH 1044 help 1045 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1046 cryptographic standard algorithms (called GOST algorithms). 1047 This setting enables two hash algorithms with 256 and 512 bits output. 1048 1049 References: 1050 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1051 https://tools.ietf.org/html/rfc6986 1052 1053config CRYPTO_WP512 1054 tristate "Whirlpool digest algorithms" 1055 select CRYPTO_HASH 1056 help 1057 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1058 1059 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1060 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1061 1062 See also: 1063 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1064 1065config CRYPTO_GHASH_CLMUL_NI_INTEL 1066 tristate "GHASH hash function (CLMUL-NI accelerated)" 1067 depends on X86 && 64BIT 1068 select CRYPTO_CRYPTD 1069 help 1070 This is the x86_64 CLMUL-NI accelerated implementation of 1071 GHASH, the hash function used in GCM (Galois/Counter mode). 1072 1073comment "Ciphers" 1074 1075config CRYPTO_AES 1076 tristate "AES cipher algorithms" 1077 select CRYPTO_ALGAPI 1078 select CRYPTO_LIB_AES 1079 help 1080 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1081 algorithm. 1082 1083 Rijndael appears to be consistently a very good performer in 1084 both hardware and software across a wide range of computing 1085 environments regardless of its use in feedback or non-feedback 1086 modes. Its key setup time is excellent, and its key agility is 1087 good. Rijndael's very low memory requirements make it very well 1088 suited for restricted-space environments, in which it also 1089 demonstrates excellent performance. Rijndael's operations are 1090 among the easiest to defend against power and timing attacks. 1091 1092 The AES specifies three key sizes: 128, 192 and 256 bits 1093 1094 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1095 1096config CRYPTO_AES_TI 1097 tristate "Fixed time AES cipher" 1098 select CRYPTO_ALGAPI 1099 select CRYPTO_LIB_AES 1100 help 1101 This is a generic implementation of AES that attempts to eliminate 1102 data dependent latencies as much as possible without affecting 1103 performance too much. It is intended for use by the generic CCM 1104 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1105 solely on encryption (although decryption is supported as well, but 1106 with a more dramatic performance hit) 1107 1108 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1109 8 for decryption), this implementation only uses just two S-boxes of 1110 256 bytes each, and attempts to eliminate data dependent latencies by 1111 prefetching the entire table into the cache at the start of each 1112 block. Interrupts are also disabled to avoid races where cachelines 1113 are evicted when the CPU is interrupted to do something else. 1114 1115config CRYPTO_AES_NI_INTEL 1116 tristate "AES cipher algorithms (AES-NI)" 1117 depends on X86 1118 select CRYPTO_AEAD 1119 select CRYPTO_LIB_AES 1120 select CRYPTO_ALGAPI 1121 select CRYPTO_SKCIPHER 1122 select CRYPTO_SIMD 1123 help 1124 Use Intel AES-NI instructions for AES algorithm. 1125 1126 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1127 algorithm. 1128 1129 Rijndael appears to be consistently a very good performer in 1130 both hardware and software across a wide range of computing 1131 environments regardless of its use in feedback or non-feedback 1132 modes. Its key setup time is excellent, and its key agility is 1133 good. Rijndael's very low memory requirements make it very well 1134 suited for restricted-space environments, in which it also 1135 demonstrates excellent performance. Rijndael's operations are 1136 among the easiest to defend against power and timing attacks. 1137 1138 The AES specifies three key sizes: 128, 192 and 256 bits 1139 1140 See <http://csrc.nist.gov/encryption/aes/> for more information. 