1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 help 19 This option provides the core Cryptographic API. 20 21if CRYPTO 22 23comment "Crypto core or helper" 24 25config CRYPTO_FIPS 26 bool "FIPS 200 compliance" 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 28 depends on (MODULE_SIG || !MODULES) 29 help 30 This options enables the fips boot option which is 31 required if you want to system to operate in a FIPS 200 32 certification. You should say no unless you know what 33 this is. 34 35config CRYPTO_ALGAPI 36 tristate 37 select CRYPTO_ALGAPI2 38 help 39 This option provides the API for cryptographic algorithms. 40 41config CRYPTO_ALGAPI2 42 tristate 43 44config CRYPTO_AEAD 45 tristate 46 select CRYPTO_AEAD2 47 select CRYPTO_ALGAPI 48 49config CRYPTO_AEAD2 50 tristate 51 select CRYPTO_ALGAPI2 52 select CRYPTO_NULL2 53 select CRYPTO_RNG2 54 55config CRYPTO_BLKCIPHER 56 tristate 57 select CRYPTO_BLKCIPHER2 58 select CRYPTO_ALGAPI 59 60config CRYPTO_BLKCIPHER2 61 tristate 62 select CRYPTO_ALGAPI2 63 select CRYPTO_RNG2 64 select CRYPTO_WORKQUEUE 65 66config CRYPTO_HASH 67 tristate 68 select CRYPTO_HASH2 69 select CRYPTO_ALGAPI 70 71config CRYPTO_HASH2 72 tristate 73 select CRYPTO_ALGAPI2 74 75config CRYPTO_RNG 76 tristate 77 select CRYPTO_RNG2 78 select CRYPTO_ALGAPI 79 80config CRYPTO_RNG2 81 tristate 82 select CRYPTO_ALGAPI2 83 84config CRYPTO_RNG_DEFAULT 85 tristate 86 select CRYPTO_DRBG_MENU 87 88config CRYPTO_AKCIPHER2 89 tristate 90 select CRYPTO_ALGAPI2 91 92config CRYPTO_AKCIPHER 93 tristate 94 select CRYPTO_AKCIPHER2 95 select CRYPTO_ALGAPI 96 97config CRYPTO_KPP2 98 tristate 99 select CRYPTO_ALGAPI2 100 101config CRYPTO_KPP 102 tristate 103 select CRYPTO_ALGAPI 104 select CRYPTO_KPP2 105 106config CRYPTO_ACOMP2 107 tristate 108 select CRYPTO_ALGAPI2 109 110config CRYPTO_ACOMP 111 tristate 112 select CRYPTO_ALGAPI 113 select CRYPTO_ACOMP2 114 115config CRYPTO_RSA 116 tristate "RSA algorithm" 117 select CRYPTO_AKCIPHER 118 select CRYPTO_MANAGER 119 select MPILIB 120 select ASN1 121 help 122 Generic implementation of the RSA public key algorithm. 123 124config CRYPTO_DH 125 tristate "Diffie-Hellman algorithm" 126 select CRYPTO_KPP 127 select MPILIB 128 help 129 Generic implementation of the Diffie-Hellman algorithm. 130 131config CRYPTO_ECDH 132 tristate "ECDH algorithm" 133 select CRYTPO_KPP 134 select CRYPTO_RNG_DEFAULT 135 help 136 Generic implementation of the ECDH algorithm 137 138config CRYPTO_MANAGER 139 tristate "Cryptographic algorithm manager" 140 select CRYPTO_MANAGER2 141 help 142 Create default cryptographic template instantiations such as 143 cbc(aes). 144 145config CRYPTO_MANAGER2 146 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 147 select CRYPTO_AEAD2 148 select CRYPTO_HASH2 149 select CRYPTO_BLKCIPHER2 150 select CRYPTO_AKCIPHER2 151 select CRYPTO_KPP2 152 select CRYPTO_ACOMP2 153 154config CRYPTO_USER 155 tristate "Userspace cryptographic algorithm configuration" 156 depends on NET 157 select CRYPTO_MANAGER 158 help 159 Userspace configuration for cryptographic instantiations such as 160 cbc(aes). 161 162config CRYPTO_MANAGER_DISABLE_TESTS 163 bool "Disable run-time self tests" 164 default y 165 depends on CRYPTO_MANAGER2 166 help 167 Disable run-time self tests that normally take place at 168 algorithm registration. 169 170config CRYPTO_GF128MUL 171 tristate "GF(2^128) multiplication functions" 172 help 173 Efficient table driven implementation of multiplications in the 174 field GF(2^128). This is needed by some cypher modes. This 175 option will be selected automatically if you select such a 176 cipher mode. Only select this option by hand if you expect to load 177 an external module that requires these functions. 178 179config CRYPTO_NULL 180 tristate "Null algorithms" 181 select CRYPTO_NULL2 182 help 183 These are 'Null' algorithms, used by IPsec, which do nothing. 