1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 help 19 This option provides the core Cryptographic API. 20 21if CRYPTO 22 23comment "Crypto core or helper" 24 25config CRYPTO_FIPS 26 bool "FIPS 200 compliance" 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 28 depends on (MODULE_SIG || !MODULES) 29 help 30 This options enables the fips boot option which is 31 required if you want to system to operate in a FIPS 200 32 certification. You should say no unless you know what 33 this is. 34 35config CRYPTO_ALGAPI 36 tristate 37 select CRYPTO_ALGAPI2 38 help 39 This option provides the API for cryptographic algorithms. 40 41config CRYPTO_ALGAPI2 42 tristate 43 44config CRYPTO_AEAD 45 tristate 46 select CRYPTO_AEAD2 47 select CRYPTO_ALGAPI 48 49config CRYPTO_AEAD2 50 tristate 51 select CRYPTO_ALGAPI2 52 select CRYPTO_NULL2 53 select CRYPTO_RNG2 54 55config CRYPTO_BLKCIPHER 56 tristate 57 select CRYPTO_BLKCIPHER2 58 select CRYPTO_ALGAPI 59 60config CRYPTO_BLKCIPHER2 61 tristate 62 select CRYPTO_ALGAPI2 63 select CRYPTO_RNG2 64 select CRYPTO_WORKQUEUE 65 66config CRYPTO_HASH 67 tristate 68 select CRYPTO_HASH2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_HASH2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_RNG 76 tristate 77 select CRYPTO_RNG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_RNG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_RNG_DEFAULT 85 tristate 86 select CRYPTO_DRBG_MENU 87 88config CRYPTO_AKCIPHER2 89 tristate 90 select CRYPTO_ALGAPI2 91 92config CRYPTO_AKCIPHER 93 tristate 94 select CRYPTO_AKCIPHER2 95 select CRYPTO_ALGAPI 96 97config CRYPTO_KPP2 98 tristate 99 select CRYPTO_ALGAPI2 100 101config CRYPTO_KPP 102 tristate 103 select CRYPTO_ALGAPI 104 select CRYPTO_KPP2 105 106config CRYPTO_ACOMP2 107 tristate 108 select CRYPTO_ALGAPI2 109 select SGL_ALLOC 110 111config CRYPTO_ACOMP 112 tristate 113 select CRYPTO_ALGAPI 114 select CRYPTO_ACOMP2 115 116config CRYPTO_RSA 117 tristate "RSA algorithm" 118 select CRYPTO_AKCIPHER 119 select CRYPTO_MANAGER 120 select MPILIB 121 select ASN1 122 help 123 Generic implementation of the RSA public key algorithm. 124 125config CRYPTO_DH 126 tristate "Diffie-Hellman algorithm" 127 select CRYPTO_KPP 128 select MPILIB 129 help 130 Generic implementation of the Diffie-Hellman algorithm. 131 132config CRYPTO_ECDH 133 tristate "ECDH algorithm" 134 select CRYPTO_KPP 135 select CRYPTO_RNG_DEFAULT 136 help 137 Generic implementation of the ECDH algorithm 138 139config CRYPTO_MANAGER 140 tristate "Cryptographic algorithm manager" 141 select CRYPTO_MANAGER2 142 help 143 Create default cryptographic template instantiations such as 144 cbc(aes). 145 146config CRYPTO_MANAGER2 147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 148 select CRYPTO_AEAD2 149 select CRYPTO_HASH2 150 select CRYPTO_BLKCIPHER2 151 select CRYPTO_AKCIPHER2 152 select CRYPTO_KPP2 153 select CRYPTO_ACOMP2 154 155config CRYPTO_USER 156 tristate "Userspace cryptographic algorithm configuration" 157 depends on NET 158 select CRYPTO_MANAGER 159 help 160 Userspace configuration for cryptographic instantiations such as 161 cbc(aes). 162 163config CRYPTO_MANAGER_DISABLE_TESTS 164 bool "Disable run-time self tests" 165 default y 166 depends on CRYPTO_MANAGER2 167 help 168 Disable run-time self tests that normally take place at 169 algorithm registration. 170 171config CRYPTO_GF128MUL 172 tristate "GF(2^128) multiplication functions" 173 help 174 Efficient table driven implementation of multiplications in the 175 field GF(2^128). This is needed by some cypher modes. This 176 option will be selected automatically if you select such a 177 cipher mode. Only select this option by hand if you expect to load 178 an external module that requires these functions. 179 180config CRYPTO_NULL 181 tristate "Null algorithms" 182 select CRYPTO_NULL2 183 help 184 These are 'Null' algorithms, used by IPsec, which do nothing. 185 186config CRYPTO_NULL2 187 tristate 188 select CRYPTO_ALGAPI2 189 select CRYPTO_BLKCIPHER2 190 select CRYPTO_HASH2 191 192config CRYPTO_PCRYPT 193 tristate "Parallel crypto engine" 194 depends on SMP 195 select PADATA 196 select CRYPTO_MANAGER 197 select CRYPTO_AEAD 198 help 199 This converts an arbitrary crypto algorithm into a parallel 200 algorithm that executes in kernel threads. 201 202config CRYPTO_WORKQUEUE 203 tristate 204 205config CRYPTO_CRYPTD 206 tristate "Software async crypto daemon" 207 select CRYPTO_BLKCIPHER 208 select CRYPTO_HASH 209 select CRYPTO_MANAGER 210 select CRYPTO_WORKQUEUE 211 help 212 This is a generic software asynchronous crypto daemon that 213 converts an arbitrary synchronous software crypto algorithm 214 into an asynchronous algorithm that executes in a kernel thread. 215 216config CRYPTO_AUTHENC 217 tristate "Authenc support" 218 select CRYPTO_AEAD 219 select CRYPTO_BLKCIPHER 220 select CRYPTO_MANAGER 221 select CRYPTO_HASH 222 select CRYPTO_NULL 223 help 224 Authenc: Combined mode wrapper for IPsec. 225 This is required for IPSec. 226 227config CRYPTO_TEST 228 tristate "Testing module" 229 depends on m 230 select CRYPTO_MANAGER 231 help 232 Quick & dirty crypto test module. 233 234config CRYPTO_SIMD 235 tristate 236 select CRYPTO_CRYPTD 237 238config CRYPTO_GLUE_HELPER_X86 239 tristate 240 depends on X86 241 select CRYPTO_BLKCIPHER 242 243config CRYPTO_ENGINE 244 tristate 245 246comment "Authenticated Encryption with Associated Data" 247 248config CRYPTO_CCM 249 tristate "CCM support" 250 select CRYPTO_CTR 251 select CRYPTO_HASH 252 select CRYPTO_AEAD 253 help 254 Support for Counter with CBC MAC. Required for IPsec. 255 256config CRYPTO_GCM 257 tristate "GCM/GMAC support" 258 select CRYPTO_CTR 259 select CRYPTO_AEAD 260 select CRYPTO_GHASH 261 select CRYPTO_NULL 262 help 263 Support for Galois/Counter Mode (GCM) and Galois Message 264 Authentication Code (GMAC). Required for IPSec. 265 266config CRYPTO_CHACHA20POLY1305 267 tristate "ChaCha20-Poly1305 AEAD support" 268 select CRYPTO_CHACHA20 269 select CRYPTO_POLY1305 270 select CRYPTO_AEAD 271 help 272 ChaCha20-Poly1305 AEAD support, RFC7539. 273 274 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 275 with the Poly1305 authenticator. It is defined in RFC7539 for use in 276 IETF protocols. 277 278config CRYPTO_AEGIS128 279 tristate "AEGIS-128 AEAD algorithm" 280 select CRYPTO_AEAD 281 select CRYPTO_AES # for AES S-box tables 282 help 283 Support for the AEGIS-128 dedicated AEAD algorithm. 284 285config CRYPTO_AEGIS128L 286 tristate "AEGIS-128L AEAD algorithm" 287 select CRYPTO_AEAD 288 select CRYPTO_AES # for AES S-box tables 289 help 290 Support for the AEGIS-128L dedicated AEAD algorithm. 291 292config CRYPTO_AEGIS256 293 tristate "AEGIS-256 AEAD algorithm" 294 select CRYPTO_AEAD 295 select CRYPTO_AES # for AES S-box tables 296 help 297 Support for the AEGIS-256 dedicated AEAD algorithm. 298 299config CRYPTO_AEGIS128_AESNI_SSE2 300 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 301 depends on X86 && 64BIT 302 select CRYPTO_AEAD 303 select CRYPTO_CRYPTD 304 help 305 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm. 306 307config CRYPTO_AEGIS128L_AESNI_SSE2 308 tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 309 depends on X86 && 64BIT 310 select CRYPTO_AEAD 311 select CRYPTO_CRYPTD 312 help 313 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm. 314 315config CRYPTO_AEGIS256_AESNI_SSE2 316 tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 317 depends on X86 && 64BIT 318 select CRYPTO_AEAD 319 select CRYPTO_CRYPTD 320 help 321 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm. 322 323config CRYPTO_MORUS640 324 tristate "MORUS-640 AEAD algorithm" 325 select CRYPTO_AEAD 326 help 327 Support for the MORUS-640 dedicated AEAD algorithm. 