1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 help 19 This option provides the core Cryptographic API. 20 21if CRYPTO 22 23comment "Crypto core or helper" 24 25config CRYPTO_FIPS 26 bool "FIPS 200 compliance" 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 28 depends on (MODULE_SIG || !MODULES) 29 help 30 This option enables the fips boot option which is 31 required if you want the system to operate in a FIPS 200 32 certification. You should say no unless you know what 33 this is. 34 35config CRYPTO_ALGAPI 36 tristate 37 select CRYPTO_ALGAPI2 38 help 39 This option provides the API for cryptographic algorithms. 40 41config CRYPTO_ALGAPI2 42 tristate 43 44config CRYPTO_AEAD 45 tristate 46 select CRYPTO_AEAD2 47 select CRYPTO_ALGAPI 48 49config CRYPTO_AEAD2 50 tristate 51 select CRYPTO_ALGAPI2 52 select CRYPTO_NULL2 53 select CRYPTO_RNG2 54 55config CRYPTO_BLKCIPHER 56 tristate 57 select CRYPTO_BLKCIPHER2 58 select CRYPTO_ALGAPI 59 60config CRYPTO_BLKCIPHER2 61 tristate 62 select CRYPTO_ALGAPI2 63 select CRYPTO_RNG2 64 65config CRYPTO_HASH 66 tristate 67 select CRYPTO_HASH2 68 select CRYPTO_ALGAPI 69 70config CRYPTO_HASH2 71 tristate 72 select CRYPTO_ALGAPI2 73 74config CRYPTO_RNG 75 tristate 76 select CRYPTO_RNG2 77 select CRYPTO_ALGAPI 78 79config CRYPTO_RNG2 80 tristate 81 select CRYPTO_ALGAPI2 82 83config CRYPTO_RNG_DEFAULT 84 tristate 85 select CRYPTO_DRBG_MENU 86 87config CRYPTO_AKCIPHER2 88 tristate 89 select CRYPTO_ALGAPI2 90 91config CRYPTO_AKCIPHER 92 tristate 93 select CRYPTO_AKCIPHER2 94 select CRYPTO_ALGAPI 95 96config CRYPTO_KPP2 97 tristate 98 select CRYPTO_ALGAPI2 99 100config CRYPTO_KPP 101 tristate 102 select CRYPTO_ALGAPI 103 select CRYPTO_KPP2 104 105config CRYPTO_ACOMP2 106 tristate 107 select CRYPTO_ALGAPI2 108 select SGL_ALLOC 109 110config CRYPTO_ACOMP 111 tristate 112 select CRYPTO_ALGAPI 113 select CRYPTO_ACOMP2 114 115config CRYPTO_MANAGER 116 tristate "Cryptographic algorithm manager" 117 select CRYPTO_MANAGER2 118 help 119 Create default cryptographic template instantiations such as 120 cbc(aes). 121 122config CRYPTO_MANAGER2 123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 124 select CRYPTO_AEAD2 125 select CRYPTO_HASH2 126 select CRYPTO_BLKCIPHER2 127 select CRYPTO_AKCIPHER2 128 select CRYPTO_KPP2 129 select CRYPTO_ACOMP2 130 131config CRYPTO_USER 132 tristate "Userspace cryptographic algorithm configuration" 133 depends on NET 134 select CRYPTO_MANAGER 135 help 136 Userspace configuration for cryptographic instantiations such as 137 cbc(aes). 138 139if CRYPTO_MANAGER2 140 141config CRYPTO_MANAGER_DISABLE_TESTS 142 bool "Disable run-time self tests" 143 default y 144 help 145 Disable run-time self tests that normally take place at 146 algorithm registration. 147 148config CRYPTO_MANAGER_EXTRA_TESTS 149 bool "Enable extra run-time crypto self tests" 150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 151 help 152 Enable extra run-time self tests of registered crypto algorithms, 153 including randomized fuzz tests. 154 155 This is intended for developer use only, as these tests take much 156 longer to run than the normal self tests. 157 158endif # if CRYPTO_MANAGER2 159 160config CRYPTO_GF128MUL 161 tristate 162 163config CRYPTO_NULL 164 tristate "Null algorithms" 165 select CRYPTO_NULL2 166 help 167 These are 'Null' algorithms, used by IPsec, which do nothing. 168 169config CRYPTO_NULL2 170 tristate 171 select CRYPTO_ALGAPI2 172 select CRYPTO_BLKCIPHER2 173 select CRYPTO_HASH2 174 175config CRYPTO_PCRYPT 176 tristate "Parallel crypto engine" 177 depends on SMP 178 select PADATA 179 select CRYPTO_MANAGER 180 select CRYPTO_AEAD 181 help 182 This converts an arbitrary crypto algorithm into a parallel 183 algorithm that executes in kernel threads. 184 185config CRYPTO_CRYPTD 186 tristate "Software async crypto daemon" 187 select CRYPTO_BLKCIPHER 188 select CRYPTO_HASH 189 select CRYPTO_MANAGER 190 help 191 This is a generic software asynchronous crypto daemon that 192 converts an arbitrary synchronous software crypto algorithm 193 into an asynchronous algorithm that executes in a kernel thread. 194 195config CRYPTO_AUTHENC 196 tristate "Authenc support" 197 select CRYPTO_AEAD 198 select CRYPTO_BLKCIPHER 199 select CRYPTO_MANAGER 200 select CRYPTO_HASH 201 select CRYPTO_NULL 202 help 203 Authenc: Combined mode wrapper for IPsec. 204 This is required for IPSec. 205 206config CRYPTO_TEST 207 tristate "Testing module" 208 depends on m 209 select CRYPTO_MANAGER 210 help 211 Quick & dirty crypto test module. 212 213config CRYPTO_SIMD 214 tristate 215 select CRYPTO_CRYPTD 216 217config CRYPTO_GLUE_HELPER_X86 218 tristate 219 depends on X86 220 select CRYPTO_BLKCIPHER 221 222config CRYPTO_ENGINE 223 tristate 224 225comment "Public-key cryptography" 226 227config CRYPTO_RSA 228 tristate "RSA algorithm" 229 select CRYPTO_AKCIPHER 230 select CRYPTO_MANAGER 231 select MPILIB 232 select ASN1 233 help 234 Generic implementation of the RSA public key algorithm. 235 236config CRYPTO_DH 237 tristate "Diffie-Hellman algorithm" 238 select CRYPTO_KPP 239 select MPILIB 240 help 241 Generic implementation of the Diffie-Hellman algorithm. 242 243config CRYPTO_ECC 244 tristate 245 246config CRYPTO_ECDH 247 tristate "ECDH algorithm" 248 select CRYPTO_ECC 249 select CRYPTO_KPP 250 select CRYPTO_RNG_DEFAULT 251 help 252 Generic implementation of the ECDH algorithm 253 254config CRYPTO_ECRDSA 255 tristate "EC-RDSA (GOST 34.10) algorithm" 256 select CRYPTO_ECC 257 select CRYPTO_AKCIPHER 258 select CRYPTO_STREEBOG 259 select OID_REGISTRY 260 select ASN1 261 help 262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 264 standard algorithms (called GOST algorithms). Only signature verification 265 is implemented. 266 267comment "Authenticated Encryption with Associated Data" 268 269config CRYPTO_CCM 270 tristate "CCM support" 271 select CRYPTO_CTR 272 select CRYPTO_HASH 273 select CRYPTO_AEAD 274 select CRYPTO_MANAGER 275 help 276 Support for Counter with CBC MAC. Required for IPsec. 277 278config CRYPTO_GCM 279 tristate "GCM/GMAC support" 280 select CRYPTO_CTR 281 select CRYPTO_AEAD 282 select CRYPTO_GHASH 283 select CRYPTO_NULL 284 select CRYPTO_MANAGER 285 help 286 Support for Galois/Counter Mode (GCM) and Galois Message 287 Authentication Code (GMAC). Required for IPSec. 288 289config CRYPTO_CHACHA20POLY1305 290 tristate "ChaCha20-Poly1305 AEAD support" 291 select CRYPTO_CHACHA20 292 select CRYPTO_POLY1305 293 select CRYPTO_AEAD 294 select CRYPTO_MANAGER 295 help 296 ChaCha20-Poly1305 AEAD support, RFC7539. 297 298 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 299 with the Poly1305 authenticator. It is defined in RFC7539 for use in 300 IETF protocols. 301 302config CRYPTO_AEGIS128 303 tristate "AEGIS-128 AEAD algorithm" 304 select CRYPTO_AEAD 305 select CRYPTO_AES # for AES S-box tables 306 help 307 Support for the AEGIS-128 dedicated AEAD algorithm. 308 309config CRYPTO_AEGIS128L 310 tristate "AEGIS-128L AEAD algorithm" 311 select CRYPTO_AEAD 312 select CRYPTO_AES # for AES S-box tables 313 help 314 Support for the AEGIS-128L dedicated AEAD algorithm. 315 316config CRYPTO_AEGIS256 317 tristate "AEGIS-256 AEAD algorithm" 318 select CRYPTO_AEAD 319 select CRYPTO_AES # for AES S-box tables 320 help 321 Support for the AEGIS-256 dedicated AEAD algorithm. 