184 185config CRYPTO_NULL2 186 tristate 187 select CRYPTO_ALGAPI2 188 select CRYPTO_BLKCIPHER2 189 select CRYPTO_HASH2 190 191config CRYPTO_PCRYPT 192 tristate "Parallel crypto engine" 193 depends on SMP 194 select PADATA 195 select CRYPTO_MANAGER 196 select CRYPTO_AEAD 197 help 198 This converts an arbitrary crypto algorithm into a parallel 199 algorithm that executes in kernel threads. 200 201config CRYPTO_WORKQUEUE 202 tristate 203 204config CRYPTO_CRYPTD 205 tristate "Software async crypto daemon" 206 select CRYPTO_BLKCIPHER 207 select CRYPTO_HASH 208 select CRYPTO_MANAGER 209 select CRYPTO_WORKQUEUE 210 help 211 This is a generic software asynchronous crypto daemon that 212 converts an arbitrary synchronous software crypto algorithm 213 into an asynchronous algorithm that executes in a kernel thread. 214 215config CRYPTO_MCRYPTD 216 tristate "Software async multi-buffer crypto daemon" 217 select CRYPTO_BLKCIPHER 218 select CRYPTO_HASH 219 select CRYPTO_MANAGER 220 select CRYPTO_WORKQUEUE 221 help 222 This is a generic software asynchronous crypto daemon that 223 provides the kernel thread to assist multi-buffer crypto 224 algorithms for submitting jobs and flushing jobs in multi-buffer 225 crypto algorithms. Multi-buffer crypto algorithms are executed 226 in the context of this kernel thread and drivers can post 227 their crypto request asynchronously to be processed by this daemon. 228 229config CRYPTO_AUTHENC 230 tristate "Authenc support" 231 select CRYPTO_AEAD 232 select CRYPTO_BLKCIPHER 233 select CRYPTO_MANAGER 234 select CRYPTO_HASH 235 select CRYPTO_NULL 236 help 237 Authenc: Combined mode wrapper for IPsec. 238 This is required for IPSec. 239 240config CRYPTO_TEST 241 tristate "Testing module" 242 depends on m 243 select CRYPTO_MANAGER 244 help 245 Quick & dirty crypto test module. 246 247config CRYPTO_ABLK_HELPER 248 tristate 249 select CRYPTO_CRYPTD 250 251config CRYPTO_SIMD 252 tristate 253 select CRYPTO_CRYPTD 254 255config CRYPTO_GLUE_HELPER_X86 256 tristate 257 depends on X86 258 select CRYPTO_BLKCIPHER 259 260config CRYPTO_ENGINE 261 tristate 262 263comment "Authenticated Encryption with Associated Data" 264 265config CRYPTO_CCM 266 tristate "CCM support" 267 select CRYPTO_CTR 268 select CRYPTO_HASH 269 select CRYPTO_AEAD 270 help 271 Support for Counter with CBC MAC. Required for IPsec. 272 273config CRYPTO_GCM 274 tristate "GCM/GMAC support" 275 select CRYPTO_CTR 276 select CRYPTO_AEAD 277 select CRYPTO_GHASH 278 select CRYPTO_NULL 279 help 280 Support for Galois/Counter Mode (GCM) and Galois Message 281 Authentication Code (GMAC). Required for IPSec. 282 283config CRYPTO_CHACHA20POLY1305 284 tristate "ChaCha20-Poly1305 AEAD support" 285 select CRYPTO_CHACHA20 286 select CRYPTO_POLY1305 287 select CRYPTO_AEAD 288 help 289 ChaCha20-Poly1305 AEAD support, RFC7539. 290 291 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 292 with the Poly1305 authenticator. It is defined in RFC7539 for use in 293 IETF protocols. 294 295config CRYPTO_SEQIV 296 tristate "Sequence Number IV Generator" 297 select CRYPTO_AEAD 298 select CRYPTO_BLKCIPHER 299 select CRYPTO_NULL 300 select CRYPTO_RNG_DEFAULT 301 help 302 This IV generator generates an IV based on a sequence number by 303 xoring it with a salt. This algorithm is mainly useful for CTR 304 305config CRYPTO_ECHAINIV 306 tristate "Encrypted Chain IV Generator" 307 select CRYPTO_AEAD 308 select CRYPTO_NULL 309 select CRYPTO_RNG_DEFAULT 310 default m 311 help 312 This IV generator generates an IV based on the encryption of 313 a sequence number xored with a salt. This is the default 314 algorithm for CBC. 315 316comment "Block modes" 317 318config CRYPTO_CBC 319 tristate "CBC support" 320 select CRYPTO_BLKCIPHER 321 select CRYPTO_MANAGER 322 help 323 CBC: Cipher Block Chaining mode 324 This block cipher algorithm is required for IPSec. 