1# 2# Generic algorithms support 3# 4config XOR_BLOCKS 5 tristate 6 7# 8# async_tx api: hardware offloaded memory transfer/transform support 9# 10source "crypto/async_tx/Kconfig" 11 12# 13# Cryptographic API Configuration 14# 15menuconfig CRYPTO 16 tristate "Cryptographic API" 17 help 18 This option provides the core Cryptographic API. 19 20if CRYPTO 21 22comment "Crypto core or helper" 23 24config CRYPTO_FIPS 25 bool "FIPS 200 compliance" 26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 27 depends on (MODULE_SIG || !MODULES) 28 help 29 This options enables the fips boot option which is 30 required if you want to system to operate in a FIPS 200 31 certification. You should say no unless you know what 32 this is. 33 34config CRYPTO_ALGAPI 35 tristate 36 select CRYPTO_ALGAPI2 37 help 38 This option provides the API for cryptographic algorithms. 39 40config CRYPTO_ALGAPI2 41 tristate 42 43config CRYPTO_AEAD 44 tristate 45 select CRYPTO_AEAD2 46 select CRYPTO_ALGAPI 47 48config CRYPTO_AEAD2 49 tristate 50 select CRYPTO_ALGAPI2 51 select CRYPTO_NULL2 52 select CRYPTO_RNG2 53 54config CRYPTO_BLKCIPHER 55 tristate 56 select CRYPTO_BLKCIPHER2 57 select CRYPTO_ALGAPI 58 59config CRYPTO_BLKCIPHER2 60 tristate 61 select CRYPTO_ALGAPI2 62 select CRYPTO_RNG2 63 select CRYPTO_WORKQUEUE 64 65config CRYPTO_HASH 66 tristate 67 select CRYPTO_HASH2 68 select CRYPTO_ALGAPI 69 70config CRYPTO_HASH2 71 tristate 72 select CRYPTO_ALGAPI2 73 74config CRYPTO_RNG 75 tristate 76 select CRYPTO_RNG2 77 select CRYPTO_ALGAPI 78 79config CRYPTO_RNG2 80 tristate 81 select CRYPTO_ALGAPI2 82 83config CRYPTO_RNG_DEFAULT 84 tristate 85 select CRYPTO_DRBG_MENU 86 87config CRYPTO_AKCIPHER2 88 tristate 89 select CRYPTO_ALGAPI2 90 91config CRYPTO_AKCIPHER 92 tristate 93 select CRYPTO_AKCIPHER2 94 select CRYPTO_ALGAPI 95 96config CRYPTO_KPP2 97 tristate 98 select CRYPTO_ALGAPI2 99 100config CRYPTO_KPP 101 tristate 102 select CRYPTO_ALGAPI 103 select CRYPTO_KPP2 104 105config CRYPTO_ACOMP2 106 tristate 107 select CRYPTO_ALGAPI2 108 109config CRYPTO_ACOMP 110 tristate 111 select CRYPTO_ALGAPI 112 select CRYPTO_ACOMP2 113 114config CRYPTO_RSA 115 tristate "RSA algorithm" 116 select CRYPTO_AKCIPHER 117 select CRYPTO_MANAGER 118 select MPILIB 119 select ASN1 120 help 121 Generic implementation of the RSA public key algorithm. 122 123config CRYPTO_DH 124 tristate "Diffie-Hellman algorithm" 125 select CRYPTO_KPP 126 select MPILIB 127 help 128 Generic implementation of the Diffie-Hellman algorithm. 129 130config CRYPTO_ECDH 131 tristate "ECDH algorithm" 132 select CRYTPO_KPP 133 help 134 Generic implementation of the ECDH algorithm 135 136config CRYPTO_MANAGER 137 tristate "Cryptographic algorithm manager" 138 select CRYPTO_MANAGER2 139 help 140 Create default cryptographic template instantiations such as 141 cbc(aes). 142 143config CRYPTO_MANAGER2 144 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 145 select CRYPTO_AEAD2 146 select CRYPTO_HASH2 147 select CRYPTO_BLKCIPHER2 148 select CRYPTO_AKCIPHER2 149 select CRYPTO_KPP2 150 select CRYPTO_ACOMP2 151 152config CRYPTO_USER 153 tristate "Userspace cryptographic algorithm configuration" 154 depends on NET 155 select CRYPTO_MANAGER 156 help 157 Userspace configuration for cryptographic instantiations such as 158 cbc(aes). 159 160config CRYPTO_MANAGER_DISABLE_TESTS 161 bool "Disable run-time self tests" 162 default y 163 depends on CRYPTO_MANAGER2 164 help 165 Disable run-time self tests that normally take place at 166 algorithm registration. 167 168config CRYPTO_GF128MUL 169 tristate "GF(2^128) multiplication functions" 170 help 171 Efficient table driven implementation of multiplications in the 172 field GF(2^128). This is needed by some cypher modes. This 173 option will be selected automatically if you select such a 174 cipher mode. Only select this option by hand if you expect to load 175 an external module that requires these functions. 176 177config CRYPTO_NULL 178 tristate "Null algorithms" 179 select CRYPTO_NULL2 180 help 181 These are 'Null' algorithms, used by IPsec, which do nothing. 182 183config CRYPTO_NULL2 184 tristate 185 select CRYPTO_ALGAPI2 186 select CRYPTO_BLKCIPHER2 187 select CRYPTO_HASH2 188 189config CRYPTO_PCRYPT 190 tristate "Parallel crypto engine" 191 depends on SMP 192 select PADATA 193 select CRYPTO_MANAGER 194 select CRYPTO_AEAD 195 help 196 This converts an arbitrary crypto algorithm into a parallel 197 algorithm that executes in kernel threads. 198 199config CRYPTO_WORKQUEUE 200 tristate 201 202config CRYPTO_CRYPTD 203 tristate "Software async crypto daemon" 204 select CRYPTO_BLKCIPHER 205 select CRYPTO_HASH 206 select CRYPTO_MANAGER 207 select CRYPTO_WORKQUEUE 208 help 209 This is a generic software asynchronous crypto daemon that 210 converts an arbitrary synchronous software crypto algorithm 211 into an asynchronous algorithm that executes in a kernel thread. 212 213config CRYPTO_MCRYPTD 214 tristate "Software async multi-buffer crypto daemon" 215 select CRYPTO_BLKCIPHER 216 select CRYPTO_HASH 217 select CRYPTO_MANAGER 218 select CRYPTO_WORKQUEUE 219 help 220 This is a generic software asynchronous crypto daemon that 221 provides the kernel thread to assist multi-buffer crypto 222 algorithms for submitting jobs and flushing jobs in multi-buffer 223 crypto algorithms. Multi-buffer crypto algorithms are executed 224 in the context of this kernel thread and drivers can post 225 their crypto request asynchronously to be processed by this daemon. 226 227config CRYPTO_AUTHENC 228 tristate "Authenc support" 229 select CRYPTO_AEAD 230 select CRYPTO_BLKCIPHER 231 select CRYPTO_MANAGER 232 select CRYPTO_HASH 233 select CRYPTO_NULL 234 help 235 Authenc: Combined mode wrapper for IPsec. 236 This is required for IPSec. 237 238config CRYPTO_TEST 239 tristate "Testing module" 240 depends on m 241 select CRYPTO_MANAGER 242 help 243 Quick & dirty crypto test module. 244 245config CRYPTO_ABLK_HELPER 246 tristate 247 select CRYPTO_CRYPTD 248 249config CRYPTO_SIMD 250 tristate 251 select CRYPTO_CRYPTD 252 253config CRYPTO_GLUE_HELPER_X86 254 tristate 255 depends on X86 256 select CRYPTO_BLKCIPHER 257 258config CRYPTO_ENGINE 259 tristate 260 261comment "Authenticated Encryption with Associated Data" 262 263config CRYPTO_CCM 264 tristate "CCM support" 265 select CRYPTO_CTR 266 select CRYPTO_HASH 267 select CRYPTO_AEAD 268 help 269 Support for Counter with CBC MAC. Required for IPsec. 270 271config CRYPTO_GCM 272 tristate "GCM/GMAC support" 273 select CRYPTO_CTR 274 select CRYPTO_AEAD 275 select CRYPTO_GHASH 276 select CRYPTO_NULL 277 help 278 Support for Galois/Counter Mode (GCM) and Galois Message 279 Authentication Code (GMAC). Required for IPSec. 280 281config CRYPTO_CHACHA20POLY1305 282 tristate "ChaCha20-Poly1305 AEAD support" 283 select CRYPTO_CHACHA20 284 select CRYPTO_POLY1305 285 select CRYPTO_AEAD 286 help 287 ChaCha20-Poly1305 AEAD support, RFC7539. 