322 323config CRYPTO_AEGIS128_AESNI_SSE2 324 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 325 depends on X86 && 64BIT 326 select CRYPTO_AEAD 327 select CRYPTO_SIMD 328 help 329 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 330 331config CRYPTO_AEGIS128L_AESNI_SSE2 332 tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 333 depends on X86 && 64BIT 334 select CRYPTO_AEAD 335 select CRYPTO_SIMD 336 help 337 AESNI+SSE2 implementation of the AEGIS-128L dedicated AEAD algorithm. 338 339config CRYPTO_AEGIS256_AESNI_SSE2 340 tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 341 depends on X86 && 64BIT 342 select CRYPTO_AEAD 343 select CRYPTO_SIMD 344 help 345 AESNI+SSE2 implementation of the AEGIS-256 dedicated AEAD algorithm. 346 347config CRYPTO_MORUS640 348 tristate "MORUS-640 AEAD algorithm" 349 select CRYPTO_AEAD 350 help 351 Support for the MORUS-640 dedicated AEAD algorithm. 352 353config CRYPTO_MORUS640_GLUE 354 tristate 355 depends on X86 356 select CRYPTO_AEAD 357 select CRYPTO_SIMD 358 help 359 Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD 360 algorithm. 361 362config CRYPTO_MORUS640_SSE2 363 tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)" 364 depends on X86 && 64BIT 365 select CRYPTO_AEAD 366 select CRYPTO_MORUS640_GLUE 367 help 368 SSE2 implementation of the MORUS-640 dedicated AEAD algorithm. 369 370config CRYPTO_MORUS1280 371 tristate "MORUS-1280 AEAD algorithm" 372 select CRYPTO_AEAD 373 help 374 Support for the MORUS-1280 dedicated AEAD algorithm. 375 376config CRYPTO_MORUS1280_GLUE 377 tristate 378 depends on X86 379 select CRYPTO_AEAD 380 select CRYPTO_SIMD 381 help 382 Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD 383 algorithm. 384 385config CRYPTO_MORUS1280_SSE2 386 tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)" 387 depends on X86 && 64BIT 388 select CRYPTO_AEAD 389 select CRYPTO_MORUS1280_GLUE 390 help 391 SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD 392 algorithm. 393 394config CRYPTO_MORUS1280_AVX2 395 tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)" 396 depends on X86 && 64BIT 397 select CRYPTO_AEAD 398 select CRYPTO_MORUS1280_GLUE 399 help 400 AVX2 optimized implementation of the MORUS-1280 dedicated AEAD 401 algorithm. 402 403config CRYPTO_SEQIV 404 tristate "Sequence Number IV Generator" 405 select CRYPTO_AEAD 406 select CRYPTO_BLKCIPHER 407 select CRYPTO_NULL 408 select CRYPTO_RNG_DEFAULT 409 select CRYPTO_MANAGER 410 help 411 This IV generator generates an IV based on a sequence number by 412 xoring it with a salt. This algorithm is mainly useful for CTR 413 414config CRYPTO_ECHAINIV 415 tristate "Encrypted Chain IV Generator" 416 select CRYPTO_AEAD 417 select CRYPTO_NULL 418 select CRYPTO_RNG_DEFAULT 419 select CRYPTO_MANAGER 420 help 421 This IV generator generates an IV based on the encryption of 422 a sequence number xored with a salt. This is the default 423 algorithm for CBC. 424 425comment "Block modes" 426 427config CRYPTO_CBC 428 tristate "CBC support" 429 select CRYPTO_BLKCIPHER 430 select CRYPTO_MANAGER 431 help 432 CBC: Cipher Block Chaining mode 433 This block cipher algorithm is required for IPSec. 434 435config CRYPTO_CFB 436 tristate "CFB support" 437 select CRYPTO_BLKCIPHER 438 select CRYPTO_MANAGER 439 help 440 CFB: Cipher FeedBack mode 441 This block cipher algorithm is required for TPM2 Cryptography. 442 443config CRYPTO_CTR 444 tristate "CTR support" 445 select CRYPTO_BLKCIPHER 446 select CRYPTO_SEQIV 447 select CRYPTO_MANAGER 448 help 449 CTR: Counter mode 450 This block cipher algorithm is required for IPSec. 451 452config CRYPTO_CTS 453 tristate "CTS support" 454 select CRYPTO_BLKCIPHER 455 select CRYPTO_MANAGER 456 help 457 CTS: Cipher Text Stealing 458 This is the Cipher Text Stealing mode as described by 459 Section 8 of rfc2040 and referenced by rfc3962 460 (rfc3962 includes errata information in its Appendix A) or 461 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 462 This mode is required for Kerberos gss mechanism support 463 for AES encryption. 464 465 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 466 467config CRYPTO_ECB 468 tristate "ECB support" 469 select CRYPTO_BLKCIPHER 470 select CRYPTO_MANAGER 471 help 472 ECB: Electronic CodeBook mode 473 This is the simplest block cipher algorithm. It simply encrypts 474 the input block by block. 475 476config CRYPTO_LRW 477 tristate "LRW support" 478 select CRYPTO_BLKCIPHER 479 select CRYPTO_MANAGER 480 select CRYPTO_GF128MUL 481 help 482 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 483 narrow block cipher mode for dm-crypt. Use it with cipher 484 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 485 The first 128, 192 or 256 bits in the key are used for AES and the 486 rest is used to tie each cipher block to its logical position. 487 488config CRYPTO_OFB 489 tristate "OFB support" 490 select CRYPTO_BLKCIPHER 491 select CRYPTO_MANAGER 492 help 493 OFB: the Output Feedback mode makes a block cipher into a synchronous 494 stream cipher. It generates keystream blocks, which are then XORed 495 with the plaintext blocks to get the ciphertext. Flipping a bit in the 496 ciphertext produces a flipped bit in the plaintext at the same 497 location. This property allows many error correcting codes to function 498 normally even when applied before encryption. 499 500config CRYPTO_PCBC 501 tristate "PCBC support" 502 select CRYPTO_BLKCIPHER 503 select CRYPTO_MANAGER 504 help 505 PCBC: Propagating Cipher Block Chaining mode 506 This block cipher algorithm is required for RxRPC. 507 508config CRYPTO_XTS 509 tristate "XTS support" 510 select CRYPTO_BLKCIPHER 511 select CRYPTO_MANAGER 512 select CRYPTO_ECB 513 help 514 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 515 key size 256, 384 or 512 bits. This implementation currently 516 can't handle a sectorsize which is not a multiple of 16 bytes. 517 518config CRYPTO_KEYWRAP 519 tristate "Key wrapping support" 520 select CRYPTO_BLKCIPHER 521 select CRYPTO_MANAGER 522 help 523 Support for key wrapping (NIST SP800-38F / RFC3394) without 524 padding. 525 526config CRYPTO_NHPOLY1305 527 tristate 528 select CRYPTO_HASH 529 select CRYPTO_POLY1305 530 531config CRYPTO_NHPOLY1305_SSE2 532 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 533 depends on X86 && 64BIT 534 select CRYPTO_NHPOLY1305 535 help 536 SSE2 optimized implementation of the hash function used by the 537 Adiantum encryption mode. 538 539config CRYPTO_NHPOLY1305_AVX2 540 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 541 depends on X86 && 64BIT 542 select CRYPTO_NHPOLY1305 543 help 544 AVX2 optimized implementation of the hash function used by the 545 Adiantum encryption mode. 546 547config CRYPTO_ADIANTUM 548 tristate "Adiantum support" 549 select CRYPTO_CHACHA20 550 select CRYPTO_POLY1305 551 select CRYPTO_NHPOLY1305 552 select CRYPTO_MANAGER 553 help 554 Adiantum is a tweakable, length-preserving encryption mode 555 designed for fast and secure disk encryption, especially on 556 CPUs without dedicated crypto instructions. It encrypts 557 each sector using the XChaCha12 stream cipher, two passes of 558 an ε-almost-∆-universal hash function, and an invocation of 559 the AES-256 block cipher on a single 16-byte block. On CPUs 560 without AES instructions, Adiantum is much faster than 561 AES-XTS. 562 563 Adiantum's security is provably reducible to that of its 564 underlying stream and block ciphers, subject to a security 565 bound. Unlike XTS, Adiantum is a true wide-block encryption 566 mode, so it actually provides an even stronger notion of 567 security than XTS, subject to the security bound. 