1141 1142 In addition to AES cipher algorithm support, the acceleration 1143 for some popular block cipher mode is supported too, including 1144 ECB, CBC, LRW, XTS. The 64 bit version has additional 1145 acceleration for CTR. 1146 1147config CRYPTO_AES_SPARC64 1148 tristate "AES cipher algorithms (SPARC64)" 1149 depends on SPARC64 1150 select CRYPTO_SKCIPHER 1151 help 1152 Use SPARC64 crypto opcodes for AES algorithm. 1153 1154 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1155 algorithm. 1156 1157 Rijndael appears to be consistently a very good performer in 1158 both hardware and software across a wide range of computing 1159 environments regardless of its use in feedback or non-feedback 1160 modes. Its key setup time is excellent, and its key agility is 1161 good. Rijndael's very low memory requirements make it very well 1162 suited for restricted-space environments, in which it also 1163 demonstrates excellent performance. Rijndael's operations are 1164 among the easiest to defend against power and timing attacks. 1165 1166 The AES specifies three key sizes: 128, 192 and 256 bits 1167 1168 See <http://csrc.nist.gov/encryption/aes/> for more information. 1169 1170 In addition to AES cipher algorithm support, the acceleration 1171 for some popular block cipher mode is supported too, including 1172 ECB and CBC. 1173 1174config CRYPTO_AES_PPC_SPE 1175 tristate "AES cipher algorithms (PPC SPE)" 1176 depends on PPC && SPE 1177 select CRYPTO_SKCIPHER 1178 help 1179 AES cipher algorithms (FIPS-197). Additionally the acceleration 1180 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1181 This module should only be used for low power (router) devices 1182 without hardware AES acceleration (e.g. caam crypto). It reduces the 1183 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1184 timining attacks. Nevertheless it might be not as secure as other 1185 architecture specific assembler implementations that work on 1KB 1186 tables or 256 bytes S-boxes. 1187 1188config CRYPTO_ANUBIS 1189 tristate "Anubis cipher algorithm" 1190 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1191 select CRYPTO_ALGAPI 1192 help 1193 Anubis cipher algorithm. 1194 1195 Anubis is a variable key length cipher which can use keys from 1196 128 bits to 320 bits in length. It was evaluated as a entrant 1197 in the NESSIE competition. 1198 1199 See also: 1200 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1201 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1202 1203config CRYPTO_ARC4 1204 tristate "ARC4 cipher algorithm" 1205 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1206 select CRYPTO_SKCIPHER 1207 select CRYPTO_LIB_ARC4 1208 help 1209 ARC4 cipher algorithm. 1210 1211 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1212 bits in length. This algorithm is required for driver-based 1213 WEP, but it should not be for other purposes because of the 1214 weakness of the algorithm. 1215 1216config CRYPTO_BLOWFISH 1217 tristate "Blowfish cipher algorithm" 1218 select CRYPTO_ALGAPI 1219 select CRYPTO_BLOWFISH_COMMON 1220 help 1221 Blowfish cipher algorithm, by Bruce Schneier. 1222 1223 This is a variable key length cipher which can use keys from 32 1224 bits to 448 bits in length. It's fast, simple and specifically 1225 designed for use on "large microprocessors". 1226 1227 See also: 1228 <https://www.schneier.com/blowfish.html> 1229 1230config CRYPTO_BLOWFISH_COMMON 1231 tristate 1232 help 1233 Common parts of the Blowfish cipher algorithm shared by the 1234 generic c and the assembler implementations. 1235 1236 See also: 1237 <https://www.schneier.com/blowfish.html> 1238 1239config CRYPTO_BLOWFISH_X86_64 1240 tristate "Blowfish cipher algorithm (x86_64)" 1241 depends on X86 && 64BIT 1242 select CRYPTO_SKCIPHER 1243 select CRYPTO_BLOWFISH_COMMON 1244 imply CRYPTO_CTR 1245 help 1246 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1247 1248 This is a variable key length cipher which can use keys from 32 1249 bits to 448 bits in length. It's fast, simple and specifically 1250 designed for use on "large microprocessors". 