288 289 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 290 with the Poly1305 authenticator. It is defined in RFC7539 for use in 291 IETF protocols. 292 293config CRYPTO_SEQIV 294 tristate "Sequence Number IV Generator" 295 select CRYPTO_AEAD 296 select CRYPTO_BLKCIPHER 297 select CRYPTO_NULL 298 select CRYPTO_RNG_DEFAULT 299 help 300 This IV generator generates an IV based on a sequence number by 301 xoring it with a salt. This algorithm is mainly useful for CTR 302 303config CRYPTO_ECHAINIV 304 tristate "Encrypted Chain IV Generator" 305 select CRYPTO_AEAD 306 select CRYPTO_NULL 307 select CRYPTO_RNG_DEFAULT 308 default m 309 help 310 This IV generator generates an IV based on the encryption of 311 a sequence number xored with a salt. This is the default 312 algorithm for CBC. 313 314comment "Block modes" 315 316config CRYPTO_CBC 317 tristate "CBC support" 318 select CRYPTO_BLKCIPHER 319 select CRYPTO_MANAGER 320 help 321 CBC: Cipher Block Chaining mode 322 This block cipher algorithm is required for IPSec. 323 324config CRYPTO_CTR 325 tristate "CTR support" 326 select CRYPTO_BLKCIPHER 327 select CRYPTO_SEQIV 328 select CRYPTO_MANAGER 329 help 330 CTR: Counter mode 331 This block cipher algorithm is required for IPSec. 332 333config CRYPTO_CTS 334 tristate "CTS support" 335 select CRYPTO_BLKCIPHER 336 help 337 CTS: Cipher Text Stealing 338 This is the Cipher Text Stealing mode as described by 339 Section 8 of rfc2040 and referenced by rfc3962. 340 (rfc3962 includes errata information in its Appendix A) 341 This mode is required for Kerberos gss mechanism support 342 for AES encryption. 343 344config CRYPTO_ECB 345 tristate "ECB support" 346 select CRYPTO_BLKCIPHER 347 select CRYPTO_MANAGER 348 help 349 ECB: Electronic CodeBook mode 350 This is the simplest block cipher algorithm. It simply encrypts 351 the input block by block. 352 353config CRYPTO_LRW 354 tristate "LRW support" 355 select CRYPTO_BLKCIPHER 356 select CRYPTO_MANAGER 357 select CRYPTO_GF128MUL 358 help 359 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 360 narrow block cipher mode for dm-crypt. Use it with cipher 361 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 362 The first 128, 192 or 256 bits in the key are used for AES and the 363 rest is used to tie each cipher block to its logical position. 364 365config CRYPTO_PCBC 366 tristate "PCBC support" 367 select CRYPTO_BLKCIPHER 368 select CRYPTO_MANAGER 369 help 370 PCBC: Propagating Cipher Block Chaining mode 371 This block cipher algorithm is required for RxRPC. 372 373config CRYPTO_XTS 374 tristate "XTS support" 375 select CRYPTO_BLKCIPHER 376 select CRYPTO_MANAGER 377 select CRYPTO_GF128MUL 378 select CRYPTO_ECB 379 help 380 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 381 key size 256, 384 or 512 bits. This implementation currently 382 can't handle a sectorsize which is not a multiple of 16 bytes. 383 384config CRYPTO_KEYWRAP 385 tristate "Key wrapping support" 386 select CRYPTO_BLKCIPHER 387 help 388 Support for key wrapping (NIST SP800-38F / RFC3394) without 389 padding. 390 391comment "Hash modes" 392 393config CRYPTO_CMAC 394 tristate "CMAC support" 395 select CRYPTO_HASH 396 select CRYPTO_MANAGER 397 help 398 Cipher-based Message Authentication Code (CMAC) specified by 399 The National Institute of Standards and Technology (NIST). 400 401 https://tools.ietf.org/html/rfc4493 402 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 403 404config CRYPTO_HMAC 405 tristate "HMAC support" 406 select CRYPTO_HASH 407 select CRYPTO_MANAGER 408 help 409 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 410 This is required for IPSec. 411 412config CRYPTO_XCBC 413 tristate "XCBC support" 414 select CRYPTO_HASH 415 select CRYPTO_MANAGER 416 help 417 XCBC: Keyed-Hashing with encryption algorithm 418 http://www.ietf.org/rfc/rfc3566.txt 419 http://csrc.nist.gov/encryption/modes/proposedmodes/ 420 xcbc-mac/xcbc-mac-spec.pdf 421 422config CRYPTO_VMAC 423 tristate "VMAC support" 424 select CRYPTO_HASH 425 select CRYPTO_MANAGER 426 help 427 VMAC is a message authentication algorithm designed for 428 very high speed on 64-bit architectures. 429 430 See also: 431 <http://fastcrypto.org/vmac> 432 433comment "Digest" 434 435config CRYPTO_CRC32C 436 tristate "CRC32c CRC algorithm" 437 select CRYPTO_HASH 438 select CRC32 439 help 440 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 441 by iSCSI for header and data digests and by others. 442 See Castagnoli93. Module will be crc32c. 443 444config CRYPTO_CRC32C_INTEL 445 tristate "CRC32c INTEL hardware acceleration" 446 depends on X86 447 select CRYPTO_HASH 448 help 449 In Intel processor with SSE4.2 supported, the processor will 450 support CRC32C implementation using hardware accelerated CRC32 451 instruction. This option will create 'crc32c-intel' module, 452 which will enable any routine to use the CRC32 instruction to 453 gain performance compared with software implementation. 454 Module will be crc32c-intel. 455 456config CRYPTO_CRC32C_VPMSUM 457 tristate "CRC32c CRC algorithm (powerpc64)" 458 depends on PPC64 && ALTIVEC 459 select CRYPTO_HASH 460 select CRC32 461 help 462 CRC32c algorithm implemented using vector polynomial multiply-sum 463 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 464 and newer processors for improved performance. 465 466 467config CRYPTO_CRC32C_SPARC64 468 tristate "CRC32c CRC algorithm (SPARC64)" 469 depends on SPARC64 470 select CRYPTO_HASH 471 select CRC32 472 help 473 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 474 when available. 475 476config CRYPTO_CRC32 477 tristate "CRC32 CRC algorithm" 478 select CRYPTO_HASH 479 select CRC32 480 help 481 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 482 Shash crypto api wrappers to crc32_le function. 483 484config CRYPTO_CRC32_PCLMUL 485 tristate "CRC32 PCLMULQDQ hardware acceleration" 486 depends on X86 487 select CRYPTO_HASH 488 select CRC32 489 help 490 From Intel Westmere and AMD Bulldozer processor with SSE4.2 491 and PCLMULQDQ supported, the processor will support 492 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 493 instruction. This option will create 'crc32-plcmul' module, 494 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 495 and gain better performance as compared with the table implementation. 496 497config CRYPTO_CRCT10DIF 498 tristate "CRCT10DIF algorithm" 499 select CRYPTO_HASH 500 help 501 CRC T10 Data Integrity Field computation is being cast as 502 a crypto transform. This allows for faster crc t10 diff 503 transforms to be used if they are available. 504 505config CRYPTO_CRCT10DIF_PCLMUL 506 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 507 depends on X86 && 64BIT && CRC_T10DIF 508 select CRYPTO_HASH 509 help 510 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 511 CRC T10 DIF PCLMULQDQ computation can be hardware 512 accelerated PCLMULQDQ instruction. This option will create 513 'crct10dif-plcmul' module, which is faster when computing the 514 crct10dif checksum as compared with the generic table implementation. 