328 329config CRYPTO_MORUS640_GLUE 330 tristate 331 depends on X86 332 select CRYPTO_AEAD 333 select CRYPTO_CRYPTD 334 help 335 Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 336 algorithm. 337 338config CRYPTO_MORUS640_SSE2 339 tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 340 depends on X86 && 64BIT 341 select CRYPTO_AEAD 342 select CRYPTO_MORUS640_GLUE 343 help 344 SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 345 346config CRYPTO_MORUS1280 347 tristate "MORUS-1280 AEAD algorithm" 348 select CRYPTO_AEAD 349 help 350 Support for the MORUS-1280 dedicated AEAD algorithm. 351 352config CRYPTO_MORUS1280_GLUE 353 tristate 354 depends on X86 355 select CRYPTO_AEAD 356 select CRYPTO_CRYPTD 357 help 358 Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 359 algorithm. 360 361config CRYPTO_MORUS1280_SSE2 362 tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 363 depends on X86 && 64BIT 364 select CRYPTO_AEAD 365 select CRYPTO_MORUS1280_GLUE 366 help 367 SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 368 algorithm. 369 370config CRYPTO_MORUS1280_AVX2 371 tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 372 depends on X86 && 64BIT 373 select CRYPTO_AEAD 374 select CRYPTO_MORUS1280_GLUE 375 help 376 AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 377 algorithm. 378 379config CRYPTO_SEQIV 380 tristate "Sequence Number IV Generator" 381 select CRYPTO_AEAD 382 select CRYPTO_BLKCIPHER 383 select CRYPTO_NULL 384 select CRYPTO_RNG_DEFAULT 385 help 386 This IV generator generates an IV based on a sequence number by 387 xoring it with a salt. This algorithm is mainly useful for CTR 388 389config CRYPTO_ECHAINIV 390 tristate "Encrypted Chain IV Generator" 391 select CRYPTO_AEAD 392 select CRYPTO_NULL 393 select CRYPTO_RNG_DEFAULT 394 default m 395 help 396 This IV generator generates an IV based on the encryption of 397 a sequence number xored with a salt. This is the default 398 algorithm for CBC. 399 400comment "Block modes" 401 402config CRYPTO_CBC 403 tristate "CBC support" 404 select CRYPTO_BLKCIPHER 405 select CRYPTO_MANAGER 406 help 407 CBC: Cipher Block Chaining mode 408 This block cipher algorithm is required for IPSec. 409 410config CRYPTO_CFB 411 tristate "CFB support" 412 select CRYPTO_BLKCIPHER 413 select CRYPTO_MANAGER 414 help 415 CFB: Cipher FeedBack mode 416 This block cipher algorithm is required for TPM2 Cryptography. 417 418config CRYPTO_CTR 419 tristate "CTR support" 420 select CRYPTO_BLKCIPHER 421 select CRYPTO_SEQIV 422 select CRYPTO_MANAGER 423 help 424 CTR: Counter mode 425 This block cipher algorithm is required for IPSec. 426 427config CRYPTO_CTS 428 tristate "CTS support" 429 select CRYPTO_BLKCIPHER 430 help 431 CTS: Cipher Text Stealing 432 This is the Cipher Text Stealing mode as described by 433 Section 8 of rfc2040 and referenced by rfc3962 434 (rfc3962 includes errata information in its Appendix A) or 435 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 436 This mode is required for Kerberos gss mechanism support 437 for AES encryption. 438 439 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 440 441config CRYPTO_ECB 442 tristate "ECB support" 443 select CRYPTO_BLKCIPHER 444 select CRYPTO_MANAGER 445 help 446 ECB: Electronic CodeBook mode 447 This is the simplest block cipher algorithm. It simply encrypts 448 the input block by block. 449 450config CRYPTO_LRW 451 tristate "LRW support" 452 select CRYPTO_BLKCIPHER 453 select CRYPTO_MANAGER 454 select CRYPTO_GF128MUL 455 help 456 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 457 narrow block cipher mode for dm-crypt. Use it with cipher 458 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 459 The first 128, 192 or 256 bits in the key are used for AES and the 460 rest is used to tie each cipher block to its logical position. 461 462config CRYPTO_OFB 463 tristate "OFB support" 464 select CRYPTO_BLKCIPHER 465 select CRYPTO_MANAGER 466 help 467 OFB: the Output Feedback mode makes a block cipher into a synchronous 468 stream cipher. It generates keystream blocks, which are then XORed 469 with the plaintext blocks to get the ciphertext. Flipping a bit in the 470 ciphertext produces a flipped bit in the plaintext at the same 471 location. This property allows many error correcting codes to function 472 normally even when applied before encryption. 473 474config CRYPTO_PCBC 475 tristate "PCBC support" 476 select CRYPTO_BLKCIPHER 477 select CRYPTO_MANAGER 478 help 479 PCBC: Propagating Cipher Block Chaining mode 480 This block cipher algorithm is required for RxRPC. 481 482config CRYPTO_XTS 483 tristate "XTS support" 484 select CRYPTO_BLKCIPHER 485 select CRYPTO_MANAGER 486 select CRYPTO_ECB 487 help 488 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 489 key size 256, 384 or 512 bits. This implementation currently 490 can't handle a sectorsize which is not a multiple of 16 bytes. 491 492config CRYPTO_KEYWRAP 493 tristate "Key wrapping support" 494 select CRYPTO_BLKCIPHER 495 help 496 Support for key wrapping (NIST SP800-38F / RFC3394) without 497 padding. 498 499config CRYPTO_NHPOLY1305 500 tristate 501 select CRYPTO_HASH 502 select CRYPTO_POLY1305 503 504config CRYPTO_NHPOLY1305_SSE2 505 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 506 depends on X86 && 64BIT 507 select CRYPTO_NHPOLY1305 508 help 509 SSE2 optimized implementation of the hash function used by the 510 Adiantum encryption mode. 511 512config CRYPTO_NHPOLY1305_AVX2 513 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 514 depends on X86 && 64BIT 515 select CRYPTO_NHPOLY1305 516 help 517 AVX2 optimized implementation of the hash function used by the 518 Adiantum encryption mode. 519 520config CRYPTO_ADIANTUM 521 tristate "Adiantum support" 522 select CRYPTO_CHACHA20 523 select CRYPTO_POLY1305 524 select CRYPTO_NHPOLY1305 525 help 526 Adiantum is a tweakable, length-preserving encryption mode 527 designed for fast and secure disk encryption, especially on 528 CPUs without dedicated crypto instructions. It encrypts 529 each sector using the XChaCha12 stream cipher, two passes of 530 an ε-almost-∆-universal hash function, and an invocation of 531 the AES-256 block cipher on a single 16-byte block. On CPUs 532 without AES instructions, Adiantum is much faster than 533 AES-XTS. 534 535 Adiantum's security is provably reducible to that of its 536 underlying stream and block ciphers, subject to a security 537 bound. Unlike XTS, Adiantum is a true wide-block encryption 538 mode, so it actually provides an even stronger notion of 539 security than XTS, subject to the security bound. 540 541 If unsure, say N. 542 543comment "Hash modes" 544 545config CRYPTO_CMAC 546 tristate "CMAC support" 547 select CRYPTO_HASH 548 select CRYPTO_MANAGER 549 help 550 Cipher-based Message Authentication Code (CMAC) specified by 551 The National Institute of Standards and Technology (NIST). 552 553 https://tools.ietf.org/html/rfc4493 554 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 555 556config CRYPTO_HMAC 557 tristate "HMAC support" 558 select CRYPTO_HASH 559 select CRYPTO_MANAGER 560 help 561 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 562 This is required for IPSec. 