568 569 If unsure, say N. 570 571comment "Hash modes" 572 573config CRYPTO_CMAC 574 tristate "CMAC support" 575 select CRYPTO_HASH 576 select CRYPTO_MANAGER 577 help 578 Cipher-based Message Authentication Code (CMAC) specified by 579 The National Institute of Standards and Technology (NIST). 580 581 https://tools.ietf.org/html/rfc4493 582 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 583 584config CRYPTO_HMAC 585 tristate "HMAC support" 586 select CRYPTO_HASH 587 select CRYPTO_MANAGER 588 help 589 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 590 This is required for IPSec. 591 592config CRYPTO_XCBC 593 tristate "XCBC support" 594 select CRYPTO_HASH 595 select CRYPTO_MANAGER 596 help 597 XCBC: Keyed-Hashing with encryption algorithm 598 http://www.ietf.org/rfc/rfc3566.txt 599 http://csrc.nist.gov/encryption/modes/proposedmodes/ 600 xcbc-mac/xcbc-mac-spec.pdf 601 602config CRYPTO_VMAC 603 tristate "VMAC support" 604 select CRYPTO_HASH 605 select CRYPTO_MANAGER 606 help 607 VMAC is a message authentication algorithm designed for 608 very high speed on 64-bit architectures. 609 610 See also: 611 <http://fastcrypto.org/vmac> 612 613comment "Digest" 614 615config CRYPTO_CRC32C 616 tristate "CRC32c CRC algorithm" 617 select CRYPTO_HASH 618 select CRC32 619 help 620 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 621 by iSCSI for header and data digests and by others. 622 See Castagnoli93. Module will be crc32c. 623 624config CRYPTO_CRC32C_INTEL 625 tristate "CRC32c INTEL hardware acceleration" 626 depends on X86 627 select CRYPTO_HASH 628 help 629 In Intel processor with SSE4.2 supported, the processor will 630 support CRC32C implementation using hardware accelerated CRC32 631 instruction. This option will create 'crc32c-intel' module, 632 which will enable any routine to use the CRC32 instruction to 633 gain performance compared with software implementation. 634 Module will be crc32c-intel. 635 636config CRYPTO_CRC32C_VPMSUM 637 tristate "CRC32c CRC algorithm (powerpc64)" 638 depends on PPC64 && ALTIVEC 639 select CRYPTO_HASH 640 select CRC32 641 help 642 CRC32c algorithm implemented using vector polynomial multiply-sum 643 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 644 and newer processors for improved performance. 645 646 647config CRYPTO_CRC32C_SPARC64 648 tristate "CRC32c CRC algorithm (SPARC64)" 649 depends on SPARC64 650 select CRYPTO_HASH 651 select CRC32 652 help 653 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 654 when available. 655 656config CRYPTO_CRC32 657 tristate "CRC32 CRC algorithm" 658 select CRYPTO_HASH 659 select CRC32 660 help 661 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 662 Shash crypto api wrappers to crc32_le function. 663 664config CRYPTO_CRC32_PCLMUL 665 tristate "CRC32 PCLMULQDQ hardware acceleration" 666 depends on X86 667 select CRYPTO_HASH 668 select CRC32 669 help 670 From Intel Westmere and AMD Bulldozer processor with SSE4.2 671 and PCLMULQDQ supported, the processor will support 672 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 673 instruction. This option will create 'crc32-pclmul' module, 674 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 675 and gain better performance as compared with the table implementation. 676 677config CRYPTO_CRC32_MIPS 678 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 679 depends on MIPS_CRC_SUPPORT 680 select CRYPTO_HASH 681 help 682 CRC32c and CRC32 CRC algorithms implemented using mips crypto 683 instructions, when available. 684 685 686config CRYPTO_XXHASH 687 tristate "xxHash hash algorithm" 688 select CRYPTO_HASH 689 select XXHASH 690 help 691 xxHash non-cryptographic hash algorithm. Extremely fast, working at 692 speeds close to RAM limits. 693 694config CRYPTO_CRCT10DIF 695 tristate "CRCT10DIF algorithm" 696 select CRYPTO_HASH 697 help 698 CRC T10 Data Integrity Field computation is being cast as 699 a crypto transform. This allows for faster crc t10 diff 700 transforms to be used if they are available. 701 702config CRYPTO_CRCT10DIF_PCLMUL 703 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 704 depends on X86 && 64BIT && CRC_T10DIF 705 select CRYPTO_HASH 706 help 707 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 708 CRC T10 DIF PCLMULQDQ computation can be hardware 709 accelerated PCLMULQDQ instruction. This option will create 710 'crct10dif-pclmul' module, which is faster when computing the 711 crct10dif checksum as compared with the generic table implementation. 712 713config CRYPTO_CRCT10DIF_VPMSUM 714 tristate "CRC32T10DIF powerpc64 hardware acceleration" 715 depends on PPC64 && ALTIVEC && CRC_T10DIF 716 select CRYPTO_HASH 717 help 718 CRC10T10DIF algorithm implemented using vector polynomial 719 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 720 POWER8 and newer processors for improved performance. 721 722config CRYPTO_VPMSUM_TESTER 723 tristate "Powerpc64 vpmsum hardware acceleration tester" 724 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 725 help 726 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 727 POWER8 vpmsum instructions. 728 Unless you are testing these algorithms, you don't need this. 729 730config CRYPTO_GHASH 731 tristate "GHASH digest algorithm" 732 select CRYPTO_GF128MUL 733 select CRYPTO_HASH 734 help 735 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 736 737config CRYPTO_POLY1305 738 tristate "Poly1305 authenticator algorithm" 739 select CRYPTO_HASH 740 help 741 Poly1305 authenticator algorithm, RFC7539. 742 743 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 744 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 745 in IETF protocols. This is the portable C implementation of Poly1305. 746 747config CRYPTO_POLY1305_X86_64 748 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 749 depends on X86 && 64BIT 750 select CRYPTO_POLY1305 751 help 752 Poly1305 authenticator algorithm, RFC7539. 753 754 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 755 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 756 in IETF protocols. This is the x86_64 assembler implementation using SIMD 757 instructions. 758 759config CRYPTO_MD4 760 tristate "MD4 digest algorithm" 761 select CRYPTO_HASH 762 help 763 MD4 message digest algorithm (RFC1320). 764 765config CRYPTO_MD5 766 tristate "MD5 digest algorithm" 767 select CRYPTO_HASH 768 help 769 MD5 message digest algorithm (RFC1321). 770 771config CRYPTO_MD5_OCTEON 772 tristate "MD5 digest algorithm (OCTEON)" 773 depends on CPU_CAVIUM_OCTEON 774 select CRYPTO_MD5 775 select CRYPTO_HASH 776 help 777 MD5 message digest algorithm (RFC1321) implemented 778 using OCTEON crypto instructions, when available. 779 780config CRYPTO_MD5_PPC 781 tristate "MD5 digest algorithm (PPC)" 782 depends on PPC 783 select CRYPTO_HASH 784 help 785 MD5 message digest algorithm (RFC1321) implemented 786 in PPC assembler. 787 788config CRYPTO_MD5_SPARC64 789 tristate "MD5 digest algorithm (SPARC64)" 790 depends on SPARC64 791 select CRYPTO_MD5 792 select CRYPTO_HASH 793 help 794 MD5 message digest algorithm (RFC1321) implemented 795 using sparc64 crypto instructions, when available. 796 797config CRYPTO_MICHAEL_MIC 798 tristate "Michael MIC keyed digest algorithm" 799 select CRYPTO_HASH 800 help 801 Michael MIC is used for message integrity protection in TKIP 802 (IEEE 802.11i). This algorithm is required for TKIP, but it 803 should not be used for other purposes because of the weakness 804 of the algorithm. 805 806config CRYPTO_RMD128 807 tristate "RIPEMD-128 digest algorithm" 808 select CRYPTO_HASH 809 help 810 RIPEMD-128 (ISO/IEC 10118-3:2004). 