325 326config CRYPTO_CTR 327 tristate "CTR support" 328 select CRYPTO_BLKCIPHER 329 select CRYPTO_SEQIV 330 select CRYPTO_MANAGER 331 help 332 CTR: Counter mode 333 This block cipher algorithm is required for IPSec. 334 335config CRYPTO_CTS 336 tristate "CTS support" 337 select CRYPTO_BLKCIPHER 338 help 339 CTS: Cipher Text Stealing 340 This is the Cipher Text Stealing mode as described by 341 Section 8 of rfc2040 and referenced by rfc3962. 342 (rfc3962 includes errata information in its Appendix A) 343 This mode is required for Kerberos gss mechanism support 344 for AES encryption. 345 346config CRYPTO_ECB 347 tristate "ECB support" 348 select CRYPTO_BLKCIPHER 349 select CRYPTO_MANAGER 350 help 351 ECB: Electronic CodeBook mode 352 This is the simplest block cipher algorithm. It simply encrypts 353 the input block by block. 354 355config CRYPTO_LRW 356 tristate "LRW support" 357 select CRYPTO_BLKCIPHER 358 select CRYPTO_MANAGER 359 select CRYPTO_GF128MUL 360 help 361 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 362 narrow block cipher mode for dm-crypt. Use it with cipher 363 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 364 The first 128, 192 or 256 bits in the key are used for AES and the 365 rest is used to tie each cipher block to its logical position. 366 367config CRYPTO_PCBC 368 tristate "PCBC support" 369 select CRYPTO_BLKCIPHER 370 select CRYPTO_MANAGER 371 help 372 PCBC: Propagating Cipher Block Chaining mode 373 This block cipher algorithm is required for RxRPC. 374 375config CRYPTO_XTS 376 tristate "XTS support" 377 select CRYPTO_BLKCIPHER 378 select CRYPTO_MANAGER 379 select CRYPTO_ECB 380 help 381 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 382 key size 256, 384 or 512 bits. This implementation currently 383 can't handle a sectorsize which is not a multiple of 16 bytes. 384 385config CRYPTO_KEYWRAP 386 tristate "Key wrapping support" 387 select CRYPTO_BLKCIPHER 388 help 389 Support for key wrapping (NIST SP800-38F / RFC3394) without 390 padding. 391 392comment "Hash modes" 393 394config CRYPTO_CMAC 395 tristate "CMAC support" 396 select CRYPTO_HASH 397 select CRYPTO_MANAGER 398 help 399 Cipher-based Message Authentication Code (CMAC) specified by 400 The National Institute of Standards and Technology (NIST). 401 402 https://tools.ietf.org/html/rfc4493 403 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 404 405config CRYPTO_HMAC 406 tristate "HMAC support" 407 select CRYPTO_HASH 408 select CRYPTO_MANAGER 409 help 410 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 411 This is required for IPSec. 412 413config CRYPTO_XCBC 414 tristate "XCBC support" 415 select CRYPTO_HASH 416 select CRYPTO_MANAGER 417 help 418 XCBC: Keyed-Hashing with encryption algorithm 419 http://www.ietf.org/rfc/rfc3566.txt 420 http://csrc.nist.gov/encryption/modes/proposedmodes/ 421 xcbc-mac/xcbc-mac-spec.pdf 422 423config CRYPTO_VMAC 424 tristate "VMAC support" 425 select CRYPTO_HASH 426 select CRYPTO_MANAGER 427 help 428 VMAC is a message authentication algorithm designed for 429 very high speed on 64-bit architectures. 430 431 See also: 432 <http://fastcrypto.org/vmac> 433 434comment "Digest" 435 436config CRYPTO_CRC32C 437 tristate "CRC32c CRC algorithm" 438 select CRYPTO_HASH 439 select CRC32 440 help 441 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 442 by iSCSI for header and data digests and by others. 443 See Castagnoli93. Module will be crc32c. 444 445config CRYPTO_CRC32C_INTEL 446 tristate "CRC32c INTEL hardware acceleration" 447 depends on X86 448 select CRYPTO_HASH 449 help 450 In Intel processor with SSE4.2 supported, the processor will 451 support CRC32C implementation using hardware accelerated CRC32 452 instruction. This option will create 'crc32c-intel' module, 453 which will enable any routine to use the CRC32 instruction to 454 gain performance compared with software implementation. 