515 516config CRYPTO_GHASH 517 tristate "GHASH digest algorithm" 518 select CRYPTO_GF128MUL 519 select CRYPTO_HASH 520 help 521 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 522 523config CRYPTO_POLY1305 524 tristate "Poly1305 authenticator algorithm" 525 select CRYPTO_HASH 526 help 527 Poly1305 authenticator algorithm, RFC7539. 528 529 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 530 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 531 in IETF protocols. This is the portable C implementation of Poly1305. 532 533config CRYPTO_POLY1305_X86_64 534 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 535 depends on X86 && 64BIT 536 select CRYPTO_POLY1305 537 help 538 Poly1305 authenticator algorithm, RFC7539. 539 540 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 541 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 542 in IETF protocols. This is the x86_64 assembler implementation using SIMD 543 instructions. 544 545config CRYPTO_MD4 546 tristate "MD4 digest algorithm" 547 select CRYPTO_HASH 548 help 549 MD4 message digest algorithm (RFC1320). 550 551config CRYPTO_MD5 552 tristate "MD5 digest algorithm" 553 select CRYPTO_HASH 554 help 555 MD5 message digest algorithm (RFC1321). 556 557config CRYPTO_MD5_OCTEON 558 tristate "MD5 digest algorithm (OCTEON)" 559 depends on CPU_CAVIUM_OCTEON 560 select CRYPTO_MD5 561 select CRYPTO_HASH 562 help 563 MD5 message digest algorithm (RFC1321) implemented 564 using OCTEON crypto instructions, when available. 565 566config CRYPTO_MD5_PPC 567 tristate "MD5 digest algorithm (PPC)" 568 depends on PPC 569 select CRYPTO_HASH 570 help 571 MD5 message digest algorithm (RFC1321) implemented 572 in PPC assembler. 573 574config CRYPTO_MD5_SPARC64 575 tristate "MD5 digest algorithm (SPARC64)" 576 depends on SPARC64 577 select CRYPTO_MD5 578 select CRYPTO_HASH 579 help 580 MD5 message digest algorithm (RFC1321) implemented 581 using sparc64 crypto instructions, when available. 582 583config CRYPTO_MICHAEL_MIC 584 tristate "Michael MIC keyed digest algorithm" 585 select CRYPTO_HASH 586 help 587 Michael MIC is used for message integrity protection in TKIP 588 (IEEE 802.11i). This algorithm is required for TKIP, but it 589 should not be used for other purposes because of the weakness 590 of the algorithm. 591 592config CRYPTO_RMD128 593 tristate "RIPEMD-128 digest algorithm" 594 select CRYPTO_HASH 595 help 596 RIPEMD-128 (ISO/IEC 10118-3:2004). 597 598 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 599 be used as a secure replacement for RIPEMD. For other use cases, 600 RIPEMD-160 should be used. 601 602 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 603 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 604 605config CRYPTO_RMD160 606 tristate "RIPEMD-160 digest algorithm" 607 select CRYPTO_HASH 608 help 609 RIPEMD-160 (ISO/IEC 10118-3:2004). 610 611 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 612 to be used as a secure replacement for the 128-bit hash functions 613 MD4, MD5 and it's predecessor RIPEMD 614 (not to be confused with RIPEMD-128). 615 616 It's speed is comparable to SHA1 and there are no known attacks 617 against RIPEMD-160. 618 619 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 620 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 621 622config CRYPTO_RMD256 623 tristate "RIPEMD-256 digest algorithm" 624 select CRYPTO_HASH 625 help 626 RIPEMD-256 is an optional extension of RIPEMD-128 with a 627 256 bit hash. It is intended for applications that require 628 longer hash-results, without needing a larger security level 629 (than RIPEMD-128). 630 631 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 632 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 633 634config CRYPTO_RMD320 635 tristate "RIPEMD-320 digest algorithm" 636 select CRYPTO_HASH 637 help 638 RIPEMD-320 is an optional extension of RIPEMD-160 with a 639 320 bit hash. It is intended for applications that require 640 longer hash-results, without needing a larger security level 641 (than RIPEMD-160). 642 643 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 644 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 645 646config CRYPTO_SHA1 647 tristate "SHA1 digest algorithm" 648 select CRYPTO_HASH 649 help 650 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 651 652config CRYPTO_SHA1_SSSE3 653 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 654 depends on X86 && 64BIT 655 select CRYPTO_SHA1 656 select CRYPTO_HASH 657 help 658 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 659 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 660 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 661 when available. 662 663config CRYPTO_SHA256_SSSE3 664 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 665 depends on X86 && 64BIT 666 select CRYPTO_SHA256 667 select CRYPTO_HASH 668 help 669 SHA-256 secure hash standard (DFIPS 180-2) implemented 670 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 671 Extensions version 1 (AVX1), or Advanced Vector Extensions 672 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 673 Instructions) when available. 674 675config CRYPTO_SHA512_SSSE3 676 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 677 depends on X86 && 64BIT 678 select CRYPTO_SHA512 679 select CRYPTO_HASH 680 help 681 SHA-512 secure hash standard (DFIPS 180-2) implemented 682 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 683 Extensions version 1 (AVX1), or Advanced Vector Extensions 684 version 2 (AVX2) instructions, when available. 685 686config CRYPTO_SHA1_OCTEON 687 tristate "SHA1 digest algorithm (OCTEON)" 688 depends on CPU_CAVIUM_OCTEON 689 select CRYPTO_SHA1 690 select CRYPTO_HASH 691 help 692 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 693 using OCTEON crypto instructions, when available. 694 695config CRYPTO_SHA1_SPARC64 696 tristate "SHA1 digest algorithm (SPARC64)" 697 depends on SPARC64 698 select CRYPTO_SHA1 699 select CRYPTO_HASH 700 help 701 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 702 using sparc64 crypto instructions, when available. 703 704config CRYPTO_SHA1_PPC 705 tristate "SHA1 digest algorithm (powerpc)" 706 depends on PPC 707 help 708 This is the powerpc hardware accelerated implementation of the 709 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 710 711config CRYPTO_SHA1_PPC_SPE 712 tristate "SHA1 digest algorithm (PPC SPE)" 713 depends on PPC && SPE 714 help 715 SHA-1 secure hash standard (DFIPS 180-4) implemented 716 using powerpc SPE SIMD instruction set. 717 718config CRYPTO_SHA1_MB 719 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 720 depends on X86 && 64BIT 721 select CRYPTO_SHA1 722 select CRYPTO_HASH 723 select CRYPTO_MCRYPTD 724 help 725 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 726 using multi-buffer technique. This algorithm computes on 727 multiple data lanes concurrently with SIMD instructions for 728 better throughput. It should not be enabled by default but 729 used when there is significant amount of work to keep the keep 730 the data lanes filled to get performance benefit. If the data 731 lanes remain unfilled, a flush operation will be initiated to 732 process the crypto jobs, adding a slight latency. 