563 564config CRYPTO_XCBC 565 tristate "XCBC support" 566 select CRYPTO_HASH 567 select CRYPTO_MANAGER 568 help 569 XCBC: Keyed-Hashing with encryption algorithm 570 http://www.ietf.org/rfc/rfc3566.txt 571 http://csrc.nist.gov/encryption/modes/proposedmodes/ 572 xcbc-mac/xcbc-mac-spec.pdf 573 574config CRYPTO_VMAC 575 tristate "VMAC support" 576 select CRYPTO_HASH 577 select CRYPTO_MANAGER 578 help 579 VMAC is a message authentication algorithm designed for 580 very high speed on 64-bit architectures. 581 582 See also: 583 <http://fastcrypto.org/vmac> 584 585comment "Digest" 586 587config CRYPTO_CRC32C 588 tristate "CRC32c CRC algorithm" 589 select CRYPTO_HASH 590 select CRC32 591 help 592 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 593 by iSCSI for header and data digests and by others. 594 See Castagnoli93. Module will be crc32c. 595 596config CRYPTO_CRC32C_INTEL 597 tristate "CRC32c INTEL hardware acceleration" 598 depends on X86 599 select CRYPTO_HASH 600 help 601 In Intel processor with SSE4.2 supported, the processor will 602 support CRC32C implementation using hardware accelerated CRC32 603 instruction. This option will create 'crc32c-intel' module, 604 which will enable any routine to use the CRC32 instruction to 605 gain performance compared with software implementation. 606 Module will be crc32c-intel. 607 608config CRYPTO_CRC32C_VPMSUM 609 tristate "CRC32c CRC algorithm (powerpc64)" 610 depends on PPC64 && ALTIVEC 611 select CRYPTO_HASH 612 select CRC32 613 help 614 CRC32c algorithm implemented using vector polynomial multiply-sum 615 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 616 and newer processors for improved performance. 617 618 619config CRYPTO_CRC32C_SPARC64 620 tristate "CRC32c CRC algorithm (SPARC64)" 621 depends on SPARC64 622 select CRYPTO_HASH 623 select CRC32 624 help 625 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 626 when available. 627 628config CRYPTO_CRC32 629 tristate "CRC32 CRC algorithm" 630 select CRYPTO_HASH 631 select CRC32 632 help 633 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 634 Shash crypto api wrappers to crc32_le function. 635 636config CRYPTO_CRC32_PCLMUL 637 tristate "CRC32 PCLMULQDQ hardware acceleration" 638 depends on X86 639 select CRYPTO_HASH 640 select CRC32 641 help 642 From Intel Westmere and AMD Bulldozer processor with SSE4.2 643 and PCLMULQDQ supported, the processor will support 644 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 645 instruction. This option will create 'crc32-plcmul' module, 646 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 647 and gain better performance as compared with the table implementation. 648 649config CRYPTO_CRC32_MIPS 650 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 651 depends on MIPS_CRC_SUPPORT 652 select CRYPTO_HASH 653 help 654 CRC32c and CRC32 CRC algorithms implemented using mips crypto 655 instructions, when available. 656 657 658config CRYPTO_CRCT10DIF 659 tristate "CRCT10DIF algorithm" 660 select CRYPTO_HASH 661 help 662 CRC T10 Data Integrity Field computation is being cast as 663 a crypto transform. This allows for faster crc t10 diff 664 transforms to be used if they are available. 665 666config CRYPTO_CRCT10DIF_PCLMUL 667 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 668 depends on X86 && 64BIT && CRC_T10DIF 669 select CRYPTO_HASH 670 help 671 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 672 CRC T10 DIF PCLMULQDQ computation can be hardware 673 accelerated PCLMULQDQ instruction. This option will create 674 'crct10dif-plcmul' module, which is faster when computing the 675 crct10dif checksum as compared with the generic table implementation. 676 677config CRYPTO_CRCT10DIF_VPMSUM 678 tristate "CRC32T10DIF powerpc64 hardware acceleration" 679 depends on PPC64 && ALTIVEC && CRC_T10DIF 680 select CRYPTO_HASH 681 help 682 CRC10T10DIF algorithm implemented using vector polynomial 683 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 684 POWER8 and newer processors for improved performance. 685 686config CRYPTO_VPMSUM_TESTER 687 tristate "Powerpc64 vpmsum hardware acceleration tester" 688 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 689 help 690 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 691 POWER8 vpmsum instructions. 692 Unless you are testing these algorithms, you don't need this. 693 694config CRYPTO_GHASH 695 tristate "GHASH digest algorithm" 696 select CRYPTO_GF128MUL 697 select CRYPTO_HASH 698 help 699 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 700 701config CRYPTO_POLY1305 702 tristate "Poly1305 authenticator algorithm" 703 select CRYPTO_HASH 704 help 705 Poly1305 authenticator algorithm, RFC7539. 706 707 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 708 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 709 in IETF protocols. This is the portable C implementation of Poly1305. 710 711config CRYPTO_POLY1305_X86_64 712 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 713 depends on X86 && 64BIT 714 select CRYPTO_POLY1305 715 help 716 Poly1305 authenticator algorithm, RFC7539. 717 718 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 719 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 720 in IETF protocols. This is the x86_64 assembler implementation using SIMD 721 instructions. 722 723config CRYPTO_MD4 724 tristate "MD4 digest algorithm" 725 select CRYPTO_HASH 726 help 727 MD4 message digest algorithm (RFC1320). 728 729config CRYPTO_MD5 730 tristate "MD5 digest algorithm" 731 select CRYPTO_HASH 732 help 733 MD5 message digest algorithm (RFC1321). 734 735config CRYPTO_MD5_OCTEON 736 tristate "MD5 digest algorithm (OCTEON)" 737 depends on CPU_CAVIUM_OCTEON 738 select CRYPTO_MD5 739 select CRYPTO_HASH 740 help 741 MD5 message digest algorithm (RFC1321) implemented 742 using OCTEON crypto instructions, when available. 743 744config CRYPTO_MD5_PPC 745 tristate "MD5 digest algorithm (PPC)" 746 depends on PPC 747 select CRYPTO_HASH 748 help 749 MD5 message digest algorithm (RFC1321) implemented 750 in PPC assembler. 751 752config CRYPTO_MD5_SPARC64 753 tristate "MD5 digest algorithm (SPARC64)" 754 depends on SPARC64 755 select CRYPTO_MD5 756 select CRYPTO_HASH 757 help 758 MD5 message digest algorithm (RFC1321) implemented 759 using sparc64 crypto instructions, when available. 760 761config CRYPTO_MICHAEL_MIC 762 tristate "Michael MIC keyed digest algorithm" 763 select CRYPTO_HASH 764 help 765 Michael MIC is used for message integrity protection in TKIP 766 (IEEE 802.11i). This algorithm is required for TKIP, but it 767 should not be used for other purposes because of the weakness 768 of the algorithm. 769 770config CRYPTO_RMD128 771 tristate "RIPEMD-128 digest algorithm" 772 select CRYPTO_HASH 773 help 774 RIPEMD-128 (ISO/IEC 10118-3:2004). 775 776 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 777 be used as a secure replacement for RIPEMD. For other use cases, 778 RIPEMD-160 should be used. 779 780 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 781 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 782 783config CRYPTO_RMD160 784 tristate "RIPEMD-160 digest algorithm" 785 select CRYPTO_HASH 786 help 787 RIPEMD-160 (ISO/IEC 10118-3:2004). 788 789 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 790 to be used as a secure replacement for the 128-bit hash functions 791 MD4, MD5 and it's predecessor RIPEMD 792 (not to be confused with RIPEMD-128). 