1251 1252 See also: 1253 <https://www.schneier.com/blowfish.html> 1254 1255config CRYPTO_CAMELLIA 1256 tristate "Camellia cipher algorithms" 1257 select CRYPTO_ALGAPI 1258 help 1259 Camellia cipher algorithms module. 1260 1261 Camellia is a symmetric key block cipher developed jointly 1262 at NTT and Mitsubishi Electric Corporation. 1263 1264 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1265 1266 See also: 1267 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1268 1269config CRYPTO_CAMELLIA_X86_64 1270 tristate "Camellia cipher algorithm (x86_64)" 1271 depends on X86 && 64BIT 1272 select CRYPTO_SKCIPHER 1273 imply CRYPTO_CTR 1274 help 1275 Camellia cipher algorithm module (x86_64). 1276 1277 Camellia is a symmetric key block cipher developed jointly 1278 at NTT and Mitsubishi Electric Corporation. 1279 1280 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1281 1282 See also: 1283 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1284 1285config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1286 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1287 depends on X86 && 64BIT 1288 select CRYPTO_SKCIPHER 1289 select CRYPTO_CAMELLIA_X86_64 1290 select CRYPTO_SIMD 1291 imply CRYPTO_XTS 1292 help 1293 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1294 1295 Camellia is a symmetric key block cipher developed jointly 1296 at NTT and Mitsubishi Electric Corporation. 1297 1298 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1299 1300 See also: 1301 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1302 1303config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1304 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1305 depends on X86 && 64BIT 1306 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1307 help 1308 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1309 1310 Camellia is a symmetric key block cipher developed jointly 1311 at NTT and Mitsubishi Electric Corporation. 1312 1313 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1314 1315 See also: 1316 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1317 1318config CRYPTO_CAMELLIA_SPARC64 1319 tristate "Camellia cipher algorithm (SPARC64)" 1320 depends on SPARC64 1321 select CRYPTO_ALGAPI 1322 select CRYPTO_SKCIPHER 1323 help 1324 Camellia cipher algorithm module (SPARC64). 1325 1326 Camellia is a symmetric key block cipher developed jointly 1327 at NTT and Mitsubishi Electric Corporation. 1328 1329 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1330 1331 See also: 1332 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1333 1334config CRYPTO_CAST_COMMON 1335 tristate 1336 help 1337 Common parts of the CAST cipher algorithms shared by the 1338 generic c and the assembler implementations. 1339 1340config CRYPTO_CAST5 1341 tristate "CAST5 (CAST-128) cipher algorithm" 1342 select CRYPTO_ALGAPI 1343 select CRYPTO_CAST_COMMON 1344 help 1345 The CAST5 encryption algorithm (synonymous with CAST-128) is 1346 described in RFC2144. 1347 1348config CRYPTO_CAST5_AVX_X86_64 1349 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1350 depends on X86 && 64BIT 1351 select CRYPTO_SKCIPHER 1352 select CRYPTO_CAST5 1353 select CRYPTO_CAST_COMMON 1354 select CRYPTO_SIMD 1355 imply CRYPTO_CTR 1356 help 1357 The CAST5 encryption algorithm (synonymous with CAST-128) is 1358 described in RFC2144. 1359 1360 This module provides the Cast5 cipher algorithm that processes 1361 sixteen blocks parallel using the AVX instruction set. 1362 1363config CRYPTO_CAST6 1364 tristate "CAST6 (CAST-256) cipher algorithm" 1365 select CRYPTO_ALGAPI 1366 select CRYPTO_CAST_COMMON 1367 help 1368 The CAST6 encryption algorithm (synonymous with CAST-256) is 1369 described in RFC2612. 