733 734config CRYPTO_SHA256_MB 735 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 736 depends on X86 && 64BIT 737 select CRYPTO_SHA256 738 select CRYPTO_HASH 739 select CRYPTO_MCRYPTD 740 help 741 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 742 using multi-buffer technique. This algorithm computes on 743 multiple data lanes concurrently with SIMD instructions for 744 better throughput. It should not be enabled by default but 745 used when there is significant amount of work to keep the keep 746 the data lanes filled to get performance benefit. If the data 747 lanes remain unfilled, a flush operation will be initiated to 748 process the crypto jobs, adding a slight latency. 749 750config CRYPTO_SHA512_MB 751 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 752 depends on X86 && 64BIT 753 select CRYPTO_SHA512 754 select CRYPTO_HASH 755 select CRYPTO_MCRYPTD 756 help 757 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 758 using multi-buffer technique. This algorithm computes on 759 multiple data lanes concurrently with SIMD instructions for 760 better throughput. It should not be enabled by default but 761 used when there is significant amount of work to keep the keep 762 the data lanes filled to get performance benefit. If the data 763 lanes remain unfilled, a flush operation will be initiated to 764 process the crypto jobs, adding a slight latency. 765 766config CRYPTO_SHA256 767 tristate "SHA224 and SHA256 digest algorithm" 768 select CRYPTO_HASH 769 help 770 SHA256 secure hash standard (DFIPS 180-2). 771 772 This version of SHA implements a 256 bit hash with 128 bits of 773 security against collision attacks. 774 775 This code also includes SHA-224, a 224 bit hash with 112 bits 776 of security against collision attacks. 777 778config CRYPTO_SHA256_PPC_SPE 779 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 780 depends on PPC && SPE 781 select CRYPTO_SHA256 782 select CRYPTO_HASH 783 help 784 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 785 implemented using powerpc SPE SIMD instruction set. 786 787config CRYPTO_SHA256_OCTEON 788 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 789 depends on CPU_CAVIUM_OCTEON 790 select CRYPTO_SHA256 791 select CRYPTO_HASH 792 help 793 SHA-256 secure hash standard (DFIPS 180-2) implemented 794 using OCTEON crypto instructions, when available. 795 796config CRYPTO_SHA256_SPARC64 797 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 798 depends on SPARC64 799 select CRYPTO_SHA256 800 select CRYPTO_HASH 801 help 802 SHA-256 secure hash standard (DFIPS 180-2) implemented 803 using sparc64 crypto instructions, when available. 804 805config CRYPTO_SHA512 806 tristate "SHA384 and SHA512 digest algorithms" 807 select CRYPTO_HASH 808 help 809 SHA512 secure hash standard (DFIPS 180-2). 810 811 This version of SHA implements a 512 bit hash with 256 bits of 812 security against collision attacks. 813 814 This code also includes SHA-384, a 384 bit hash with 192 bits 815 of security against collision attacks. 816 817config CRYPTO_SHA512_OCTEON 818 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 819 depends on CPU_CAVIUM_OCTEON 820 select CRYPTO_SHA512 821 select CRYPTO_HASH 822 help 823 SHA-512 secure hash standard (DFIPS 180-2) implemented 824 using OCTEON crypto instructions, when available. 825 826config CRYPTO_SHA512_SPARC64 827 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 828 depends on SPARC64 829 select CRYPTO_SHA512 830 select CRYPTO_HASH 831 help 832 SHA-512 secure hash standard (DFIPS 180-2) implemented 833 using sparc64 crypto instructions, when available. 834 835config CRYPTO_SHA3 836 tristate "SHA3 digest algorithm" 837 select CRYPTO_HASH 838 help 839 SHA-3 secure hash standard (DFIPS 202). It's based on 840 cryptographic sponge function family called Keccak. 841 842 References: 843 http://keccak.noekeon.org/ 844 845config CRYPTO_TGR192 846 tristate "Tiger digest algorithms" 847 select CRYPTO_HASH 848 help 849 Tiger hash algorithm 192, 160 and 128-bit hashes 850 851 Tiger is a hash function optimized for 64-bit processors while 852 still having decent performance on 32-bit processors. 853 Tiger was developed by Ross Anderson and Eli Biham. 854 855 See also: 856 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 857 858config CRYPTO_WP512 859 tristate "Whirlpool digest algorithms" 860 select CRYPTO_HASH 861 help 862 Whirlpool hash algorithm 512, 384 and 256-bit hashes 863 864 Whirlpool-512 is part of the NESSIE cryptographic primitives. 865 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 866 867 See also: 868 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 869 870config CRYPTO_GHASH_CLMUL_NI_INTEL 871 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 872 depends on X86 && 64BIT 873 select CRYPTO_CRYPTD 874 help 875 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 876 The implementation is accelerated by CLMUL-NI of Intel. 877 878comment "Ciphers" 879 880config CRYPTO_AES 881 tristate "AES cipher algorithms" 882 select CRYPTO_ALGAPI 883 help 884 AES cipher algorithms (FIPS-197). AES uses the Rijndael 885 algorithm. 886 887 Rijndael appears to be consistently a very good performer in 888 both hardware and software across a wide range of computing 889 environments regardless of its use in feedback or non-feedback 890 modes. Its key setup time is excellent, and its key agility is 891 good. Rijndael's very low memory requirements make it very well 892 suited for restricted-space environments, in which it also 893 demonstrates excellent performance. Rijndael's operations are 894 among the easiest to defend against power and timing attacks. 895 896 The AES specifies three key sizes: 128, 192 and 256 bits 897 898 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 899 900config CRYPTO_AES_TI 901 tristate "Fixed time AES cipher" 902 select CRYPTO_ALGAPI 903 help 904 This is a generic implementation of AES that attempts to eliminate 905 data dependent latencies as much as possible without affecting 906 performance too much. It is intended for use by the generic CCM 907 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 908 solely on encryption (although decryption is supported as well, but 909 with a more dramatic performance hit) 910 911 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 912 8 for decryption), this implementation only uses just two S-boxes of 913 256 bytes each, and attempts to eliminate data dependent latencies by 914 prefetching the entire table into the cache at the start of each 915 block. 