455 Module will be crc32c-intel. 456 457config CRYPTO_CRC32C_VPMSUM 458 tristate "CRC32c CRC algorithm (powerpc64)" 459 depends on PPC64 && ALTIVEC 460 select CRYPTO_HASH 461 select CRC32 462 help 463 CRC32c algorithm implemented using vector polynomial multiply-sum 464 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 465 and newer processors for improved performance. 466 467 468config CRYPTO_CRC32C_SPARC64 469 tristate "CRC32c CRC algorithm (SPARC64)" 470 depends on SPARC64 471 select CRYPTO_HASH 472 select CRC32 473 help 474 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 475 when available. 476 477config CRYPTO_CRC32 478 tristate "CRC32 CRC algorithm" 479 select CRYPTO_HASH 480 select CRC32 481 help 482 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 483 Shash crypto api wrappers to crc32_le function. 484 485config CRYPTO_CRC32_PCLMUL 486 tristate "CRC32 PCLMULQDQ hardware acceleration" 487 depends on X86 488 select CRYPTO_HASH 489 select CRC32 490 help 491 From Intel Westmere and AMD Bulldozer processor with SSE4.2 492 and PCLMULQDQ supported, the processor will support 493 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 494 instruction. This option will create 'crc32-plcmul' module, 495 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 496 and gain better performance as compared with the table implementation. 497 498config CRYPTO_CRCT10DIF 499 tristate "CRCT10DIF algorithm" 500 select CRYPTO_HASH 501 help 502 CRC T10 Data Integrity Field computation is being cast as 503 a crypto transform. This allows for faster crc t10 diff 504 transforms to be used if they are available. 505 506config CRYPTO_CRCT10DIF_PCLMUL 507 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 508 depends on X86 && 64BIT && CRC_T10DIF 509 select CRYPTO_HASH 510 help 511 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 512 CRC T10 DIF PCLMULQDQ computation can be hardware 513 accelerated PCLMULQDQ instruction. This option will create 514 'crct10dif-plcmul' module, which is faster when computing the 515 crct10dif checksum as compared with the generic table implementation. 516 517config CRYPTO_CRCT10DIF_VPMSUM 518 tristate "CRC32T10DIF powerpc64 hardware acceleration" 519 depends on PPC64 && ALTIVEC && CRC_T10DIF 520 select CRYPTO_HASH 521 help 522 CRC10T10DIF algorithm implemented using vector polynomial 523 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 524 POWER8 and newer processors for improved performance. 525 526config CRYPTO_VPMSUM_TESTER 527 tristate "Powerpc64 vpmsum hardware acceleration tester" 528 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 529 help 530 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 531 POWER8 vpmsum instructions. 532 Unless you are testing these algorithms, you don't need this. 533 534config CRYPTO_GHASH 535 tristate "GHASH digest algorithm" 536 select CRYPTO_GF128MUL 537 select CRYPTO_HASH 538 help 539 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 540 541config CRYPTO_POLY1305 542 tristate "Poly1305 authenticator algorithm" 543 select CRYPTO_HASH 544 help 545 Poly1305 authenticator algorithm, RFC7539. 546 547 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 548 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 549 in IETF protocols. This is the portable C implementation of Poly1305. 550 551config CRYPTO_POLY1305_X86_64 552 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 553 depends on X86 && 64BIT 554 select CRYPTO_POLY1305 555 help 556 Poly1305 authenticator algorithm, RFC7539. 557 558 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 559 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 560 in IETF protocols. This is the x86_64 assembler implementation using SIMD 561 instructions. 562 563config CRYPTO_MD4 564 tristate "MD4 digest algorithm" 565 select CRYPTO_HASH 566 help 567 MD4 message digest algorithm (RFC1320). 