1370 1371config CRYPTO_CAST6_AVX_X86_64 1372 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1373 depends on X86 && 64BIT 1374 select CRYPTO_SKCIPHER 1375 select CRYPTO_CAST6 1376 select CRYPTO_CAST_COMMON 1377 select CRYPTO_SIMD 1378 imply CRYPTO_XTS 1379 imply CRYPTO_CTR 1380 help 1381 The CAST6 encryption algorithm (synonymous with CAST-256) is 1382 described in RFC2612. 1383 1384 This module provides the Cast6 cipher algorithm that processes 1385 eight blocks parallel using the AVX instruction set. 1386 1387config CRYPTO_DES 1388 tristate "DES and Triple DES EDE cipher algorithms" 1389 select CRYPTO_ALGAPI 1390 select CRYPTO_LIB_DES 1391 help 1392 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1393 1394config CRYPTO_DES_SPARC64 1395 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1396 depends on SPARC64 1397 select CRYPTO_ALGAPI 1398 select CRYPTO_LIB_DES 1399 select CRYPTO_SKCIPHER 1400 help 1401 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1402 optimized using SPARC64 crypto opcodes. 1403 1404config CRYPTO_DES3_EDE_X86_64 1405 tristate "Triple DES EDE cipher algorithm (x86-64)" 1406 depends on X86 && 64BIT 1407 select CRYPTO_SKCIPHER 1408 select CRYPTO_LIB_DES 1409 imply CRYPTO_CTR 1410 help 1411 Triple DES EDE (FIPS 46-3) algorithm. 1412 1413 This module provides implementation of the Triple DES EDE cipher 1414 algorithm that is optimized for x86-64 processors. Two versions of 1415 algorithm are provided; regular processing one input block and 1416 one that processes three blocks parallel. 1417 1418config CRYPTO_FCRYPT 1419 tristate "FCrypt cipher algorithm" 1420 select CRYPTO_ALGAPI 1421 select CRYPTO_SKCIPHER 1422 help 1423 FCrypt algorithm used by RxRPC. 1424 1425config CRYPTO_KHAZAD 1426 tristate "Khazad cipher algorithm" 1427 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1428 select CRYPTO_ALGAPI 1429 help 1430 Khazad cipher algorithm. 1431 1432 Khazad was a finalist in the initial NESSIE competition. It is 1433 an algorithm optimized for 64-bit processors with good performance 1434 on 32-bit processors. Khazad uses an 128 bit key size. 1435 1436 See also: 1437 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1438 1439config CRYPTO_CHACHA20 1440 tristate "ChaCha stream cipher algorithms" 1441 select CRYPTO_LIB_CHACHA_GENERIC 1442 select CRYPTO_SKCIPHER 1443 help 1444 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1445 1446 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1447 Bernstein and further specified in RFC7539 for use in IETF protocols. 1448 This is the portable C implementation of ChaCha20. See also: 1449 <https://cr.yp.to/chacha/chacha-20080128.pdf> 1450 1451 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1452 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1453 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1454 while provably retaining ChaCha20's security. See also: 1455 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1456 1457 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1458 reduced security margin but increased performance. It can be needed 1459 in some performance-sensitive scenarios. 1460 1461config CRYPTO_CHACHA20_X86_64 1462 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1463 depends on X86 && 64BIT 1464 select CRYPTO_SKCIPHER 1465 select CRYPTO_LIB_CHACHA_GENERIC 1466 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1467 help 1468 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1469 XChaCha20, and XChaCha12 stream ciphers. 1470 1471config CRYPTO_CHACHA_MIPS 1472 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)" 1473 depends on CPU_MIPS32_R2 1474 select CRYPTO_SKCIPHER 1475 select CRYPTO_ARCH_HAVE_LIB_CHACHA 1476 1477config CRYPTO_SEED 1478 tristate "SEED cipher algorithm" 1479 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1480 select CRYPTO_ALGAPI 1481 help 1482 SEED cipher algorithm (RFC4269). 