811 812 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 813 be used as a secure replacement for RIPEMD. For other use cases, 814 RIPEMD-160 should be used. 815 816 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 817 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 818 819config CRYPTO_RMD160 820 tristate "RIPEMD-160 digest algorithm" 821 select CRYPTO_HASH 822 help 823 RIPEMD-160 (ISO/IEC 10118-3:2004). 824 825 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 826 to be used as a secure replacement for the 128-bit hash functions 827 MD4, MD5 and it's predecessor RIPEMD 828 (not to be confused with RIPEMD-128). 829 830 It's speed is comparable to SHA1 and there are no known attacks 831 against RIPEMD-160. 832 833 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 834 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 835 836config CRYPTO_RMD256 837 tristate "RIPEMD-256 digest algorithm" 838 select CRYPTO_HASH 839 help 840 RIPEMD-256 is an optional extension of RIPEMD-128 with a 841 256 bit hash. It is intended for applications that require 842 longer hash-results, without needing a larger security level 843 (than RIPEMD-128). 844 845 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 846 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 847 848config CRYPTO_RMD320 849 tristate "RIPEMD-320 digest algorithm" 850 select CRYPTO_HASH 851 help 852 RIPEMD-320 is an optional extension of RIPEMD-160 with a 853 320 bit hash. It is intended for applications that require 854 longer hash-results, without needing a larger security level 855 (than RIPEMD-160). 856 857 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 858 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 859 860config CRYPTO_SHA1 861 tristate "SHA1 digest algorithm" 862 select CRYPTO_HASH 863 help 864 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 865 866config CRYPTO_SHA1_SSSE3 867 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 868 depends on X86 && 64BIT 869 select CRYPTO_SHA1 870 select CRYPTO_HASH 871 help 872 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 873 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 874 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 875 when available. 876 877config CRYPTO_SHA256_SSSE3 878 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 879 depends on X86 && 64BIT 880 select CRYPTO_SHA256 881 select CRYPTO_HASH 882 help 883 SHA-256 secure hash standard (DFIPS 180-2) implemented 884 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 885 Extensions version 1 (AVX1), or Advanced Vector Extensions 886 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 887 Instructions) when available. 888 889config CRYPTO_SHA512_SSSE3 890 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 891 depends on X86 && 64BIT 892 select CRYPTO_SHA512 893 select CRYPTO_HASH 894 help 895 SHA-512 secure hash standard (DFIPS 180-2) implemented 896 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 897 Extensions version 1 (AVX1), or Advanced Vector Extensions 898 version 2 (AVX2) instructions, when available. 899 900config CRYPTO_SHA1_OCTEON 901 tristate "SHA1 digest algorithm (OCTEON)" 902 depends on CPU_CAVIUM_OCTEON 903 select CRYPTO_SHA1 904 select CRYPTO_HASH 905 help 906 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 907 using OCTEON crypto instructions, when available. 908 909config CRYPTO_SHA1_SPARC64 910 tristate "SHA1 digest algorithm (SPARC64)" 911 depends on SPARC64 912 select CRYPTO_SHA1 913 select CRYPTO_HASH 914 help 915 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 916 using sparc64 crypto instructions, when available. 917 918config CRYPTO_SHA1_PPC 919 tristate "SHA1 digest algorithm (powerpc)" 920 depends on PPC 921 help 922 This is the powerpc hardware accelerated implementation of the 923 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 924 925config CRYPTO_SHA1_PPC_SPE 926 tristate "SHA1 digest algorithm (PPC SPE)" 927 depends on PPC && SPE 928 help 929 SHA-1 secure hash standard (DFIPS 180-4) implemented 930 using powerpc SPE SIMD instruction set. 931 932config CRYPTO_SHA256 933 tristate "SHA224 and SHA256 digest algorithm" 934 select CRYPTO_HASH 935 help 936 SHA256 secure hash standard (DFIPS 180-2). 937 938 This version of SHA implements a 256 bit hash with 128 bits of 939 security against collision attacks. 940 941 This code also includes SHA-224, a 224 bit hash with 112 bits 942 of security against collision attacks. 943 944config CRYPTO_SHA256_PPC_SPE 945 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 946 depends on PPC && SPE 947 select CRYPTO_SHA256 948 select CRYPTO_HASH 949 help 950 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 951 implemented using powerpc SPE SIMD instruction set. 952 953config CRYPTO_SHA256_OCTEON 954 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 955 depends on CPU_CAVIUM_OCTEON 956 select CRYPTO_SHA256 957 select CRYPTO_HASH 958 help 959 SHA-256 secure hash standard (DFIPS 180-2) implemented 960 using OCTEON crypto instructions, when available. 961 962config CRYPTO_SHA256_SPARC64 963 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 964 depends on SPARC64 965 select CRYPTO_SHA256 966 select CRYPTO_HASH 967 help 968 SHA-256 secure hash standard (DFIPS 180-2) implemented 969 using sparc64 crypto instructions, when available. 970 971config CRYPTO_SHA512 972 tristate "SHA384 and SHA512 digest algorithms" 973 select CRYPTO_HASH 974 help 975 SHA512 secure hash standard (DFIPS 180-2). 976 977 This version of SHA implements a 512 bit hash with 256 bits of 978 security against collision attacks. 979 980 This code also includes SHA-384, a 384 bit hash with 192 bits 981 of security against collision attacks. 982 983config CRYPTO_SHA512_OCTEON 984 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 985 depends on CPU_CAVIUM_OCTEON 986 select CRYPTO_SHA512 987 select CRYPTO_HASH 988 help 989 SHA-512 secure hash standard (DFIPS 180-2) implemented 990 using OCTEON crypto instructions, when available. 991 992config CRYPTO_SHA512_SPARC64 993 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 994 depends on SPARC64 995 select CRYPTO_SHA512 996 select CRYPTO_HASH 997 help 998 SHA-512 secure hash standard (DFIPS 180-2) implemented 999 using sparc64 crypto instructions, when available. 1000 1001config CRYPTO_SHA3 1002 tristate "SHA3 digest algorithm" 1003 select CRYPTO_HASH 1004 help 1005 SHA-3 secure hash standard (DFIPS 202). It's based on 1006 cryptographic sponge function family called Keccak. 1007 1008 References: 1009 http://keccak.noekeon.org/ 1010 1011config CRYPTO_SM3 1012 tristate "SM3 digest algorithm" 1013 select CRYPTO_HASH 1014 help 1015 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1016 It is part of the Chinese Commercial Cryptography suite. 1017 1018 References: 1019 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1020 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1021 1022config CRYPTO_STREEBOG 1023 tristate "Streebog Hash Function" 1024 select CRYPTO_HASH 1025 help 1026 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1027 cryptographic standard algorithms (called GOST algorithms). 1028 This setting enables two hash algorithms with 256 and 512 bits output. 1029 1030 References: 1031 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1032 https://tools.ietf.org/html/rfc6986 1033 1034config CRYPTO_TGR192 1035 tristate "Tiger digest algorithms" 1036 select CRYPTO_HASH 1037 help 1038 Tiger hash algorithm 192, 160 and 128-bit hashes 1039 1040 Tiger is a hash function optimized for 64-bit processors while 1041 still having decent performance on 32-bit processors. 