916 917config CRYPTO_AES_586 918 tristate "AES cipher algorithms (i586)" 919 depends on (X86 || UML_X86) && !64BIT 920 select CRYPTO_ALGAPI 921 select CRYPTO_AES 922 help 923 AES cipher algorithms (FIPS-197). AES uses the Rijndael 924 algorithm. 925 926 Rijndael appears to be consistently a very good performer in 927 both hardware and software across a wide range of computing 928 environments regardless of its use in feedback or non-feedback 929 modes. Its key setup time is excellent, and its key agility is 930 good. Rijndael's very low memory requirements make it very well 931 suited for restricted-space environments, in which it also 932 demonstrates excellent performance. Rijndael's operations are 933 among the easiest to defend against power and timing attacks. 934 935 The AES specifies three key sizes: 128, 192 and 256 bits 936 937 See <http://csrc.nist.gov/encryption/aes/> for more information. 938 939config CRYPTO_AES_X86_64 940 tristate "AES cipher algorithms (x86_64)" 941 depends on (X86 || UML_X86) && 64BIT 942 select CRYPTO_ALGAPI 943 select CRYPTO_AES 944 help 945 AES cipher algorithms (FIPS-197). AES uses the Rijndael 946 algorithm. 947 948 Rijndael appears to be consistently a very good performer in 949 both hardware and software across a wide range of computing 950 environments regardless of its use in feedback or non-feedback 951 modes. Its key setup time is excellent, and its key agility is 952 good. Rijndael's very low memory requirements make it very well 953 suited for restricted-space environments, in which it also 954 demonstrates excellent performance. Rijndael's operations are 955 among the easiest to defend against power and timing attacks. 956 957 The AES specifies three key sizes: 128, 192 and 256 bits 958 959 See <http://csrc.nist.gov/encryption/aes/> for more information. 960 961config CRYPTO_AES_NI_INTEL 962 tristate "AES cipher algorithms (AES-NI)" 963 depends on X86 964 select CRYPTO_AEAD 965 select CRYPTO_AES_X86_64 if 64BIT 966 select CRYPTO_AES_586 if !64BIT 967 select CRYPTO_ALGAPI 968 select CRYPTO_BLKCIPHER 969 select CRYPTO_GLUE_HELPER_X86 if 64BIT 970 select CRYPTO_SIMD 971 help 972 Use Intel AES-NI instructions for AES algorithm. 973 974 AES cipher algorithms (FIPS-197). AES uses the Rijndael 975 algorithm. 976 977 Rijndael appears to be consistently a very good performer in 978 both hardware and software across a wide range of computing 979 environments regardless of its use in feedback or non-feedback 980 modes. Its key setup time is excellent, and its key agility is 981 good. Rijndael's very low memory requirements make it very well 982 suited for restricted-space environments, in which it also 983 demonstrates excellent performance. Rijndael's operations are 984 among the easiest to defend against power and timing attacks. 985 986 The AES specifies three key sizes: 128, 192 and 256 bits 987 988 See <http://csrc.nist.gov/encryption/aes/> for more information. 989 990 In addition to AES cipher algorithm support, the acceleration 991 for some popular block cipher mode is supported too, including 992 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 993 acceleration for CTR. 994 995config CRYPTO_AES_SPARC64 996 tristate "AES cipher algorithms (SPARC64)" 997 depends on SPARC64 998 select CRYPTO_CRYPTD 999 select CRYPTO_ALGAPI 1000 help 1001 Use SPARC64 crypto opcodes for AES algorithm. 1002 1003 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1004 algorithm. 1005 1006 Rijndael appears to be consistently a very good performer in 1007 both hardware and software across a wide range of computing 1008 environments regardless of its use in feedback or non-feedback 1009 modes. Its key setup time is excellent, and its key agility is 1010 good. Rijndael's very low memory requirements make it very well 1011 suited for restricted-space environments, in which it also 1012 demonstrates excellent performance. Rijndael's operations are 1013 among the easiest to defend against power and timing attacks. 1014 1015 The AES specifies three key sizes: 128, 192 and 256 bits 1016 1017 See <http://csrc.nist.gov/encryption/aes/> for more information. 1018 1019 In addition to AES cipher algorithm support, the acceleration 1020 for some popular block cipher mode is supported too, including 1021 ECB and CBC. 1022 1023config CRYPTO_AES_PPC_SPE 1024 tristate "AES cipher algorithms (PPC SPE)" 1025 depends on PPC && SPE 1026 help 1027 AES cipher algorithms (FIPS-197). Additionally the acceleration 1028 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1029 This module should only be used for low power (router) devices 1030 without hardware AES acceleration (e.g. caam crypto). It reduces the 1031 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1032 timining attacks. Nevertheless it might be not as secure as other 1033 architecture specific assembler implementations that work on 1KB 1034 tables or 256 bytes S-boxes. 1035 1036config CRYPTO_ANUBIS 1037 tristate "Anubis cipher algorithm" 1038 select CRYPTO_ALGAPI 1039 help 1040 Anubis cipher algorithm. 1041 1042 Anubis is a variable key length cipher which can use keys from 1043 128 bits to 320 bits in length. It was evaluated as a entrant 1044 in the NESSIE competition. 1045 1046 See also: 1047 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1048 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1049 1050config CRYPTO_ARC4 1051 tristate "ARC4 cipher algorithm" 1052 select CRYPTO_BLKCIPHER 1053 help 1054 ARC4 cipher algorithm. 1055 1056 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1057 bits in length. This algorithm is required for driver-based 1058 WEP, but it should not be for other purposes because of the 1059 weakness of the algorithm. 1060 1061config CRYPTO_BLOWFISH 1062 tristate "Blowfish cipher algorithm" 1063 select CRYPTO_ALGAPI 1064 select CRYPTO_BLOWFISH_COMMON 1065 help 1066 Blowfish cipher algorithm, by Bruce Schneier. 1067 1068 This is a variable key length cipher which can use keys from 32 1069 bits to 448 bits in length. It's fast, simple and specifically 1070 designed for use on "large microprocessors". 1071 1072 See also: 1073 <http://www.schneier.com/blowfish.html> 1074 1075config CRYPTO_BLOWFISH_COMMON 1076 tristate 1077 help 1078 Common parts of the Blowfish cipher algorithm shared by the 1079 generic c and the assembler implementations. 1080 1081 See also: 1082 <http://www.schneier.com/blowfish.html> 1083 1084config CRYPTO_BLOWFISH_X86_64 1085 tristate "Blowfish cipher algorithm (x86_64)" 1086 depends on X86 && 64BIT 1087 select CRYPTO_ALGAPI 1088 select CRYPTO_BLOWFISH_COMMON 1089 help 1090 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1091 1092 This is a variable key length cipher which can use keys from 32 1093 bits to 448 bits in length. It's fast, simple and specifically 1094 designed for use on "large microprocessors". 