1483 1484 SEED is a 128-bit symmetric key block cipher that has been 1485 developed by KISA (Korea Information Security Agency) as a 1486 national standard encryption algorithm of the Republic of Korea. 1487 It is a 16 round block cipher with the key size of 128 bit. 1488 1489 See also: 1490 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1491 1492config CRYPTO_SERPENT 1493 tristate "Serpent cipher algorithm" 1494 select CRYPTO_ALGAPI 1495 help 1496 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1497 1498 Keys are allowed to be from 0 to 256 bits in length, in steps 1499 of 8 bits. 1500 1501 See also: 1502 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1503 1504config CRYPTO_SERPENT_SSE2_X86_64 1505 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1506 depends on X86 && 64BIT 1507 select CRYPTO_SKCIPHER 1508 select CRYPTO_SERPENT 1509 select CRYPTO_SIMD 1510 imply CRYPTO_CTR 1511 help 1512 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1513 1514 Keys are allowed to be from 0 to 256 bits in length, in steps 1515 of 8 bits. 1516 1517 This module provides Serpent cipher algorithm that processes eight 1518 blocks parallel using SSE2 instruction set. 1519 1520 See also: 1521 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1522 1523config CRYPTO_SERPENT_SSE2_586 1524 tristate "Serpent cipher algorithm (i586/SSE2)" 1525 depends on X86 && !64BIT 1526 select CRYPTO_SKCIPHER 1527 select CRYPTO_SERPENT 1528 select CRYPTO_SIMD 1529 imply CRYPTO_CTR 1530 help 1531 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1532 1533 Keys are allowed to be from 0 to 256 bits in length, in steps 1534 of 8 bits. 1535 1536 This module provides Serpent cipher algorithm that processes four 1537 blocks parallel using SSE2 instruction set. 1538 1539 See also: 1540 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1541 1542config CRYPTO_SERPENT_AVX_X86_64 1543 tristate "Serpent cipher algorithm (x86_64/AVX)" 1544 depends on X86 && 64BIT 1545 select CRYPTO_SKCIPHER 1546 select CRYPTO_SERPENT 1547 select CRYPTO_SIMD 1548 imply CRYPTO_XTS 1549 imply CRYPTO_CTR 1550 help 1551 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1552 1553 Keys are allowed to be from 0 to 256 bits in length, in steps 1554 of 8 bits. 1555 1556 This module provides the Serpent cipher algorithm that processes 1557 eight blocks parallel using the AVX instruction set. 1558 1559 See also: 1560 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1561 1562config CRYPTO_SERPENT_AVX2_X86_64 1563 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1564 depends on X86 && 64BIT 1565 select CRYPTO_SERPENT_AVX_X86_64 1566 help 1567 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1568 1569 Keys are allowed to be from 0 to 256 bits in length, in steps 1570 of 8 bits. 1571 1572 This module provides Serpent cipher algorithm that processes 16 1573 blocks parallel using AVX2 instruction set. 1574 1575 See also: 1576 <https://www.cl.cam.ac.uk/~rja14/serpent.html> 1577 1578config CRYPTO_SM4 1579 tristate 1580 1581config CRYPTO_SM4_GENERIC 1582 tristate "SM4 cipher algorithm" 1583 select CRYPTO_ALGAPI 1584 select CRYPTO_SM4 1585 help 1586 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1587 1588 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1589 Organization of State Commercial Administration of China (OSCCA) 1590 as an authorized cryptographic algorithms for the use within China. 1591 1592 SMS4 was originally created for use in protecting wireless 1593 networks, and is mandated in the Chinese National Standard for 1594 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1595 (GB.15629.11-2003). 1596 1597 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1598 standardized through TC 260 of the Standardization Administration 1599 of the People's Republic of China (SAC). 