793 794 It's speed is comparable to SHA1 and there are no known attacks 795 against RIPEMD-160. 796 797 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 798 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 799 800config CRYPTO_RMD256 801 tristate "RIPEMD-256 digest algorithm" 802 select CRYPTO_HASH 803 help 804 RIPEMD-256 is an optional extension of RIPEMD-128 with a 805 256 bit hash. It is intended for applications that require 806 longer hash-results, without needing a larger security level 807 (than RIPEMD-128). 808 809 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 810 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 811 812config CRYPTO_RMD320 813 tristate "RIPEMD-320 digest algorithm" 814 select CRYPTO_HASH 815 help 816 RIPEMD-320 is an optional extension of RIPEMD-160 with a 817 320 bit hash. It is intended for applications that require 818 longer hash-results, without needing a larger security level 819 (than RIPEMD-160). 820 821 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 822 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 823 824config CRYPTO_SHA1 825 tristate "SHA1 digest algorithm" 826 select CRYPTO_HASH 827 help 828 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 829 830config CRYPTO_SHA1_SSSE3 831 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 832 depends on X86 && 64BIT 833 select CRYPTO_SHA1 834 select CRYPTO_HASH 835 help 836 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 837 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 838 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 839 when available. 840 841config CRYPTO_SHA256_SSSE3 842 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 843 depends on X86 && 64BIT 844 select CRYPTO_SHA256 845 select CRYPTO_HASH 846 help 847 SHA-256 secure hash standard (DFIPS 180-2) implemented 848 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 849 Extensions version 1 (AVX1), or Advanced Vector Extensions 850 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 851 Instructions) when available. 852 853config CRYPTO_SHA512_SSSE3 854 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 855 depends on X86 && 64BIT 856 select CRYPTO_SHA512 857 select CRYPTO_HASH 858 help 859 SHA-512 secure hash standard (DFIPS 180-2) implemented 860 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 861 Extensions version 1 (AVX1), or Advanced Vector Extensions 862 version 2 (AVX2) instructions, when available. 863 864config CRYPTO_SHA1_OCTEON 865 tristate "SHA1 digest algorithm (OCTEON)" 866 depends on CPU_CAVIUM_OCTEON 867 select CRYPTO_SHA1 868 select CRYPTO_HASH 869 help 870 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 871 using OCTEON crypto instructions, when available. 872 873config CRYPTO_SHA1_SPARC64 874 tristate "SHA1 digest algorithm (SPARC64)" 875 depends on SPARC64 876 select CRYPTO_SHA1 877 select CRYPTO_HASH 878 help 879 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 880 using sparc64 crypto instructions, when available. 881 882config CRYPTO_SHA1_PPC 883 tristate "SHA1 digest algorithm (powerpc)" 884 depends on PPC 885 help 886 This is the powerpc hardware accelerated implementation of the 887 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 888 889config CRYPTO_SHA1_PPC_SPE 890 tristate "SHA1 digest algorithm (PPC SPE)" 891 depends on PPC && SPE 892 help 893 SHA-1 secure hash standard (DFIPS 180-4) implemented 894 using powerpc SPE SIMD instruction set. 895 896config CRYPTO_SHA256 897 tristate "SHA224 and SHA256 digest algorithm" 898 select CRYPTO_HASH 899 help 900 SHA256 secure hash standard (DFIPS 180-2). 901 902 This version of SHA implements a 256 bit hash with 128 bits of 903 security against collision attacks. 904 905 This code also includes SHA-224, a 224 bit hash with 112 bits 906 of security against collision attacks. 907 908config CRYPTO_SHA256_PPC_SPE 909 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 910 depends on PPC && SPE 911 select CRYPTO_SHA256 912 select CRYPTO_HASH 913 help 914 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 915 implemented using powerpc SPE SIMD instruction set. 916 917config CRYPTO_SHA256_OCTEON 918 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 919 depends on CPU_CAVIUM_OCTEON 920 select CRYPTO_SHA256 921 select CRYPTO_HASH 922 help 923 SHA-256 secure hash standard (DFIPS 180-2) implemented 924 using OCTEON crypto instructions, when available. 925 926config CRYPTO_SHA256_SPARC64 927 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 928 depends on SPARC64 929 select CRYPTO_SHA256 930 select CRYPTO_HASH 931 help 932 SHA-256 secure hash standard (DFIPS 180-2) implemented 933 using sparc64 crypto instructions, when available. 934 935config CRYPTO_SHA512 936 tristate "SHA384 and SHA512 digest algorithms" 937 select CRYPTO_HASH 938 help 939 SHA512 secure hash standard (DFIPS 180-2). 940 941 This version of SHA implements a 512 bit hash with 256 bits of 942 security against collision attacks. 943 944 This code also includes SHA-384, a 384 bit hash with 192 bits 945 of security against collision attacks. 946 947config CRYPTO_SHA512_OCTEON 948 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 949 depends on CPU_CAVIUM_OCTEON 950 select CRYPTO_SHA512 951 select CRYPTO_HASH 952 help 953 SHA-512 secure hash standard (DFIPS 180-2) implemented 954 using OCTEON crypto instructions, when available. 955 956config CRYPTO_SHA512_SPARC64 957 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 958 depends on SPARC64 959 select CRYPTO_SHA512 960 select CRYPTO_HASH 961 help 962 SHA-512 secure hash standard (DFIPS 180-2) implemented 963 using sparc64 crypto instructions, when available. 964 965config CRYPTO_SHA3 966 tristate "SHA3 digest algorithm" 967 select CRYPTO_HASH 968 help 969 SHA-3 secure hash standard (DFIPS 202). It's based on 970 cryptographic sponge function family called Keccak. 971 972 References: 973 http://keccak.noekeon.org/ 974 975config CRYPTO_SM3 976 tristate "SM3 digest algorithm" 977 select CRYPTO_HASH 978 help 979 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 980 It is part of the Chinese Commercial Cryptography suite. 981 982 References: 983 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 984 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 985 986config CRYPTO_STREEBOG 987 tristate "Streebog Hash Function" 988 select CRYPTO_HASH 989 help 990 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 991 cryptographic standard algorithms (called GOST algorithms). 992 This setting enables two hash algorithms with 256 and 512 bits output. 993 994 References: 995 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 996 https://tools.ietf.org/html/rfc6986 997 998config CRYPTO_TGR192 999 tristate "Tiger digest algorithms" 1000 select CRYPTO_HASH 1001 help 1002 Tiger hash algorithm 192, 160 and 128-bit hashes 1003 1004 Tiger is a hash function optimized for 64-bit processors while 1005 still having decent performance on 32-bit processors. 1006 Tiger was developed by Ross Anderson and Eli Biham. 