1095 1096 See also: 1097 <http://www.schneier.com/blowfish.html> 1098 1099config CRYPTO_CAMELLIA 1100 tristate "Camellia cipher algorithms" 1101 depends on CRYPTO 1102 select CRYPTO_ALGAPI 1103 help 1104 Camellia cipher algorithms module. 1105 1106 Camellia is a symmetric key block cipher developed jointly 1107 at NTT and Mitsubishi Electric Corporation. 1108 1109 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1110 1111 See also: 1112 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1113 1114config CRYPTO_CAMELLIA_X86_64 1115 tristate "Camellia cipher algorithm (x86_64)" 1116 depends on X86 && 64BIT 1117 depends on CRYPTO 1118 select CRYPTO_ALGAPI 1119 select CRYPTO_GLUE_HELPER_X86 1120 select CRYPTO_LRW 1121 select CRYPTO_XTS 1122 help 1123 Camellia cipher algorithm module (x86_64). 1124 1125 Camellia is a symmetric key block cipher developed jointly 1126 at NTT and Mitsubishi Electric Corporation. 1127 1128 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1129 1130 See also: 1131 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1132 1133config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1134 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1135 depends on X86 && 64BIT 1136 depends on CRYPTO 1137 select CRYPTO_ALGAPI 1138 select CRYPTO_CRYPTD 1139 select CRYPTO_ABLK_HELPER 1140 select CRYPTO_GLUE_HELPER_X86 1141 select CRYPTO_CAMELLIA_X86_64 1142 select CRYPTO_LRW 1143 select CRYPTO_XTS 1144 help 1145 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1146 1147 Camellia is a symmetric key block cipher developed jointly 1148 at NTT and Mitsubishi Electric Corporation. 1149 1150 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1151 1152 See also: 1153 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1154 1155config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1156 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1157 depends on X86 && 64BIT 1158 depends on CRYPTO 1159 select CRYPTO_ALGAPI 1160 select CRYPTO_CRYPTD 1161 select CRYPTO_ABLK_HELPER 1162 select CRYPTO_GLUE_HELPER_X86 1163 select CRYPTO_CAMELLIA_X86_64 1164 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1165 select CRYPTO_LRW 1166 select CRYPTO_XTS 1167 help 1168 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1169 1170 Camellia is a symmetric key block cipher developed jointly 1171 at NTT and Mitsubishi Electric Corporation. 1172 1173 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1174 1175 See also: 1176 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1177 1178config CRYPTO_CAMELLIA_SPARC64 1179 tristate "Camellia cipher algorithm (SPARC64)" 1180 depends on SPARC64 1181 depends on CRYPTO 1182 select CRYPTO_ALGAPI 1183 help 1184 Camellia cipher algorithm module (SPARC64). 1185 1186 Camellia is a symmetric key block cipher developed jointly 1187 at NTT and Mitsubishi Electric Corporation. 1188 1189 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1190 1191 See also: 1192 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1193 1194config CRYPTO_CAST_COMMON 1195 tristate 1196 help 1197 Common parts of the CAST cipher algorithms shared by the 1198 generic c and the assembler implementations. 1199 1200config CRYPTO_CAST5 1201 tristate "CAST5 (CAST-128) cipher algorithm" 1202 select CRYPTO_ALGAPI 1203 select CRYPTO_CAST_COMMON 1204 help 1205 The CAST5 encryption algorithm (synonymous with CAST-128) is 1206 described in RFC2144. 1207 1208config CRYPTO_CAST5_AVX_X86_64 1209 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1210 depends on X86 && 64BIT 1211 select CRYPTO_ALGAPI 1212 select CRYPTO_CRYPTD 1213 select CRYPTO_ABLK_HELPER 1214 select CRYPTO_CAST_COMMON 1215 select CRYPTO_CAST5 1216 help 1217 The CAST5 encryption algorithm (synonymous with CAST-128) is 1218 described in RFC2144. 1219 1220 This module provides the Cast5 cipher algorithm that processes 1221 sixteen blocks parallel using the AVX instruction set. 1222 1223config CRYPTO_CAST6 1224 tristate "CAST6 (CAST-256) cipher algorithm" 1225 select CRYPTO_ALGAPI 1226 select CRYPTO_CAST_COMMON 1227 help 1228 The CAST6 encryption algorithm (synonymous with CAST-256) is 1229 described in RFC2612. 1230 1231config CRYPTO_CAST6_AVX_X86_64 1232 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1233 depends on X86 && 64BIT 1234 select CRYPTO_ALGAPI 1235 select CRYPTO_CRYPTD 1236 select CRYPTO_ABLK_HELPER 1237 select CRYPTO_GLUE_HELPER_X86 1238 select CRYPTO_CAST_COMMON 1239 select CRYPTO_CAST6 1240 select CRYPTO_LRW 1241 select CRYPTO_XTS 1242 help 1243 The CAST6 encryption algorithm (synonymous with CAST-256) is 1244 described in RFC2612. 1245 1246 This module provides the Cast6 cipher algorithm that processes 1247 eight blocks parallel using the AVX instruction set. 1248 1249config CRYPTO_DES 1250 tristate "DES and Triple DES EDE cipher algorithms" 1251 select CRYPTO_ALGAPI 1252 help 1253 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1254 1255config CRYPTO_DES_SPARC64 1256 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1257 depends on SPARC64 1258 select CRYPTO_ALGAPI 1259 select CRYPTO_DES 1260 help 1261 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1262 optimized using SPARC64 crypto opcodes. 1263 1264config CRYPTO_DES3_EDE_X86_64 1265 tristate "Triple DES EDE cipher algorithm (x86-64)" 1266 depends on X86 && 64BIT 1267 select CRYPTO_ALGAPI 1268 select CRYPTO_DES 1269 help 1270 Triple DES EDE (FIPS 46-3) algorithm. 1271 1272 This module provides implementation of the Triple DES EDE cipher 1273 algorithm that is optimized for x86-64 processors. Two versions of 1274 algorithm are provided; regular processing one input block and 1275 one that processes three blocks parallel. 1276 1277config CRYPTO_FCRYPT 1278 tristate "FCrypt cipher algorithm" 1279 select CRYPTO_ALGAPI 1280 select CRYPTO_BLKCIPHER 1281 help 1282 FCrypt algorithm used by RxRPC. 1283 1284config CRYPTO_KHAZAD 1285 tristate "Khazad cipher algorithm" 1286 select CRYPTO_ALGAPI 1287 help 1288 Khazad cipher algorithm. 1289 1290 Khazad was a finalist in the initial NESSIE competition. It is 1291 an algorithm optimized for 64-bit processors with good performance 1292 on 32-bit processors. Khazad uses an 128 bit key size. 1293 1294 See also: 1295 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1296 1297config CRYPTO_SALSA20 1298 tristate "Salsa20 stream cipher algorithm" 1299 select CRYPTO_BLKCIPHER 1300 help 1301 Salsa20 stream cipher algorithm. 1302 1303 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1304 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1305 1306 The Salsa20 stream cipher algorithm is designed by Daniel J. 1307 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1308 1309config CRYPTO_SALSA20_586 1310 tristate "Salsa20 stream cipher algorithm (i586)" 1311 depends on (X86 || UML_X86) && !64BIT 1312 select CRYPTO_BLKCIPHER 1313 help 1314 Salsa20 stream cipher algorithm. 