1600 1601 The input, output, and key of SMS4 are each 128 bits. 1602 1603 See also: <https://eprint.iacr.org/2008/329.pdf> 1604 1605 If unsure, say N. 1606 1607config CRYPTO_SM4_AESNI_AVX_X86_64 1608 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX)" 1609 depends on X86 && 64BIT 1610 select CRYPTO_SKCIPHER 1611 select CRYPTO_SIMD 1612 select CRYPTO_ALGAPI 1613 select CRYPTO_SM4 1614 help 1615 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX). 1616 1617 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1618 Organization of State Commercial Administration of China (OSCCA) 1619 as an authorized cryptographic algorithms for the use within China. 1620 1621 This is SM4 optimized implementation using AES-NI/AVX/x86_64 1622 instruction set for block cipher. Through two affine transforms, 1623 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1624 effect of instruction acceleration. 1625 1626 If unsure, say N. 1627 1628config CRYPTO_SM4_AESNI_AVX2_X86_64 1629 tristate "SM4 cipher algorithm (x86_64/AES-NI/AVX2)" 1630 depends on X86 && 64BIT 1631 select CRYPTO_SKCIPHER 1632 select CRYPTO_SIMD 1633 select CRYPTO_ALGAPI 1634 select CRYPTO_SM4 1635 select CRYPTO_SM4_AESNI_AVX_X86_64 1636 help 1637 SM4 cipher algorithms (OSCCA GB/T 32907-2016) (x86_64/AES-NI/AVX2). 1638 1639 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1640 Organization of State Commercial Administration of China (OSCCA) 1641 as an authorized cryptographic algorithms for the use within China. 1642 1643 This is SM4 optimized implementation using AES-NI/AVX2/x86_64 1644 instruction set for block cipher. Through two affine transforms, 1645 we can use the AES S-Box to simulate the SM4 S-Box to achieve the 1646 effect of instruction acceleration. 1647 1648 If unsure, say N. 1649 1650config CRYPTO_TEA 1651 tristate "TEA, XTEA and XETA cipher algorithms" 1652 depends on CRYPTO_USER_API_ENABLE_OBSOLETE 1653 select CRYPTO_ALGAPI 1654 help 1655 TEA cipher algorithm. 1656 1657 Tiny Encryption Algorithm is a simple cipher that uses 1658 many rounds for security. It is very fast and uses 1659 little memory. 1660 1661 Xtendend Tiny Encryption Algorithm is a modification to 1662 the TEA algorithm to address a potential key weakness 1663 in the TEA algorithm. 1664 1665 Xtendend Encryption Tiny Algorithm is a mis-implementation 1666 of the XTEA algorithm for compatibility purposes. 1667 1668config CRYPTO_TWOFISH 1669 tristate "Twofish cipher algorithm" 1670 select CRYPTO_ALGAPI 1671 select CRYPTO_TWOFISH_COMMON 1672 help 1673 Twofish cipher algorithm. 1674 1675 Twofish was submitted as an AES (Advanced Encryption Standard) 1676 candidate cipher by researchers at CounterPane Systems. It is a 1677 16 round block cipher supporting key sizes of 128, 192, and 256 1678 bits. 1679 1680 See also: 1681 <https://www.schneier.com/twofish.html> 1682 1683config CRYPTO_TWOFISH_COMMON 1684 tristate 1685 help 1686 Common parts of the Twofish cipher algorithm shared by the 1687 generic c and the assembler implementations. 1688 1689config CRYPTO_TWOFISH_586 1690 tristate "Twofish cipher algorithms (i586)" 1691 depends on (X86 || UML_X86) && !64BIT 1692 select CRYPTO_ALGAPI 1693 select CRYPTO_TWOFISH_COMMON 1694 imply CRYPTO_CTR 1695 help 1696 Twofish cipher algorithm. 1697 1698 Twofish was submitted as an AES (Advanced Encryption Standard) 1699 candidate cipher by researchers at CounterPane Systems. It is a 1700 16 round block cipher supporting key sizes of 128, 192, and 256 1701 bits. 1702 1703 See also: 1704 <https://www.schneier.com/twofish.html> 1705 1706config CRYPTO_TWOFISH_X86_64 1707 tristate "Twofish cipher algorithm (x86_64)" 1708 depends on (X86 || UML_X86) && 64BIT 1709 select CRYPTO_ALGAPI 1710 select CRYPTO_TWOFISH_COMMON 1711 imply CRYPTO_CTR 1712 help 1713 Twofish cipher algorithm (x86_64). 