1007 1008 See also: 1009 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 1010 1011config CRYPTO_WP512 1012 tristate "Whirlpool digest algorithms" 1013 select CRYPTO_HASH 1014 help 1015 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1016 1017 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1018 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1019 1020 See also: 1021 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1022 1023config CRYPTO_GHASH_CLMUL_NI_INTEL 1024 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 1025 depends on X86 && 64BIT 1026 select CRYPTO_CRYPTD 1027 help 1028 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 1029 The implementation is accelerated by CLMUL-NI of Intel. 1030 1031comment "Ciphers" 1032 1033config CRYPTO_AES 1034 tristate "AES cipher algorithms" 1035 select CRYPTO_ALGAPI 1036 help 1037 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1038 algorithm. 1039 1040 Rijndael appears to be consistently a very good performer in 1041 both hardware and software across a wide range of computing 1042 environments regardless of its use in feedback or non-feedback 1043 modes. Its key setup time is excellent, and its key agility is 1044 good. Rijndael's very low memory requirements make it very well 1045 suited for restricted-space environments, in which it also 1046 demonstrates excellent performance. Rijndael's operations are 1047 among the easiest to defend against power and timing attacks. 1048 1049 The AES specifies three key sizes: 128, 192 and 256 bits 1050 1051 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1052 1053config CRYPTO_AES_TI 1054 tristate "Fixed time AES cipher" 1055 select CRYPTO_ALGAPI 1056 help 1057 This is a generic implementation of AES that attempts to eliminate 1058 data dependent latencies as much as possible without affecting 1059 performance too much. It is intended for use by the generic CCM 1060 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1061 solely on encryption (although decryption is supported as well, but 1062 with a more dramatic performance hit) 1063 1064 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1065 8 for decryption), this implementation only uses just two S-boxes of 1066 256 bytes each, and attempts to eliminate data dependent latencies by 1067 prefetching the entire table into the cache at the start of each 1068 block. Interrupts are also disabled to avoid races where cachelines 1069 are evicted when the CPU is interrupted to do something else. 1070 1071config CRYPTO_AES_586 1072 tristate "AES cipher algorithms (i586)" 1073 depends on (X86 || UML_X86) && !64BIT 1074 select CRYPTO_ALGAPI 1075 select CRYPTO_AES 1076 help 1077 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1078 algorithm. 1079 1080 Rijndael appears to be consistently a very good performer in 1081 both hardware and software across a wide range of computing 1082 environments regardless of its use in feedback or non-feedback 1083 modes. Its key setup time is excellent, and its key agility is 1084 good. Rijndael's very low memory requirements make it very well 1085 suited for restricted-space environments, in which it also 1086 demonstrates excellent performance. Rijndael's operations are 1087 among the easiest to defend against power and timing attacks. 1088 1089 The AES specifies three key sizes: 128, 192 and 256 bits 1090 1091 See <http://csrc.nist.gov/encryption/aes/> for more information. 1092 1093config CRYPTO_AES_X86_64 1094 tristate "AES cipher algorithms (x86_64)" 1095 depends on (X86 || UML_X86) && 64BIT 1096 select CRYPTO_ALGAPI 1097 select CRYPTO_AES 1098 help 1099 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1100 algorithm. 1101 1102 Rijndael appears to be consistently a very good performer in 1103 both hardware and software across a wide range of computing 1104 environments regardless of its use in feedback or non-feedback 1105 modes. Its key setup time is excellent, and its key agility is 1106 good. Rijndael's very low memory requirements make it very well 1107 suited for restricted-space environments, in which it also 1108 demonstrates excellent performance. Rijndael's operations are 1109 among the easiest to defend against power and timing attacks. 1110 1111 The AES specifies three key sizes: 128, 192 and 256 bits 1112 1113 See <http://csrc.nist.gov/encryption/aes/> for more information. 1114 1115config CRYPTO_AES_NI_INTEL 1116 tristate "AES cipher algorithms (AES-NI)" 1117 depends on X86 1118 select CRYPTO_AEAD 1119 select CRYPTO_AES_X86_64 if 64BIT 1120 select CRYPTO_AES_586 if !64BIT 1121 select CRYPTO_ALGAPI 1122 select CRYPTO_BLKCIPHER 1123 select CRYPTO_GLUE_HELPER_X86 if 64BIT 1124 select CRYPTO_SIMD 1125 help 1126 Use Intel AES-NI instructions for AES algorithm. 1127 1128 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1129 algorithm. 1130 1131 Rijndael appears to be consistently a very good performer in 1132 both hardware and software across a wide range of computing 1133 environments regardless of its use in feedback or non-feedback 1134 modes. Its key setup time is excellent, and its key agility is 1135 good. Rijndael's very low memory requirements make it very well 1136 suited for restricted-space environments, in which it also 1137 demonstrates excellent performance. Rijndael's operations are 1138 among the easiest to defend against power and timing attacks. 1139 1140 The AES specifies three key sizes: 128, 192 and 256 bits 1141 1142 See <http://csrc.nist.gov/encryption/aes/> for more information. 1143 1144 In addition to AES cipher algorithm support, the acceleration 1145 for some popular block cipher mode is supported too, including 1146 ECB, CBC, LRW, XTS. The 64 bit version has additional 1147 acceleration for CTR. 1148 1149config CRYPTO_AES_SPARC64 1150 tristate "AES cipher algorithms (SPARC64)" 1151 depends on SPARC64 1152 select CRYPTO_CRYPTD 1153 select CRYPTO_ALGAPI 1154 help 1155 Use SPARC64 crypto opcodes for AES algorithm. 1156 1157 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1158 algorithm. 1159 1160 Rijndael appears to be consistently a very good performer in 1161 both hardware and software across a wide range of computing 1162 environments regardless of its use in feedback or non-feedback 1163 modes. Its key setup time is excellent, and its key agility is 1164 good. Rijndael's very low memory requirements make it very well 1165 suited for restricted-space environments, in which it also 1166 demonstrates excellent performance. Rijndael's operations are 1167 among the easiest to defend against power and timing attacks. 1168 1169 The AES specifies three key sizes: 128, 192 and 256 bits 1170 1171 See <http://csrc.nist.gov/encryption/aes/> for more information. 1172 1173 In addition to AES cipher algorithm support, the acceleration 1174 for some popular block cipher mode is supported too, including 1175 ECB and CBC. 1176 1177config CRYPTO_AES_PPC_SPE 1178 tristate "AES cipher algorithms (PPC SPE)" 1179 depends on PPC && SPE 1180 help 1181 AES cipher algorithms (FIPS-197). Additionally the acceleration 1182 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1183 This module should only be used for low power (router) devices 1184 without hardware AES acceleration (e.g. caam crypto). It reduces the 1185 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1186 timining attacks. Nevertheless it might be not as secure as other 1187 architecture specific assembler implementations that work on 1KB 1188 tables or 256 bytes S-boxes. 1189 1190config CRYPTO_ANUBIS 1191 tristate "Anubis cipher algorithm" 1192 select CRYPTO_ALGAPI 1193 help 1194 Anubis cipher algorithm. 