1315 1316 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1317 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1318 1319 The Salsa20 stream cipher algorithm is designed by Daniel J. 1320 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1321 1322config CRYPTO_SALSA20_X86_64 1323 tristate "Salsa20 stream cipher algorithm (x86_64)" 1324 depends on (X86 || UML_X86) && 64BIT 1325 select CRYPTO_BLKCIPHER 1326 help 1327 Salsa20 stream cipher algorithm. 1328 1329 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1330 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1331 1332 The Salsa20 stream cipher algorithm is designed by Daniel J. 1333 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1334 1335config CRYPTO_CHACHA20 1336 tristate "ChaCha20 cipher algorithm" 1337 select CRYPTO_BLKCIPHER 1338 help 1339 ChaCha20 cipher algorithm, RFC7539. 1340 1341 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1342 Bernstein and further specified in RFC7539 for use in IETF protocols. 1343 This is the portable C implementation of ChaCha20. 1344 1345 See also: 1346 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1347 1348config CRYPTO_CHACHA20_X86_64 1349 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1350 depends on X86 && 64BIT 1351 select CRYPTO_BLKCIPHER 1352 select CRYPTO_CHACHA20 1353 help 1354 ChaCha20 cipher algorithm, RFC7539. 1355 1356 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1357 Bernstein and further specified in RFC7539 for use in IETF protocols. 1358 This is the x86_64 assembler implementation using SIMD instructions. 1359 1360 See also: 1361 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1362 1363config CRYPTO_SEED 1364 tristate "SEED cipher algorithm" 1365 select CRYPTO_ALGAPI 1366 help 1367 SEED cipher algorithm (RFC4269). 1368 1369 SEED is a 128-bit symmetric key block cipher that has been 1370 developed by KISA (Korea Information Security Agency) as a 1371 national standard encryption algorithm of the Republic of Korea. 1372 It is a 16 round block cipher with the key size of 128 bit. 1373 1374 See also: 1375 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1376 1377config CRYPTO_SERPENT 1378 tristate "Serpent cipher algorithm" 1379 select CRYPTO_ALGAPI 1380 help 1381 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1382 1383 Keys are allowed to be from 0 to 256 bits in length, in steps 1384 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1385 variant of Serpent for compatibility with old kerneli.org code. 1386 1387 See also: 1388 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1389 1390config CRYPTO_SERPENT_SSE2_X86_64 1391 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1392 depends on X86 && 64BIT 1393 select CRYPTO_ALGAPI 1394 select CRYPTO_CRYPTD 1395 select CRYPTO_ABLK_HELPER 1396 select CRYPTO_GLUE_HELPER_X86 1397 select CRYPTO_SERPENT 1398 select CRYPTO_LRW 1399 select CRYPTO_XTS 1400 help 1401 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1402 1403 Keys are allowed to be from 0 to 256 bits in length, in steps 1404 of 8 bits. 1405 1406 This module provides Serpent cipher algorithm that processes eight 1407 blocks parallel using SSE2 instruction set. 1408 1409 See also: 1410 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1411 1412config CRYPTO_SERPENT_SSE2_586 1413 tristate "Serpent cipher algorithm (i586/SSE2)" 1414 depends on X86 && !64BIT 1415 select CRYPTO_ALGAPI 1416 select CRYPTO_CRYPTD 1417 select CRYPTO_ABLK_HELPER 1418 select CRYPTO_GLUE_HELPER_X86 1419 select CRYPTO_SERPENT 1420 select CRYPTO_LRW 1421 select CRYPTO_XTS 1422 help 1423 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1424 1425 Keys are allowed to be from 0 to 256 bits in length, in steps 1426 of 8 bits. 1427 1428 This module provides Serpent cipher algorithm that processes four 1429 blocks parallel using SSE2 instruction set. 1430 1431 See also: 1432 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1433 1434config CRYPTO_SERPENT_AVX_X86_64 1435 tristate "Serpent cipher algorithm (x86_64/AVX)" 1436 depends on X86 && 64BIT 1437 select CRYPTO_ALGAPI 1438 select CRYPTO_CRYPTD 1439 select CRYPTO_ABLK_HELPER 1440 select CRYPTO_GLUE_HELPER_X86 1441 select CRYPTO_SERPENT 1442 select CRYPTO_LRW 1443 select CRYPTO_XTS 1444 help 1445 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1446 1447 Keys are allowed to be from 0 to 256 bits in length, in steps 1448 of 8 bits. 1449 1450 This module provides the Serpent cipher algorithm that processes 1451 eight blocks parallel using the AVX instruction set. 1452 1453 See also: 1454 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1455 1456config CRYPTO_SERPENT_AVX2_X86_64 1457 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1458 depends on X86 && 64BIT 1459 select CRYPTO_ALGAPI 1460 select CRYPTO_CRYPTD 1461 select CRYPTO_ABLK_HELPER 1462 select CRYPTO_GLUE_HELPER_X86 1463 select CRYPTO_SERPENT 1464 select CRYPTO_SERPENT_AVX_X86_64 1465 select CRYPTO_LRW 1466 select CRYPTO_XTS 1467 help 1468 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1469 1470 Keys are allowed to be from 0 to 256 bits in length, in steps 1471 of 8 bits. 1472 1473 This module provides Serpent cipher algorithm that processes 16 1474 blocks parallel using AVX2 instruction set. 1475 1476 See also: 1477 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1478 1479config CRYPTO_TEA 1480 tristate "TEA, XTEA and XETA cipher algorithms" 1481 select CRYPTO_ALGAPI 1482 help 1483 TEA cipher algorithm. 1484 1485 Tiny Encryption Algorithm is a simple cipher that uses 1486 many rounds for security. It is very fast and uses 1487 little memory. 1488 1489 Xtendend Tiny Encryption Algorithm is a modification to 1490 the TEA algorithm to address a potential key weakness 1491 in the TEA algorithm. 1492 1493 Xtendend Encryption Tiny Algorithm is a mis-implementation 1494 of the XTEA algorithm for compatibility purposes. 1495 1496config CRYPTO_TWOFISH 1497 tristate "Twofish cipher algorithm" 1498 select CRYPTO_ALGAPI 1499 select CRYPTO_TWOFISH_COMMON 1500 help 1501 Twofish cipher algorithm. 1502 1503 Twofish was submitted as an AES (Advanced Encryption Standard) 1504 candidate cipher by researchers at CounterPane Systems. It is a 1505 16 round block cipher supporting key sizes of 128, 192, and 256 1506 bits. 1507 1508 See also: 1509 <http://www.schneier.com/twofish.html> 1510 1511config CRYPTO_TWOFISH_COMMON 1512 tristate 1513 help 1514 Common parts of the Twofish cipher algorithm shared by the 1515 generic c and the assembler implementations. 1516 1517config CRYPTO_TWOFISH_586 1518 tristate "Twofish cipher algorithms (i586)" 1519 depends on (X86 || UML_X86) && !64BIT 1520 select CRYPTO_ALGAPI 1521 select CRYPTO_TWOFISH_COMMON 1522 help 1523 Twofish cipher algorithm. 