1042 Tiger was developed by Ross Anderson and Eli Biham. 1043 1044 See also: 1045 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 1046 1047config CRYPTO_WP512 1048 tristate "Whirlpool digest algorithms" 1049 select CRYPTO_HASH 1050 help 1051 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1052 1053 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1054 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1055 1056 See also: 1057 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1058 1059config CRYPTO_GHASH_CLMUL_NI_INTEL 1060 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 1061 depends on X86 && 64BIT 1062 select CRYPTO_CRYPTD 1063 help 1064 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 1065 The implementation is accelerated by CLMUL-NI of Intel. 1066 1067comment "Ciphers" 1068 1069config CRYPTO_AES 1070 tristate "AES cipher algorithms" 1071 select CRYPTO_ALGAPI 1072 help 1073 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1074 algorithm. 1075 1076 Rijndael appears to be consistently a very good performer in 1077 both hardware and software across a wide range of computing 1078 environments regardless of its use in feedback or non-feedback 1079 modes. Its key setup time is excellent, and its key agility is 1080 good. Rijndael's very low memory requirements make it very well 1081 suited for restricted-space environments, in which it also 1082 demonstrates excellent performance. Rijndael's operations are 1083 among the easiest to defend against power and timing attacks. 1084 1085 The AES specifies three key sizes: 128, 192 and 256 bits 1086 1087 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1088 1089config CRYPTO_AES_TI 1090 tristate "Fixed time AES cipher" 1091 select CRYPTO_ALGAPI 1092 help 1093 This is a generic implementation of AES that attempts to eliminate 1094 data dependent latencies as much as possible without affecting 1095 performance too much. It is intended for use by the generic CCM 1096 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1097 solely on encryption (although decryption is supported as well, but 1098 with a more dramatic performance hit) 1099 1100 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1101 8 for decryption), this implementation only uses just two S-boxes of 1102 256 bytes each, and attempts to eliminate data dependent latencies by 1103 prefetching the entire table into the cache at the start of each 1104 block. Interrupts are also disabled to avoid races where cachelines 1105 are evicted when the CPU is interrupted to do something else. 1106 1107config CRYPTO_AES_586 1108 tristate "AES cipher algorithms (i586)" 1109 depends on (X86 || UML_X86) && !64BIT 1110 select CRYPTO_ALGAPI 1111 select CRYPTO_AES 1112 help 1113 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1114 algorithm. 1115 1116 Rijndael appears to be consistently a very good performer in 1117 both hardware and software across a wide range of computing 1118 environments regardless of its use in feedback or non-feedback 1119 modes. Its key setup time is excellent, and its key agility is 1120 good. Rijndael's very low memory requirements make it very well 1121 suited for restricted-space environments, in which it also 1122 demonstrates excellent performance. Rijndael's operations are 1123 among the easiest to defend against power and timing attacks. 1124 1125 The AES specifies three key sizes: 128, 192 and 256 bits 1126 1127 See <http://csrc.nist.gov/encryption/aes/> for more information. 1128 1129config CRYPTO_AES_X86_64 1130 tristate "AES cipher algorithms (x86_64)" 1131 depends on (X86 || UML_X86) && 64BIT 1132 select CRYPTO_ALGAPI 1133 select CRYPTO_AES 1134 help 1135 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1136 algorithm. 1137 1138 Rijndael appears to be consistently a very good performer in 1139 both hardware and software across a wide range of computing 1140 environments regardless of its use in feedback or non-feedback 1141 modes. Its key setup time is excellent, and its key agility is 1142 good. Rijndael's very low memory requirements make it very well 1143 suited for restricted-space environments, in which it also 1144 demonstrates excellent performance. Rijndael's operations are 1145 among the easiest to defend against power and timing attacks. 1146 1147 The AES specifies three key sizes: 128, 192 and 256 bits 1148 1149 See <http://csrc.nist.gov/encryption/aes/> for more information. 1150 1151config CRYPTO_AES_NI_INTEL 1152 tristate "AES cipher algorithms (AES-NI)" 1153 depends on X86 1154 select CRYPTO_AEAD 1155 select CRYPTO_AES_X86_64 if 64BIT 1156 select CRYPTO_AES_586 if !64BIT 1157 select CRYPTO_ALGAPI 1158 select CRYPTO_BLKCIPHER 1159 select CRYPTO_GLUE_HELPER_X86 if 64BIT 1160 select CRYPTO_SIMD 1161 help 1162 Use Intel AES-NI instructions for AES algorithm. 1163 1164 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1165 algorithm. 1166 1167 Rijndael appears to be consistently a very good performer in 1168 both hardware and software across a wide range of computing 1169 environments regardless of its use in feedback or non-feedback 1170 modes. Its key setup time is excellent, and its key agility is 1171 good. Rijndael's very low memory requirements make it very well 1172 suited for restricted-space environments, in which it also 1173 demonstrates excellent performance. Rijndael's operations are 1174 among the easiest to defend against power and timing attacks. 1175 1176 The AES specifies three key sizes: 128, 192 and 256 bits 1177 1178 See <http://csrc.nist.gov/encryption/aes/> for more information. 1179 1180 In addition to AES cipher algorithm support, the acceleration 1181 for some popular block cipher mode is supported too, including 1182 ECB, CBC, LRW, XTS. The 64 bit version has additional 1183 acceleration for CTR. 1184 1185config CRYPTO_AES_SPARC64 1186 tristate "AES cipher algorithms (SPARC64)" 1187 depends on SPARC64 1188 select CRYPTO_CRYPTD 1189 select CRYPTO_ALGAPI 1190 help 1191 Use SPARC64 crypto opcodes for AES algorithm. 1192 1193 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1194 algorithm. 1195 1196 Rijndael appears to be consistently a very good performer in 1197 both hardware and software across a wide range of computing 1198 environments regardless of its use in feedback or non-feedback 1199 modes. Its key setup time is excellent, and its key agility is 1200 good. Rijndael's very low memory requirements make it very well 1201 suited for restricted-space environments, in which it also 1202 demonstrates excellent performance. Rijndael's operations are 1203 among the easiest to defend against power and timing attacks. 1204 1205 The AES specifies three key sizes: 128, 192 and 256 bits 1206 1207 See <http://csrc.nist.gov/encryption/aes/> for more information. 1208 1209 In addition to AES cipher algorithm support, the acceleration 1210 for some popular block cipher mode is supported too, including 1211 ECB and CBC. 1212 1213config CRYPTO_AES_PPC_SPE 1214 tristate "AES cipher algorithms (PPC SPE)" 1215 depends on PPC && SPE 1216 help 1217 AES cipher algorithms (FIPS-197). Additionally the acceleration 1218 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1219 This module should only be used for low power (router) devices 1220 without hardware AES acceleration (e.g. caam crypto). It reduces the 1221 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1222 timining attacks. Nevertheless it might be not as secure as other 1223 architecture specific assembler implementations that work on 1KB 1224 tables or 256 bytes S-boxes. 