1195 1196 Anubis is a variable key length cipher which can use keys from 1197 128 bits to 320 bits in length. It was evaluated as a entrant 1198 in the NESSIE competition. 1199 1200 See also: 1201 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1202 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1203 1204config CRYPTO_ARC4 1205 tristate "ARC4 cipher algorithm" 1206 select CRYPTO_BLKCIPHER 1207 help 1208 ARC4 cipher algorithm. 1209 1210 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1211 bits in length. This algorithm is required for driver-based 1212 WEP, but it should not be for other purposes because of the 1213 weakness of the algorithm. 1214 1215config CRYPTO_BLOWFISH 1216 tristate "Blowfish cipher algorithm" 1217 select CRYPTO_ALGAPI 1218 select CRYPTO_BLOWFISH_COMMON 1219 help 1220 Blowfish cipher algorithm, by Bruce Schneier. 1221 1222 This is a variable key length cipher which can use keys from 32 1223 bits to 448 bits in length. It's fast, simple and specifically 1224 designed for use on "large microprocessors". 1225 1226 See also: 1227 <http://www.schneier.com/blowfish.html> 1228 1229config CRYPTO_BLOWFISH_COMMON 1230 tristate 1231 help 1232 Common parts of the Blowfish cipher algorithm shared by the 1233 generic c and the assembler implementations. 1234 1235 See also: 1236 <http://www.schneier.com/blowfish.html> 1237 1238config CRYPTO_BLOWFISH_X86_64 1239 tristate "Blowfish cipher algorithm (x86_64)" 1240 depends on X86 && 64BIT 1241 select CRYPTO_BLKCIPHER 1242 select CRYPTO_BLOWFISH_COMMON 1243 help 1244 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1245 1246 This is a variable key length cipher which can use keys from 32 1247 bits to 448 bits in length. It's fast, simple and specifically 1248 designed for use on "large microprocessors". 1249 1250 See also: 1251 <http://www.schneier.com/blowfish.html> 1252 1253config CRYPTO_CAMELLIA 1254 tristate "Camellia cipher algorithms" 1255 depends on CRYPTO 1256 select CRYPTO_ALGAPI 1257 help 1258 Camellia cipher algorithms module. 1259 1260 Camellia is a symmetric key block cipher developed jointly 1261 at NTT and Mitsubishi Electric Corporation. 1262 1263 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1264 1265 See also: 1266 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1267 1268config CRYPTO_CAMELLIA_X86_64 1269 tristate "Camellia cipher algorithm (x86_64)" 1270 depends on X86 && 64BIT 1271 depends on CRYPTO 1272 select CRYPTO_BLKCIPHER 1273 select CRYPTO_GLUE_HELPER_X86 1274 help 1275 Camellia cipher algorithm module (x86_64). 1276 1277 Camellia is a symmetric key block cipher developed jointly 1278 at NTT and Mitsubishi Electric Corporation. 1279 1280 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1281 1282 See also: 1283 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1284 1285config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1286 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1287 depends on X86 && 64BIT 1288 depends on CRYPTO 1289 select CRYPTO_BLKCIPHER 1290 select CRYPTO_CAMELLIA_X86_64 1291 select CRYPTO_GLUE_HELPER_X86 1292 select CRYPTO_SIMD 1293 select CRYPTO_XTS 1294 help 1295 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1296 1297 Camellia is a symmetric key block cipher developed jointly 1298 at NTT and Mitsubishi Electric Corporation. 1299 1300 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1301 1302 See also: 1303 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1304 1305config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1306 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1307 depends on X86 && 64BIT 1308 depends on CRYPTO 1309 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1310 help 1311 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1312 1313 Camellia is a symmetric key block cipher developed jointly 1314 at NTT and Mitsubishi Electric Corporation. 1315 1316 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1317 1318 See also: 1319 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1320 1321config CRYPTO_CAMELLIA_SPARC64 1322 tristate "Camellia cipher algorithm (SPARC64)" 1323 depends on SPARC64 1324 depends on CRYPTO 1325 select CRYPTO_ALGAPI 1326 help 1327 Camellia cipher algorithm module (SPARC64). 1328 1329 Camellia is a symmetric key block cipher developed jointly 1330 at NTT and Mitsubishi Electric Corporation. 1331 1332 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1333 1334 See also: 1335 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1336 1337config CRYPTO_CAST_COMMON 1338 tristate 1339 help 1340 Common parts of the CAST cipher algorithms shared by the 1341 generic c and the assembler implementations. 1342 1343config CRYPTO_CAST5 1344 tristate "CAST5 (CAST-128) cipher algorithm" 1345 select CRYPTO_ALGAPI 1346 select CRYPTO_CAST_COMMON 1347 help 1348 The CAST5 encryption algorithm (synonymous with CAST-128) is 1349 described in RFC2144. 1350 1351config CRYPTO_CAST5_AVX_X86_64 1352 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1353 depends on X86 && 64BIT 1354 select CRYPTO_BLKCIPHER 1355 select CRYPTO_CAST5 1356 select CRYPTO_CAST_COMMON 1357 select CRYPTO_SIMD 1358 help 1359 The CAST5 encryption algorithm (synonymous with CAST-128) is 1360 described in RFC2144. 1361 1362 This module provides the Cast5 cipher algorithm that processes 1363 sixteen blocks parallel using the AVX instruction set. 1364 1365config CRYPTO_CAST6 1366 tristate "CAST6 (CAST-256) cipher algorithm" 1367 select CRYPTO_ALGAPI 1368 select CRYPTO_CAST_COMMON 1369 help 1370 The CAST6 encryption algorithm (synonymous with CAST-256) is 1371 described in RFC2612. 1372 1373config CRYPTO_CAST6_AVX_X86_64 1374 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1375 depends on X86 && 64BIT 1376 select CRYPTO_BLKCIPHER 1377 select CRYPTO_CAST6 1378 select CRYPTO_CAST_COMMON 1379 select CRYPTO_GLUE_HELPER_X86 1380 select CRYPTO_SIMD 1381 select CRYPTO_XTS 1382 help 1383 The CAST6 encryption algorithm (synonymous with CAST-256) is 1384 described in RFC2612. 1385 1386 This module provides the Cast6 cipher algorithm that processes 1387 eight blocks parallel using the AVX instruction set. 1388 1389config CRYPTO_DES 1390 tristate "DES and Triple DES EDE cipher algorithms" 1391 select CRYPTO_ALGAPI 1392 help 1393 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1394 1395config CRYPTO_DES_SPARC64 1396 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1397 depends on SPARC64 1398 select CRYPTO_ALGAPI 1399 select CRYPTO_DES 1400 help 1401 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1402 optimized using SPARC64 crypto opcodes. 1403 1404config CRYPTO_DES3_EDE_X86_64 1405 tristate "Triple DES EDE cipher algorithm (x86-64)" 1406 depends on X86 && 64BIT 1407 select CRYPTO_BLKCIPHER 1408 select CRYPTO_DES 1409 help 1410 Triple DES EDE (FIPS 46-3) algorithm. 1411 1412 This module provides implementation of the Triple DES EDE cipher 1413 algorithm that is optimized for x86-64 processors. Two versions of 1414 algorithm are provided; regular processing one input block and 1415 one that processes three blocks parallel. 1416 1417config CRYPTO_FCRYPT 1418 tristate "FCrypt cipher algorithm" 1419 select CRYPTO_ALGAPI 1420 select CRYPTO_BLKCIPHER 1421 help 1422 FCrypt algorithm used by RxRPC. 1423 1424config CRYPTO_KHAZAD 1425 tristate "Khazad cipher algorithm" 1426 select CRYPTO_ALGAPI 1427 help 1428 Khazad cipher algorithm. 