1714 1715 Twofish was submitted as an AES (Advanced Encryption Standard) 1716 candidate cipher by researchers at CounterPane Systems. It is a 1717 16 round block cipher supporting key sizes of 128, 192, and 256 1718 bits. 1719 1720 See also: 1721 <https://www.schneier.com/twofish.html> 1722 1723config CRYPTO_TWOFISH_X86_64_3WAY 1724 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1725 depends on X86 && 64BIT 1726 select CRYPTO_SKCIPHER 1727 select CRYPTO_TWOFISH_COMMON 1728 select CRYPTO_TWOFISH_X86_64 1729 help 1730 Twofish cipher algorithm (x86_64, 3-way parallel). 1731 1732 Twofish was submitted as an AES (Advanced Encryption Standard) 1733 candidate cipher by researchers at CounterPane Systems. It is a 1734 16 round block cipher supporting key sizes of 128, 192, and 256 1735 bits. 1736 1737 This module provides Twofish cipher algorithm that processes three 1738 blocks parallel, utilizing resources of out-of-order CPUs better. 1739 1740 See also: 1741 <https://www.schneier.com/twofish.html> 1742 1743config CRYPTO_TWOFISH_AVX_X86_64 1744 tristate "Twofish cipher algorithm (x86_64/AVX)" 1745 depends on X86 && 64BIT 1746 select CRYPTO_SKCIPHER 1747 select CRYPTO_SIMD 1748 select CRYPTO_TWOFISH_COMMON 1749 select CRYPTO_TWOFISH_X86_64 1750 select CRYPTO_TWOFISH_X86_64_3WAY 1751 imply CRYPTO_XTS 1752 help 1753 Twofish cipher algorithm (x86_64/AVX). 1754 1755 Twofish was submitted as an AES (Advanced Encryption Standard) 1756 candidate cipher by researchers at CounterPane Systems. It is a 1757 16 round block cipher supporting key sizes of 128, 192, and 256 1758 bits. 1759 1760 This module provides the Twofish cipher algorithm that processes 1761 eight blocks parallel using the AVX Instruction Set. 1762 1763 See also: 1764 <https://www.schneier.com/twofish.html> 1765 1766comment "Compression" 1767 1768config CRYPTO_DEFLATE 1769 tristate "Deflate compression algorithm" 1770 select CRYPTO_ALGAPI 1771 select CRYPTO_ACOMP2 1772 select ZLIB_INFLATE 1773 select ZLIB_DEFLATE 1774 help 1775 This is the Deflate algorithm (RFC1951), specified for use in 1776 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1777 1778 You will most probably want this if using IPSec. 1779 1780config CRYPTO_LZO 1781 tristate "LZO compression algorithm" 1782 select CRYPTO_ALGAPI 1783 select CRYPTO_ACOMP2 1784 select LZO_COMPRESS 1785 select LZO_DECOMPRESS 1786 help 1787 This is the LZO algorithm. 1788 1789config CRYPTO_842 1790 tristate "842 compression algorithm" 1791 select CRYPTO_ALGAPI 1792 select CRYPTO_ACOMP2 1793 select 842_COMPRESS 1794 select 842_DECOMPRESS 1795 help 1796 This is the 842 algorithm. 1797 1798config CRYPTO_LZ4 1799 tristate "LZ4 compression algorithm" 1800 select CRYPTO_ALGAPI 1801 select CRYPTO_ACOMP2 1802 select LZ4_COMPRESS 1803 select LZ4_DECOMPRESS 1804 help 1805 This is the LZ4 algorithm. 1806 1807config CRYPTO_LZ4HC 1808 tristate "LZ4HC compression algorithm" 1809 select CRYPTO_ALGAPI 1810 select CRYPTO_ACOMP2 1811 select LZ4HC_COMPRESS 1812 select LZ4_DECOMPRESS 1813 help 1814 This is the LZ4 high compression mode algorithm. 1815 1816config CRYPTO_ZSTD 1817 tristate "Zstd compression algorithm" 1818 select CRYPTO_ALGAPI 1819 select CRYPTO_ACOMP2 1820 select ZSTD_COMPRESS 1821 select ZSTD_DECOMPRESS 1822 help 1823 This is the zstd algorithm. 1824 1825comment "Random Number Generation" 1826 1827config CRYPTO_ANSI_CPRNG 1828 tristate "Pseudo Random Number Generation for Cryptographic modules" 1829 select CRYPTO_AES 1830 select CRYPTO_RNG 1831 help 1832 This option enables the generic pseudo random number generator 1833 for cryptographic modules. Uses the Algorithm specified in 1834 ANSI X9.31 A.2.4. Note that this option must be enabled if 1835 CRYPTO_FIPS is selected 1836 1837menuconfig CRYPTO_DRBG_MENU 1838 tristate "NIST SP800-90A DRBG" 1839 help 1840 NIST SP800-90A compliant DRBG. In the following submenu, one or 1841 more of the DRBG types must be selected. 