1225 1226config CRYPTO_ANUBIS 1227 tristate "Anubis cipher algorithm" 1228 select CRYPTO_ALGAPI 1229 help 1230 Anubis cipher algorithm. 1231 1232 Anubis is a variable key length cipher which can use keys from 1233 128 bits to 320 bits in length. It was evaluated as a entrant 1234 in the NESSIE competition. 1235 1236 See also: 1237 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1238 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1239 1240config CRYPTO_LIB_ARC4 1241 tristate 1242 1243config CRYPTO_ARC4 1244 tristate "ARC4 cipher algorithm" 1245 select CRYPTO_BLKCIPHER 1246 select CRYPTO_LIB_ARC4 1247 help 1248 ARC4 cipher algorithm. 1249 1250 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1251 bits in length. This algorithm is required for driver-based 1252 WEP, but it should not be for other purposes because of the 1253 weakness of the algorithm. 1254 1255config CRYPTO_BLOWFISH 1256 tristate "Blowfish cipher algorithm" 1257 select CRYPTO_ALGAPI 1258 select CRYPTO_BLOWFISH_COMMON 1259 help 1260 Blowfish cipher algorithm, by Bruce Schneier. 1261 1262 This is a variable key length cipher which can use keys from 32 1263 bits to 448 bits in length. It's fast, simple and specifically 1264 designed for use on "large microprocessors". 1265 1266 See also: 1267 <http://www.schneier.com/blowfish.html> 1268 1269config CRYPTO_BLOWFISH_COMMON 1270 tristate 1271 help 1272 Common parts of the Blowfish cipher algorithm shared by the 1273 generic c and the assembler implementations. 1274 1275 See also: 1276 <http://www.schneier.com/blowfish.html> 1277 1278config CRYPTO_BLOWFISH_X86_64 1279 tristate "Blowfish cipher algorithm (x86_64)" 1280 depends on X86 && 64BIT 1281 select CRYPTO_BLKCIPHER 1282 select CRYPTO_BLOWFISH_COMMON 1283 help 1284 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1285 1286 This is a variable key length cipher which can use keys from 32 1287 bits to 448 bits in length. It's fast, simple and specifically 1288 designed for use on "large microprocessors". 1289 1290 See also: 1291 <http://www.schneier.com/blowfish.html> 1292 1293config CRYPTO_CAMELLIA 1294 tristate "Camellia cipher algorithms" 1295 depends on CRYPTO 1296 select CRYPTO_ALGAPI 1297 help 1298 Camellia cipher algorithms module. 1299 1300 Camellia is a symmetric key block cipher developed jointly 1301 at NTT and Mitsubishi Electric Corporation. 1302 1303 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1304 1305 See also: 1306 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1307 1308config CRYPTO_CAMELLIA_X86_64 1309 tristate "Camellia cipher algorithm (x86_64)" 1310 depends on X86 && 64BIT 1311 depends on CRYPTO 1312 select CRYPTO_BLKCIPHER 1313 select CRYPTO_GLUE_HELPER_X86 1314 help 1315 Camellia cipher algorithm module (x86_64). 1316 1317 Camellia is a symmetric key block cipher developed jointly 1318 at NTT and Mitsubishi Electric Corporation. 1319 1320 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1321 1322 See also: 1323 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1324 1325config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1326 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1327 depends on X86 && 64BIT 1328 depends on CRYPTO 1329 select CRYPTO_BLKCIPHER 1330 select CRYPTO_CAMELLIA_X86_64 1331 select CRYPTO_GLUE_HELPER_X86 1332 select CRYPTO_SIMD 1333 select CRYPTO_XTS 1334 help 1335 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1336 1337 Camellia is a symmetric key block cipher developed jointly 1338 at NTT and Mitsubishi Electric Corporation. 1339 1340 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1341 1342 See also: 1343 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1344 1345config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1346 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1347 depends on X86 && 64BIT 1348 depends on CRYPTO 1349 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1350 help 1351 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1352 1353 Camellia is a symmetric key block cipher developed jointly 1354 at NTT and Mitsubishi Electric Corporation. 1355 1356 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1357 1358 See also: 1359 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1360 1361config CRYPTO_CAMELLIA_SPARC64 1362 tristate "Camellia cipher algorithm (SPARC64)" 1363 depends on SPARC64 1364 depends on CRYPTO 1365 select CRYPTO_ALGAPI 1366 help 1367 Camellia cipher algorithm module (SPARC64). 1368 1369 Camellia is a symmetric key block cipher developed jointly 1370 at NTT and Mitsubishi Electric Corporation. 1371 1372 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1373 1374 See also: 1375 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1376 1377config CRYPTO_CAST_COMMON 1378 tristate 1379 help 1380 Common parts of the CAST cipher algorithms shared by the 1381 generic c and the assembler implementations. 1382 1383config CRYPTO_CAST5 1384 tristate "CAST5 (CAST-128) cipher algorithm" 1385 select CRYPTO_ALGAPI 1386 select CRYPTO_CAST_COMMON 1387 help 1388 The CAST5 encryption algorithm (synonymous with CAST-128) is 1389 described in RFC2144. 1390 1391config CRYPTO_CAST5_AVX_X86_64 1392 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1393 depends on X86 && 64BIT 1394 select CRYPTO_BLKCIPHER 1395 select CRYPTO_CAST5 1396 select CRYPTO_CAST_COMMON 1397 select CRYPTO_SIMD 1398 help 1399 The CAST5 encryption algorithm (synonymous with CAST-128) is 1400 described in RFC2144. 1401 1402 This module provides the Cast5 cipher algorithm that processes 1403 sixteen blocks parallel using the AVX instruction set. 1404 1405config CRYPTO_CAST6 1406 tristate "CAST6 (CAST-256) cipher algorithm" 1407 select CRYPTO_ALGAPI 1408 select CRYPTO_CAST_COMMON 1409 help 1410 The CAST6 encryption algorithm (synonymous with CAST-256) is 1411 described in RFC2612. 1412 1413config CRYPTO_CAST6_AVX_X86_64 1414 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1415 depends on X86 && 64BIT 1416 select CRYPTO_BLKCIPHER 1417 select CRYPTO_CAST6 1418 select CRYPTO_CAST_COMMON 1419 select CRYPTO_GLUE_HELPER_X86 1420 select CRYPTO_SIMD 1421 select CRYPTO_XTS 1422 help 1423 The CAST6 encryption algorithm (synonymous with CAST-256) is 1424 described in RFC2612. 1425 1426 This module provides the Cast6 cipher algorithm that processes 1427 eight blocks parallel using the AVX instruction set. 1428 1429config CRYPTO_DES 1430 tristate "DES and Triple DES EDE cipher algorithms" 1431 select CRYPTO_ALGAPI 1432 help 1433 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1434 1435config CRYPTO_DES_SPARC64 1436 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1437 depends on SPARC64 1438 select CRYPTO_ALGAPI 1439 select CRYPTO_DES 1440 help 1441 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1442 optimized using SPARC64 crypto opcodes. 1443 1444config CRYPTO_DES3_EDE_X86_64 1445 tristate "Triple DES EDE cipher algorithm (x86-64)" 1446 depends on X86 && 64BIT 1447 select CRYPTO_BLKCIPHER 1448 select CRYPTO_DES 1449 help 1450 Triple DES EDE (FIPS 46-3) algorithm. 1451 1452 This module provides implementation of the Triple DES EDE cipher 1453 algorithm that is optimized for x86-64 processors. Two versions of 1454 algorithm are provided; regular processing one input block and 1455 one that processes three blocks parallel. 1456 1457config CRYPTO_FCRYPT 1458 tristate "FCrypt cipher algorithm" 1459 select CRYPTO_ALGAPI 1460 select CRYPTO_BLKCIPHER 1461 help 1462 FCrypt algorithm used by RxRPC. 