1429 1430 Khazad was a finalist in the initial NESSIE competition. It is 1431 an algorithm optimized for 64-bit processors with good performance 1432 on 32-bit processors. Khazad uses an 128 bit key size. 1433 1434 See also: 1435 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1436 1437config CRYPTO_SALSA20 1438 tristate "Salsa20 stream cipher algorithm" 1439 select CRYPTO_BLKCIPHER 1440 help 1441 Salsa20 stream cipher algorithm. 1442 1443 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1444 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1445 1446 The Salsa20 stream cipher algorithm is designed by Daniel J. 1447 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1448 1449config CRYPTO_CHACHA20 1450 tristate "ChaCha stream cipher algorithms" 1451 select CRYPTO_BLKCIPHER 1452 help 1453 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1454 1455 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1456 Bernstein and further specified in RFC7539 for use in IETF protocols. 1457 This is the portable C implementation of ChaCha20. See also: 1458 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1459 1460 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1461 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1462 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1463 while provably retaining ChaCha20's security. See also: 1464 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1465 1466 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1467 reduced security margin but increased performance. It can be needed 1468 in some performance-sensitive scenarios. 1469 1470config CRYPTO_CHACHA20_X86_64 1471 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1472 depends on X86 && 64BIT 1473 select CRYPTO_BLKCIPHER 1474 select CRYPTO_CHACHA20 1475 help 1476 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1477 XChaCha20, and XChaCha12 stream ciphers. 1478 1479config CRYPTO_SEED 1480 tristate "SEED cipher algorithm" 1481 select CRYPTO_ALGAPI 1482 help 1483 SEED cipher algorithm (RFC4269). 1484 1485 SEED is a 128-bit symmetric key block cipher that has been 1486 developed by KISA (Korea Information Security Agency) as a 1487 national standard encryption algorithm of the Republic of Korea. 1488 It is a 16 round block cipher with the key size of 128 bit. 1489 1490 See also: 1491 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1492 1493config CRYPTO_SERPENT 1494 tristate "Serpent cipher algorithm" 1495 select CRYPTO_ALGAPI 1496 help 1497 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1498 1499 Keys are allowed to be from 0 to 256 bits in length, in steps 1500 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1501 variant of Serpent for compatibility with old kerneli.org code. 1502 1503 See also: 1504 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1505 1506config CRYPTO_SERPENT_SSE2_X86_64 1507 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1508 depends on X86 && 64BIT 1509 select CRYPTO_BLKCIPHER 1510 select CRYPTO_GLUE_HELPER_X86 1511 select CRYPTO_SERPENT 1512 select CRYPTO_SIMD 1513 help 1514 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1515 1516 Keys are allowed to be from 0 to 256 bits in length, in steps 1517 of 8 bits. 1518 1519 This module provides Serpent cipher algorithm that processes eight 1520 blocks parallel using SSE2 instruction set. 1521 1522 See also: 1523 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1524 1525config CRYPTO_SERPENT_SSE2_586 1526 tristate "Serpent cipher algorithm (i586/SSE2)" 1527 depends on X86 && !64BIT 1528 select CRYPTO_BLKCIPHER 1529 select CRYPTO_GLUE_HELPER_X86 1530 select CRYPTO_SERPENT 1531 select CRYPTO_SIMD 1532 help 1533 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1534 1535 Keys are allowed to be from 0 to 256 bits in length, in steps 1536 of 8 bits. 1537 1538 This module provides Serpent cipher algorithm that processes four 1539 blocks parallel using SSE2 instruction set. 1540 1541 See also: 1542 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1543 1544config CRYPTO_SERPENT_AVX_X86_64 1545 tristate "Serpent cipher algorithm (x86_64/AVX)" 1546 depends on X86 && 64BIT 1547 select CRYPTO_BLKCIPHER 1548 select CRYPTO_GLUE_HELPER_X86 1549 select CRYPTO_SERPENT 1550 select CRYPTO_SIMD 1551 select CRYPTO_XTS 1552 help 1553 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1554 1555 Keys are allowed to be from 0 to 256 bits in length, in steps 1556 of 8 bits. 1557 1558 This module provides the Serpent cipher algorithm that processes 1559 eight blocks parallel using the AVX instruction set. 1560 1561 See also: 1562 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1563 1564config CRYPTO_SERPENT_AVX2_X86_64 1565 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1566 depends on X86 && 64BIT 1567 select CRYPTO_SERPENT_AVX_X86_64 1568 help 1569 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1570 1571 Keys are allowed to be from 0 to 256 bits in length, in steps 1572 of 8 bits. 1573 1574 This module provides Serpent cipher algorithm that processes 16 1575 blocks parallel using AVX2 instruction set. 1576 1577 See also: 1578 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1579 1580config CRYPTO_SM4 1581 tristate "SM4 cipher algorithm" 1582 select CRYPTO_ALGAPI 1583 help 1584 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1585 1586 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1587 Organization of State Commercial Administration of China (OSCCA) 1588 as an authorized cryptographic algorithms for the use within China. 1589 1590 SMS4 was originally created for use in protecting wireless 1591 networks, and is mandated in the Chinese National Standard for 1592 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1593 (GB.15629.11-2003). 1594 1595 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1596 standardized through TC 260 of the Standardization Administration 1597 of the People's Republic of China (SAC). 1598 1599 The input, output, and key of SMS4 are each 128 bits. 1600 1601 See also: <https://eprint.iacr.org/2008/329.pdf> 1602 1603 If unsure, say N. 1604 1605config CRYPTO_TEA 1606 tristate "TEA, XTEA and XETA cipher algorithms" 1607 select CRYPTO_ALGAPI 1608 help 1609 TEA cipher algorithm. 1610 1611 Tiny Encryption Algorithm is a simple cipher that uses 1612 many rounds for security. It is very fast and uses 1613 little memory. 1614 1615 Xtendend Tiny Encryption Algorithm is a modification to 1616 the TEA algorithm to address a potential key weakness 1617 in the TEA algorithm. 1618 1619 Xtendend Encryption Tiny Algorithm is a mis-implementation 1620 of the XTEA algorithm for compatibility purposes. 1621 1622config CRYPTO_TWOFISH 1623 tristate "Twofish cipher algorithm" 1624 select CRYPTO_ALGAPI 1625 select CRYPTO_TWOFISH_COMMON 1626 help 1627 Twofish cipher algorithm. 1628 1629 Twofish was submitted as an AES (Advanced Encryption Standard) 1630 candidate cipher by researchers at CounterPane Systems. It is a 1631 16 round block cipher supporting key sizes of 128, 192, and 256 1632 bits. 1633 1634 See also: 1635 <http://www.schneier.com/twofish.html> 1636 1637config CRYPTO_TWOFISH_COMMON 1638 tristate 1639 help 1640 Common parts of the Twofish cipher algorithm shared by the 1641 generic c and the assembler implementations. 1642 1643config CRYPTO_TWOFISH_586 1644 tristate "Twofish cipher algorithms (i586)" 1645 depends on (X86 || UML_X86) && !64BIT 1646 select CRYPTO_ALGAPI 1647 select CRYPTO_TWOFISH_COMMON 1648 help 1649 Twofish cipher algorithm. 