1842 1843if CRYPTO_DRBG_MENU 1844 1845config CRYPTO_DRBG_HMAC 1846 bool 1847 default y 1848 select CRYPTO_HMAC 1849 select CRYPTO_SHA512 1850 1851config CRYPTO_DRBG_HASH 1852 bool "Enable Hash DRBG" 1853 select CRYPTO_SHA256 1854 help 1855 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1856 1857config CRYPTO_DRBG_CTR 1858 bool "Enable CTR DRBG" 1859 select CRYPTO_AES 1860 select CRYPTO_CTR 1861 help 1862 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1863 1864config CRYPTO_DRBG 1865 tristate 1866 default CRYPTO_DRBG_MENU 1867 select CRYPTO_RNG 1868 select CRYPTO_JITTERENTROPY 1869 1870endif # if CRYPTO_DRBG_MENU 1871 1872config CRYPTO_JITTERENTROPY 1873 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1874 select CRYPTO_RNG 1875 help 1876 The Jitterentropy RNG is a noise that is intended 1877 to provide seed to another RNG. The RNG does not 1878 perform any cryptographic whitening of the generated 1879 random numbers. This Jitterentropy RNG registers with 1880 the kernel crypto API and can be used by any caller. 1881 1882config CRYPTO_KDF800108_CTR 1883 tristate 1884 select CRYPTO_HMAC 1885 select CRYPTO_SHA256 1886 1887config CRYPTO_USER_API 1888 tristate 1889 1890config CRYPTO_USER_API_HASH 1891 tristate "User-space interface for hash algorithms" 1892 depends on NET 1893 select CRYPTO_HASH 1894 select CRYPTO_USER_API 1895 help 1896 This option enables the user-spaces interface for hash 1897 algorithms. 1898 1899config CRYPTO_USER_API_SKCIPHER 1900 tristate "User-space interface for symmetric key cipher algorithms" 1901 depends on NET 1902 select CRYPTO_SKCIPHER 1903 select CRYPTO_USER_API 1904 help 1905 This option enables the user-spaces interface for symmetric 1906 key cipher algorithms. 1907 1908config CRYPTO_USER_API_RNG 1909 tristate "User-space interface for random number generator algorithms" 1910 depends on NET 1911 select CRYPTO_RNG 1912 select CRYPTO_USER_API 1913 help 1914 This option enables the user-spaces interface for random 1915 number generator algorithms. 1916 1917config CRYPTO_USER_API_RNG_CAVP 1918 bool "Enable CAVP testing of DRBG" 1919 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG 1920 help 1921 This option enables extra API for CAVP testing via the user-space 1922 interface: resetting of DRBG entropy, and providing Additional Data. 1923 This should only be enabled for CAVP testing. You should say 1924 no unless you know what this is. 1925 1926config CRYPTO_USER_API_AEAD 1927 tristate "User-space interface for AEAD cipher algorithms" 1928 depends on NET 1929 select CRYPTO_AEAD 1930 select CRYPTO_SKCIPHER 1931 select CRYPTO_NULL 1932 select CRYPTO_USER_API 1933 help 1934 This option enables the user-spaces interface for AEAD 1935 cipher algorithms. 1936 1937config CRYPTO_USER_API_ENABLE_OBSOLETE 1938 bool "Enable obsolete cryptographic algorithms for userspace" 1939 depends on CRYPTO_USER_API 1940 default y 1941 help 1942 Allow obsolete cryptographic algorithms to be selected that have 1943 already been phased out from internal use by the kernel, and are 1944 only useful for userspace clients that still rely on them. 1945 1946config CRYPTO_STATS 1947 bool "Crypto usage statistics for User-space" 1948 depends on CRYPTO_USER 1949 help 1950 This option enables the gathering of crypto stats. 1951 This will collect: 1952 - encrypt/decrypt size and numbers of symmeric operations 1953 - compress/decompress size and numbers of compress operations 1954 - size and numbers of hash operations 1955 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1956 - generate/seed numbers for rng operations 1957 1958config CRYPTO_HASH_INFO 1959 bool 1960 1961source "drivers/crypto/Kconfig" 1962source "crypto/asymmetric_keys/Kconfig" 1963source "certs/Kconfig" 1964 1965endif # if CRYPTO 1966