1463 1464config CRYPTO_KHAZAD 1465 tristate "Khazad cipher algorithm" 1466 select CRYPTO_ALGAPI 1467 help 1468 Khazad cipher algorithm. 1469 1470 Khazad was a finalist in the initial NESSIE competition. It is 1471 an algorithm optimized for 64-bit processors with good performance 1472 on 32-bit processors. Khazad uses an 128 bit key size. 1473 1474 See also: 1475 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1476 1477config CRYPTO_SALSA20 1478 tristate "Salsa20 stream cipher algorithm" 1479 select CRYPTO_BLKCIPHER 1480 help 1481 Salsa20 stream cipher algorithm. 1482 1483 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1484 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1485 1486 The Salsa20 stream cipher algorithm is designed by Daniel J. 1487 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1488 1489config CRYPTO_CHACHA20 1490 tristate "ChaCha stream cipher algorithms" 1491 select CRYPTO_BLKCIPHER 1492 help 1493 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1494 1495 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1496 Bernstein and further specified in RFC7539 for use in IETF protocols. 1497 This is the portable C implementation of ChaCha20. See also: 1498 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1499 1500 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1501 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1502 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1503 while provably retaining ChaCha20's security. See also: 1504 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1505 1506 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1507 reduced security margin but increased performance. It can be needed 1508 in some performance-sensitive scenarios. 1509 1510config CRYPTO_CHACHA20_X86_64 1511 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1512 depends on X86 && 64BIT 1513 select CRYPTO_BLKCIPHER 1514 select CRYPTO_CHACHA20 1515 help 1516 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1517 XChaCha20, and XChaCha12 stream ciphers. 1518 1519config CRYPTO_SEED 1520 tristate "SEED cipher algorithm" 1521 select CRYPTO_ALGAPI 1522 help 1523 SEED cipher algorithm (RFC4269). 1524 1525 SEED is a 128-bit symmetric key block cipher that has been 1526 developed by KISA (Korea Information Security Agency) as a 1527 national standard encryption algorithm of the Republic of Korea. 1528 It is a 16 round block cipher with the key size of 128 bit. 1529 1530 See also: 1531 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1532 1533config CRYPTO_SERPENT 1534 tristate "Serpent cipher algorithm" 1535 select CRYPTO_ALGAPI 1536 help 1537 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1538 1539 Keys are allowed to be from 0 to 256 bits in length, in steps 1540 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1541 variant of Serpent for compatibility with old kerneli.org code. 1542 1543 See also: 1544 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1545 1546config CRYPTO_SERPENT_SSE2_X86_64 1547 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1548 depends on X86 && 64BIT 1549 select CRYPTO_BLKCIPHER 1550 select CRYPTO_GLUE_HELPER_X86 1551 select CRYPTO_SERPENT 1552 select CRYPTO_SIMD 1553 help 1554 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1555 1556 Keys are allowed to be from 0 to 256 bits in length, in steps 1557 of 8 bits. 1558 1559 This module provides Serpent cipher algorithm that processes eight 1560 blocks parallel using SSE2 instruction set. 1561 1562 See also: 1563 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1564 1565config CRYPTO_SERPENT_SSE2_586 1566 tristate "Serpent cipher algorithm (i586/SSE2)" 1567 depends on X86 && !64BIT 1568 select CRYPTO_BLKCIPHER 1569 select CRYPTO_GLUE_HELPER_X86 1570 select CRYPTO_SERPENT 1571 select CRYPTO_SIMD 1572 help 1573 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1574 1575 Keys are allowed to be from 0 to 256 bits in length, in steps 1576 of 8 bits. 1577 1578 This module provides Serpent cipher algorithm that processes four 1579 blocks parallel using SSE2 instruction set. 1580 1581 See also: 1582 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1583 1584config CRYPTO_SERPENT_AVX_X86_64 1585 tristate "Serpent cipher algorithm (x86_64/AVX)" 1586 depends on X86 && 64BIT 1587 select CRYPTO_BLKCIPHER 1588 select CRYPTO_GLUE_HELPER_X86 1589 select CRYPTO_SERPENT 1590 select CRYPTO_SIMD 1591 select CRYPTO_XTS 1592 help 1593 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1594 1595 Keys are allowed to be from 0 to 256 bits in length, in steps 1596 of 8 bits. 1597 1598 This module provides the Serpent cipher algorithm that processes 1599 eight blocks parallel using the AVX instruction set. 1600 1601 See also: 1602 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1603 1604config CRYPTO_SERPENT_AVX2_X86_64 1605 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1606 depends on X86 && 64BIT 1607 select CRYPTO_SERPENT_AVX_X86_64 1608 help 1609 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1610 1611 Keys are allowed to be from 0 to 256 bits in length, in steps 1612 of 8 bits. 1613 1614 This module provides Serpent cipher algorithm that processes 16 1615 blocks parallel using AVX2 instruction set. 1616 1617 See also: 1618 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1619 1620config CRYPTO_SM4 1621 tristate "SM4 cipher algorithm" 1622 select CRYPTO_ALGAPI 1623 help 1624 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1625 1626 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1627 Organization of State Commercial Administration of China (OSCCA) 1628 as an authorized cryptographic algorithms for the use within China. 1629 1630 SMS4 was originally created for use in protecting wireless 1631 networks, and is mandated in the Chinese National Standard for 1632 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1633 (GB.15629.11-2003). 1634 1635 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1636 standardized through TC 260 of the Standardization Administration 1637 of the People's Republic of China (SAC). 1638 1639 The input, output, and key of SMS4 are each 128 bits. 1640 1641 See also: <https://eprint.iacr.org/2008/329.pdf> 1642 1643 If unsure, say N. 1644 1645config CRYPTO_TEA 1646 tristate "TEA, XTEA and XETA cipher algorithms" 1647 select CRYPTO_ALGAPI 1648 help 1649 TEA cipher algorithm. 1650 1651 Tiny Encryption Algorithm is a simple cipher that uses 1652 many rounds for security. It is very fast and uses 1653 little memory. 1654 1655 Xtendend Tiny Encryption Algorithm is a modification to 1656 the TEA algorithm to address a potential key weakness 1657 in the TEA algorithm. 1658 1659 Xtendend Encryption Tiny Algorithm is a mis-implementation 1660 of the XTEA algorithm for compatibility purposes. 1661 1662config CRYPTO_TWOFISH 1663 tristate "Twofish cipher algorithm" 1664 select CRYPTO_ALGAPI 1665 select CRYPTO_TWOFISH_COMMON 1666 help 1667 Twofish cipher algorithm. 1668 1669 Twofish was submitted as an AES (Advanced Encryption Standard) 1670 candidate cipher by researchers at CounterPane Systems. It is a 1671 16 round block cipher supporting key sizes of 128, 192, and 256 1672 bits. 1673 1674 See also: 1675 <http://www.schneier.com/twofish.html> 1676 1677config CRYPTO_TWOFISH_COMMON 1678 tristate 1679 help 1680 Common parts of the Twofish cipher algorithm shared by the 1681 generic c and the assembler implementations. 