1650 1651 Twofish was submitted as an AES (Advanced Encryption Standard) 1652 candidate cipher by researchers at CounterPane Systems. It is a 1653 16 round block cipher supporting key sizes of 128, 192, and 256 1654 bits. 1655 1656 See also: 1657 <http://www.schneier.com/twofish.html> 1658 1659config CRYPTO_TWOFISH_X86_64 1660 tristate "Twofish cipher algorithm (x86_64)" 1661 depends on (X86 || UML_X86) && 64BIT 1662 select CRYPTO_ALGAPI 1663 select CRYPTO_TWOFISH_COMMON 1664 help 1665 Twofish cipher algorithm (x86_64). 1666 1667 Twofish was submitted as an AES (Advanced Encryption Standard) 1668 candidate cipher by researchers at CounterPane Systems. It is a 1669 16 round block cipher supporting key sizes of 128, 192, and 256 1670 bits. 1671 1672 See also: 1673 <http://www.schneier.com/twofish.html> 1674 1675config CRYPTO_TWOFISH_X86_64_3WAY 1676 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1677 depends on X86 && 64BIT 1678 select CRYPTO_BLKCIPHER 1679 select CRYPTO_TWOFISH_COMMON 1680 select CRYPTO_TWOFISH_X86_64 1681 select CRYPTO_GLUE_HELPER_X86 1682 help 1683 Twofish cipher algorithm (x86_64, 3-way parallel). 1684 1685 Twofish was submitted as an AES (Advanced Encryption Standard) 1686 candidate cipher by researchers at CounterPane Systems. It is a 1687 16 round block cipher supporting key sizes of 128, 192, and 256 1688 bits. 1689 1690 This module provides Twofish cipher algorithm that processes three 1691 blocks parallel, utilizing resources of out-of-order CPUs better. 1692 1693 See also: 1694 <http://www.schneier.com/twofish.html> 1695 1696config CRYPTO_TWOFISH_AVX_X86_64 1697 tristate "Twofish cipher algorithm (x86_64/AVX)" 1698 depends on X86 && 64BIT 1699 select CRYPTO_BLKCIPHER 1700 select CRYPTO_GLUE_HELPER_X86 1701 select CRYPTO_SIMD 1702 select CRYPTO_TWOFISH_COMMON 1703 select CRYPTO_TWOFISH_X86_64 1704 select CRYPTO_TWOFISH_X86_64_3WAY 1705 help 1706 Twofish cipher algorithm (x86_64/AVX). 1707 1708 Twofish was submitted as an AES (Advanced Encryption Standard) 1709 candidate cipher by researchers at CounterPane Systems. It is a 1710 16 round block cipher supporting key sizes of 128, 192, and 256 1711 bits. 1712 1713 This module provides the Twofish cipher algorithm that processes 1714 eight blocks parallel using the AVX Instruction Set. 1715 1716 See also: 1717 <http://www.schneier.com/twofish.html> 1718 1719comment "Compression" 1720 1721config CRYPTO_DEFLATE 1722 tristate "Deflate compression algorithm" 1723 select CRYPTO_ALGAPI 1724 select CRYPTO_ACOMP2 1725 select ZLIB_INFLATE 1726 select ZLIB_DEFLATE 1727 help 1728 This is the Deflate algorithm (RFC1951), specified for use in 1729 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1730 1731 You will most probably want this if using IPSec. 1732 1733config CRYPTO_LZO 1734 tristate "LZO compression algorithm" 1735 select CRYPTO_ALGAPI 1736 select CRYPTO_ACOMP2 1737 select LZO_COMPRESS 1738 select LZO_DECOMPRESS 1739 help 1740 This is the LZO algorithm. 1741 1742config CRYPTO_842 1743 tristate "842 compression algorithm" 1744 select CRYPTO_ALGAPI 1745 select CRYPTO_ACOMP2 1746 select 842_COMPRESS 1747 select 842_DECOMPRESS 1748 help 1749 This is the 842 algorithm. 1750 1751config CRYPTO_LZ4 1752 tristate "LZ4 compression algorithm" 1753 select CRYPTO_ALGAPI 1754 select CRYPTO_ACOMP2 1755 select LZ4_COMPRESS 1756 select LZ4_DECOMPRESS 1757 help 1758 This is the LZ4 algorithm. 1759 1760config CRYPTO_LZ4HC 1761 tristate "LZ4HC compression algorithm" 1762 select CRYPTO_ALGAPI 1763 select CRYPTO_ACOMP2 1764 select LZ4HC_COMPRESS 1765 select LZ4_DECOMPRESS 1766 help 1767 This is the LZ4 high compression mode algorithm. 1768 1769config CRYPTO_ZSTD 1770 tristate "Zstd compression algorithm" 1771 select CRYPTO_ALGAPI 1772 select CRYPTO_ACOMP2 1773 select ZSTD_COMPRESS 1774 select ZSTD_DECOMPRESS 1775 help 1776 This is the zstd algorithm. 1777 1778comment "Random Number Generation" 1779 1780config CRYPTO_ANSI_CPRNG 1781 tristate "Pseudo Random Number Generation for Cryptographic modules" 1782 select CRYPTO_AES 1783 select CRYPTO_RNG 1784 help 1785 This option enables the generic pseudo random number generator 1786 for cryptographic modules. Uses the Algorithm specified in 1787 ANSI X9.31 A.2.4. Note that this option must be enabled if 1788 CRYPTO_FIPS is selected 1789 1790menuconfig CRYPTO_DRBG_MENU 1791 tristate "NIST SP800-90A DRBG" 1792 help 1793 NIST SP800-90A compliant DRBG. In the following submenu, one or 1794 more of the DRBG types must be selected. 1795 1796if CRYPTO_DRBG_MENU 1797 1798config CRYPTO_DRBG_HMAC 1799 bool 1800 default y 1801 select CRYPTO_HMAC 1802 select CRYPTO_SHA256 1803 1804config CRYPTO_DRBG_HASH 1805 bool "Enable Hash DRBG" 1806 select CRYPTO_SHA256 1807 help 1808 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1809 1810config CRYPTO_DRBG_CTR 1811 bool "Enable CTR DRBG" 1812 select CRYPTO_AES 1813 depends on CRYPTO_CTR 1814 help 1815 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1816 1817config CRYPTO_DRBG 1818 tristate 1819 default CRYPTO_DRBG_MENU 1820 select CRYPTO_RNG 1821 select CRYPTO_JITTERENTROPY 1822 1823endif # if CRYPTO_DRBG_MENU 1824 1825config CRYPTO_JITTERENTROPY 1826 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1827 select CRYPTO_RNG 1828 help 1829 The Jitterentropy RNG is a noise that is intended 1830 to provide seed to another RNG. The RNG does not 1831 perform any cryptographic whitening of the generated 1832 random numbers. This Jitterentropy RNG registers with 1833 the kernel crypto API and can be used by any caller. 1834 1835config CRYPTO_USER_API 1836 tristate 1837 1838config CRYPTO_USER_API_HASH 1839 tristate "User-space interface for hash algorithms" 1840 depends on NET 1841 select CRYPTO_HASH 1842 select CRYPTO_USER_API 1843 help 1844 This option enables the user-spaces interface for hash 1845 algorithms. 1846 1847config CRYPTO_USER_API_SKCIPHER 1848 tristate "User-space interface for symmetric key cipher algorithms" 1849 depends on NET 1850 select CRYPTO_BLKCIPHER 1851 select CRYPTO_USER_API 1852 help 1853 This option enables the user-spaces interface for symmetric 1854 key cipher algorithms. 1855 1856config CRYPTO_USER_API_RNG 1857 tristate "User-space interface for random number generator algorithms" 1858 depends on NET 1859 select CRYPTO_RNG 1860 select CRYPTO_USER_API 1861 help 1862 This option enables the user-spaces interface for random 1863 number generator algorithms. 1864 1865config CRYPTO_USER_API_AEAD 1866 tristate "User-space interface for AEAD cipher algorithms" 1867 depends on NET 1868 select CRYPTO_AEAD 1869 select CRYPTO_BLKCIPHER 1870 select CRYPTO_NULL 1871 select CRYPTO_USER_API 1872 help 1873 This option enables the user-spaces interface for AEAD 1874 cipher algorithms. 1875 1876config CRYPTO_STATS 1877 bool "Crypto usage statistics for User-space" 1878 depends on CRYPTO_USER 1879 help 1880 This option enables the gathering of crypto stats. 1881 This will collect: 1882 - encrypt/decrypt size and numbers of symmeric operations 1883 - compress/decompress size and numbers of compress operations 1884 - size and numbers of hash operations 1885 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1886 - generate/seed numbers for rng operations 1887 1888config CRYPTO_HASH_INFO 1889 bool 1890 1891source "drivers/crypto/Kconfig" 1892source "crypto/asymmetric_keys/Kconfig" 1893source "certs/Kconfig" 1894 1895endif # if CRYPTO 1896