1524 1525 Twofish was submitted as an AES (Advanced Encryption Standard) 1526 candidate cipher by researchers at CounterPane Systems. It is a 1527 16 round block cipher supporting key sizes of 128, 192, and 256 1528 bits. 1529 1530 See also: 1531 <http://www.schneier.com/twofish.html> 1532 1533config CRYPTO_TWOFISH_X86_64 1534 tristate "Twofish cipher algorithm (x86_64)" 1535 depends on (X86 || UML_X86) && 64BIT 1536 select CRYPTO_ALGAPI 1537 select CRYPTO_TWOFISH_COMMON 1538 help 1539 Twofish cipher algorithm (x86_64). 1540 1541 Twofish was submitted as an AES (Advanced Encryption Standard) 1542 candidate cipher by researchers at CounterPane Systems. It is a 1543 16 round block cipher supporting key sizes of 128, 192, and 256 1544 bits. 1545 1546 See also: 1547 <http://www.schneier.com/twofish.html> 1548 1549config CRYPTO_TWOFISH_X86_64_3WAY 1550 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1551 depends on X86 && 64BIT 1552 select CRYPTO_ALGAPI 1553 select CRYPTO_TWOFISH_COMMON 1554 select CRYPTO_TWOFISH_X86_64 1555 select CRYPTO_GLUE_HELPER_X86 1556 select CRYPTO_LRW 1557 select CRYPTO_XTS 1558 help 1559 Twofish cipher algorithm (x86_64, 3-way parallel). 1560 1561 Twofish was submitted as an AES (Advanced Encryption Standard) 1562 candidate cipher by researchers at CounterPane Systems. It is a 1563 16 round block cipher supporting key sizes of 128, 192, and 256 1564 bits. 1565 1566 This module provides Twofish cipher algorithm that processes three 1567 blocks parallel, utilizing resources of out-of-order CPUs better. 1568 1569 See also: 1570 <http://www.schneier.com/twofish.html> 1571 1572config CRYPTO_TWOFISH_AVX_X86_64 1573 tristate "Twofish cipher algorithm (x86_64/AVX)" 1574 depends on X86 && 64BIT 1575 select CRYPTO_ALGAPI 1576 select CRYPTO_CRYPTD 1577 select CRYPTO_ABLK_HELPER 1578 select CRYPTO_GLUE_HELPER_X86 1579 select CRYPTO_TWOFISH_COMMON 1580 select CRYPTO_TWOFISH_X86_64 1581 select CRYPTO_TWOFISH_X86_64_3WAY 1582 select CRYPTO_LRW 1583 select CRYPTO_XTS 1584 help 1585 Twofish cipher algorithm (x86_64/AVX). 1586 1587 Twofish was submitted as an AES (Advanced Encryption Standard) 1588 candidate cipher by researchers at CounterPane Systems. It is a 1589 16 round block cipher supporting key sizes of 128, 192, and 256 1590 bits. 1591 1592 This module provides the Twofish cipher algorithm that processes 1593 eight blocks parallel using the AVX Instruction Set. 1594 1595 See also: 1596 <http://www.schneier.com/twofish.html> 1597 1598comment "Compression" 1599 1600config CRYPTO_DEFLATE 1601 tristate "Deflate compression algorithm" 1602 select CRYPTO_ALGAPI 1603 select CRYPTO_ACOMP2 1604 select ZLIB_INFLATE 1605 select ZLIB_DEFLATE 1606 help 1607 This is the Deflate algorithm (RFC1951), specified for use in 1608 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1609 1610 You will most probably want this if using IPSec. 1611 1612config CRYPTO_LZO 1613 tristate "LZO compression algorithm" 1614 select CRYPTO_ALGAPI 1615 select CRYPTO_ACOMP2 1616 select LZO_COMPRESS 1617 select LZO_DECOMPRESS 1618 help 1619 This is the LZO algorithm. 1620 1621config CRYPTO_842 1622 tristate "842 compression algorithm" 1623 select CRYPTO_ALGAPI 1624 select CRYPTO_ACOMP2 1625 select 842_COMPRESS 1626 select 842_DECOMPRESS 1627 help 1628 This is the 842 algorithm. 1629 1630config CRYPTO_LZ4 1631 tristate "LZ4 compression algorithm" 1632 select CRYPTO_ALGAPI 1633 select CRYPTO_ACOMP2 1634 select LZ4_COMPRESS 1635 select LZ4_DECOMPRESS 1636 help 1637 This is the LZ4 algorithm. 1638 1639config CRYPTO_LZ4HC 1640 tristate "LZ4HC compression algorithm" 1641 select CRYPTO_ALGAPI 1642 select CRYPTO_ACOMP2 1643 select LZ4HC_COMPRESS 1644 select LZ4_DECOMPRESS 1645 help 1646 This is the LZ4 high compression mode algorithm. 1647 1648comment "Random Number Generation" 1649 1650config CRYPTO_ANSI_CPRNG 1651 tristate "Pseudo Random Number Generation for Cryptographic modules" 1652 select CRYPTO_AES 1653 select CRYPTO_RNG 1654 help 1655 This option enables the generic pseudo random number generator 1656 for cryptographic modules. Uses the Algorithm specified in 1657 ANSI X9.31 A.2.4. Note that this option must be enabled if 1658 CRYPTO_FIPS is selected 1659 1660menuconfig CRYPTO_DRBG_MENU 1661 tristate "NIST SP800-90A DRBG" 1662 help 1663 NIST SP800-90A compliant DRBG. In the following submenu, one or 1664 more of the DRBG types must be selected. 1665 1666if CRYPTO_DRBG_MENU 1667 1668config CRYPTO_DRBG_HMAC 1669 bool 1670 default y 1671 select CRYPTO_HMAC 1672 select CRYPTO_SHA256 1673 1674config CRYPTO_DRBG_HASH 1675 bool "Enable Hash DRBG" 1676 select CRYPTO_SHA256 1677 help 1678 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1679 1680config CRYPTO_DRBG_CTR 1681 bool "Enable CTR DRBG" 1682 select CRYPTO_AES 1683 depends on CRYPTO_CTR 1684 help 1685 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1686 1687config CRYPTO_DRBG 1688 tristate 1689 default CRYPTO_DRBG_MENU 1690 select CRYPTO_RNG 1691 select CRYPTO_JITTERENTROPY 1692 1693endif # if CRYPTO_DRBG_MENU 1694 1695config CRYPTO_JITTERENTROPY 1696 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1697 select CRYPTO_RNG 1698 help 1699 The Jitterentropy RNG is a noise that is intended 1700 to provide seed to another RNG. The RNG does not 1701 perform any cryptographic whitening of the generated 1702 random numbers. This Jitterentropy RNG registers with 1703 the kernel crypto API and can be used by any caller. 1704 1705config CRYPTO_USER_API 1706 tristate 1707 1708config CRYPTO_USER_API_HASH 1709 tristate "User-space interface for hash algorithms" 1710 depends on NET 1711 select CRYPTO_HASH 1712 select CRYPTO_USER_API 1713 help 1714 This option enables the user-spaces interface for hash 1715 algorithms. 1716 1717config CRYPTO_USER_API_SKCIPHER 1718 tristate "User-space interface for symmetric key cipher algorithms" 1719 depends on NET 1720 select CRYPTO_BLKCIPHER 1721 select CRYPTO_USER_API 1722 help 1723 This option enables the user-spaces interface for symmetric 1724 key cipher algorithms. 1725 1726config CRYPTO_USER_API_RNG 1727 tristate "User-space interface for random number generator algorithms" 1728 depends on NET 1729 select CRYPTO_RNG 1730 select CRYPTO_USER_API 1731 help 1732 This option enables the user-spaces interface for random 1733 number generator algorithms. 1734 1735config CRYPTO_USER_API_AEAD 1736 tristate "User-space interface for AEAD cipher algorithms" 1737 depends on NET 1738 select CRYPTO_AEAD 1739 select CRYPTO_USER_API 1740 help 1741 This option enables the user-spaces interface for AEAD 1742 cipher algorithms. 1743 1744config CRYPTO_HASH_INFO 1745 bool 1746 1747source "drivers/crypto/Kconfig" 1748source crypto/asymmetric_keys/Kconfig 1749source certs/Kconfig 1750 1751endif # if CRYPTO 1752