1682 1683config CRYPTO_TWOFISH_586 1684 tristate "Twofish cipher algorithms (i586)" 1685 depends on (X86 || UML_X86) && !64BIT 1686 select CRYPTO_ALGAPI 1687 select CRYPTO_TWOFISH_COMMON 1688 help 1689 Twofish cipher algorithm. 1690 1691 Twofish was submitted as an AES (Advanced Encryption Standard) 1692 candidate cipher by researchers at CounterPane Systems. It is a 1693 16 round block cipher supporting key sizes of 128, 192, and 256 1694 bits. 1695 1696 See also: 1697 <http://www.schneier.com/twofish.html> 1698 1699config CRYPTO_TWOFISH_X86_64 1700 tristate "Twofish cipher algorithm (x86_64)" 1701 depends on (X86 || UML_X86) && 64BIT 1702 select CRYPTO_ALGAPI 1703 select CRYPTO_TWOFISH_COMMON 1704 help 1705 Twofish cipher algorithm (x86_64). 1706 1707 Twofish was submitted as an AES (Advanced Encryption Standard) 1708 candidate cipher by researchers at CounterPane Systems. It is a 1709 16 round block cipher supporting key sizes of 128, 192, and 256 1710 bits. 1711 1712 See also: 1713 <http://www.schneier.com/twofish.html> 1714 1715config CRYPTO_TWOFISH_X86_64_3WAY 1716 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1717 depends on X86 && 64BIT 1718 select CRYPTO_BLKCIPHER 1719 select CRYPTO_TWOFISH_COMMON 1720 select CRYPTO_TWOFISH_X86_64 1721 select CRYPTO_GLUE_HELPER_X86 1722 help 1723 Twofish cipher algorithm (x86_64, 3-way parallel). 1724 1725 Twofish was submitted as an AES (Advanced Encryption Standard) 1726 candidate cipher by researchers at CounterPane Systems. It is a 1727 16 round block cipher supporting key sizes of 128, 192, and 256 1728 bits. 1729 1730 This module provides Twofish cipher algorithm that processes three 1731 blocks parallel, utilizing resources of out-of-order CPUs better. 1732 1733 See also: 1734 <http://www.schneier.com/twofish.html> 1735 1736config CRYPTO_TWOFISH_AVX_X86_64 1737 tristate "Twofish cipher algorithm (x86_64/AVX)" 1738 depends on X86 && 64BIT 1739 select CRYPTO_BLKCIPHER 1740 select CRYPTO_GLUE_HELPER_X86 1741 select CRYPTO_SIMD 1742 select CRYPTO_TWOFISH_COMMON 1743 select CRYPTO_TWOFISH_X86_64 1744 select CRYPTO_TWOFISH_X86_64_3WAY 1745 help 1746 Twofish cipher algorithm (x86_64/AVX). 1747 1748 Twofish was submitted as an AES (Advanced Encryption Standard) 1749 candidate cipher by researchers at CounterPane Systems. It is a 1750 16 round block cipher supporting key sizes of 128, 192, and 256 1751 bits. 1752 1753 This module provides the Twofish cipher algorithm that processes 1754 eight blocks parallel using the AVX Instruction Set. 1755 1756 See also: 1757 <http://www.schneier.com/twofish.html> 1758 1759comment "Compression" 1760 1761config CRYPTO_DEFLATE 1762 tristate "Deflate compression algorithm" 1763 select CRYPTO_ALGAPI 1764 select CRYPTO_ACOMP2 1765 select ZLIB_INFLATE 1766 select ZLIB_DEFLATE 1767 help 1768 This is the Deflate algorithm (RFC1951), specified for use in 1769 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1770 1771 You will most probably want this if using IPSec. 1772 1773config CRYPTO_LZO 1774 tristate "LZO compression algorithm" 1775 select CRYPTO_ALGAPI 1776 select CRYPTO_ACOMP2 1777 select LZO_COMPRESS 1778 select LZO_DECOMPRESS 1779 help 1780 This is the LZO algorithm. 1781 1782config CRYPTO_842 1783 tristate "842 compression algorithm" 1784 select CRYPTO_ALGAPI 1785 select CRYPTO_ACOMP2 1786 select 842_COMPRESS 1787 select 842_DECOMPRESS 1788 help 1789 This is the 842 algorithm. 1790 1791config CRYPTO_LZ4 1792 tristate "LZ4 compression algorithm" 1793 select CRYPTO_ALGAPI 1794 select CRYPTO_ACOMP2 1795 select LZ4_COMPRESS 1796 select LZ4_DECOMPRESS 1797 help 1798 This is the LZ4 algorithm. 1799 1800config CRYPTO_LZ4HC 1801 tristate "LZ4HC compression algorithm" 1802 select CRYPTO_ALGAPI 1803 select CRYPTO_ACOMP2 1804 select LZ4HC_COMPRESS 1805 select LZ4_DECOMPRESS 1806 help 1807 This is the LZ4 high compression mode algorithm. 1808 1809config CRYPTO_ZSTD 1810 tristate "Zstd compression algorithm" 1811 select CRYPTO_ALGAPI 1812 select CRYPTO_ACOMP2 1813 select ZSTD_COMPRESS 1814 select ZSTD_DECOMPRESS 1815 help 1816 This is the zstd algorithm. 1817 1818comment "Random Number Generation" 1819 1820config CRYPTO_ANSI_CPRNG 1821 tristate "Pseudo Random Number Generation for Cryptographic modules" 1822 select CRYPTO_AES 1823 select CRYPTO_RNG 1824 help 1825 This option enables the generic pseudo random number generator 1826 for cryptographic modules. Uses the Algorithm specified in 1827 ANSI X9.31 A.2.4. Note that this option must be enabled if 1828 CRYPTO_FIPS is selected 1829 1830menuconfig CRYPTO_DRBG_MENU 1831 tristate "NIST SP800-90A DRBG" 1832 help 1833 NIST SP800-90A compliant DRBG. In the following submenu, one or 1834 more of the DRBG types must be selected. 1835 1836if CRYPTO_DRBG_MENU 1837 1838config CRYPTO_DRBG_HMAC 1839 bool 1840 default y 1841 select CRYPTO_HMAC 1842 select CRYPTO_SHA256 1843 1844config CRYPTO_DRBG_HASH 1845 bool "Enable Hash DRBG" 1846 select CRYPTO_SHA256 1847 help 1848 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1849 1850config CRYPTO_DRBG_CTR 1851 bool "Enable CTR DRBG" 1852 select CRYPTO_AES 1853 depends on CRYPTO_CTR 1854 help 1855 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1856 1857config CRYPTO_DRBG 1858 tristate 1859 default CRYPTO_DRBG_MENU 1860 select CRYPTO_RNG 1861 select CRYPTO_JITTERENTROPY 1862 1863endif # if CRYPTO_DRBG_MENU 1864 1865config CRYPTO_JITTERENTROPY 1866 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1867 select CRYPTO_RNG 1868 help 1869 The Jitterentropy RNG is a noise that is intended 1870 to provide seed to another RNG. The RNG does not 1871 perform any cryptographic whitening of the generated 1872 random numbers. This Jitterentropy RNG registers with 1873 the kernel crypto API and can be used by any caller. 1874 1875config CRYPTO_USER_API 1876 tristate 1877 1878config CRYPTO_USER_API_HASH 1879 tristate "User-space interface for hash algorithms" 1880 depends on NET 1881 select CRYPTO_HASH 1882 select CRYPTO_USER_API 1883 help 1884 This option enables the user-spaces interface for hash 1885 algorithms. 1886 1887config CRYPTO_USER_API_SKCIPHER 1888 tristate "User-space interface for symmetric key cipher algorithms" 1889 depends on NET 1890 select CRYPTO_BLKCIPHER 1891 select CRYPTO_USER_API 1892 help 1893 This option enables the user-spaces interface for symmetric 1894 key cipher algorithms. 1895 1896config CRYPTO_USER_API_RNG 1897 tristate "User-space interface for random number generator algorithms" 1898 depends on NET 1899 select CRYPTO_RNG 1900 select CRYPTO_USER_API 1901 help 1902 This option enables the user-spaces interface for random 1903 number generator algorithms. 1904 1905config CRYPTO_USER_API_AEAD 1906 tristate "User-space interface for AEAD cipher algorithms" 1907 depends on NET 1908 select CRYPTO_AEAD 1909 select CRYPTO_BLKCIPHER 1910 select CRYPTO_NULL 1911 select CRYPTO_USER_API 1912 help 1913 This option enables the user-spaces interface for AEAD 1914 cipher algorithms. 1915 1916config CRYPTO_STATS 1917 bool "Crypto usage statistics for User-space" 1918 depends on CRYPTO_USER 1919 help 1920 This option enables the gathering of crypto stats. 1921 This will collect: 1922 - encrypt/decrypt size and numbers of symmeric operations 1923 - compress/decompress size and numbers of compress operations 1924 - size and numbers of hash operations 1925 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1926 - generate/seed numbers for rng operations 1927 1928config CRYPTO_HASH_INFO 1929 bool 1930 1931source "drivers/crypto/Kconfig" 1932source "crypto/asymmetric_keys/Kconfig" 1933source "certs/Kconfig" 1934 1935endif # if CRYPTO 1936