568 569config CRYPTO_MD5 570 tristate "MD5 digest algorithm" 571 select CRYPTO_HASH 572 help 573 MD5 message digest algorithm (RFC1321). 574 575config CRYPTO_MD5_OCTEON 576 tristate "MD5 digest algorithm (OCTEON)" 577 depends on CPU_CAVIUM_OCTEON 578 select CRYPTO_MD5 579 select CRYPTO_HASH 580 help 581 MD5 message digest algorithm (RFC1321) implemented 582 using OCTEON crypto instructions, when available. 583 584config CRYPTO_MD5_PPC 585 tristate "MD5 digest algorithm (PPC)" 586 depends on PPC 587 select CRYPTO_HASH 588 help 589 MD5 message digest algorithm (RFC1321) implemented 590 in PPC assembler. 591 592config CRYPTO_MD5_SPARC64 593 tristate "MD5 digest algorithm (SPARC64)" 594 depends on SPARC64 595 select CRYPTO_MD5 596 select CRYPTO_HASH 597 help 598 MD5 message digest algorithm (RFC1321) implemented 599 using sparc64 crypto instructions, when available. 600 601config CRYPTO_MICHAEL_MIC 602 tristate "Michael MIC keyed digest algorithm" 603 select CRYPTO_HASH 604 help 605 Michael MIC is used for message integrity protection in TKIP 606 (IEEE 802.11i). This algorithm is required for TKIP, but it 607 should not be used for other purposes because of the weakness 608 of the algorithm. 609 610config CRYPTO_RMD128 611 tristate "RIPEMD-128 digest algorithm" 612 select CRYPTO_HASH 613 help 614 RIPEMD-128 (ISO/IEC 10118-3:2004). 615 616 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 617 be used as a secure replacement for RIPEMD. For other use cases, 618 RIPEMD-160 should be used. 619 620 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 621 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 622 623config CRYPTO_RMD160 624 tristate "RIPEMD-160 digest algorithm" 625 select CRYPTO_HASH 626 help 627 RIPEMD-160 (ISO/IEC 10118-3:2004). 628 629 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 630 to be used as a secure replacement for the 128-bit hash functions 631 MD4, MD5 and it's predecessor RIPEMD 632 (not to be confused with RIPEMD-128). 633 634 It's speed is comparable to SHA1 and there are no known attacks 635 against RIPEMD-160. 636 637 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 638 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 639 640config CRYPTO_RMD256 641 tristate "RIPEMD-256 digest algorithm" 642 select CRYPTO_HASH 643 help 644 RIPEMD-256 is an optional extension of RIPEMD-128 with a 645 256 bit hash. It is intended for applications that require 646 longer hash-results, without needing a larger security level 647 (than RIPEMD-128). 648 649 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 650 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 651 652config CRYPTO_RMD320 653 tristate "RIPEMD-320 digest algorithm" 654 select CRYPTO_HASH 655 help 656 RIPEMD-320 is an optional extension of RIPEMD-160 with a 657 320 bit hash. It is intended for applications that require 658 longer hash-results, without needing a larger security level 659 (than RIPEMD-160). 660 661 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 662 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 663 664config CRYPTO_SHA1 665 tristate "SHA1 digest algorithm" 666 select CRYPTO_HASH 667 help 668 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 669 670config CRYPTO_SHA1_SSSE3 671 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 672 depends on X86 && 64BIT 673 select CRYPTO_SHA1 674 select CRYPTO_HASH 675 help 676 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 677 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 678 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 679 when available. 680 681config CRYPTO_SHA256_SSSE3 682 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 683 depends on X86 && 64BIT 684 select CRYPTO_SHA256 685 select CRYPTO_HASH 686 help 687 SHA-256 secure hash standard (DFIPS 180-2) implemented 688 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 689 Extensions version 1 (AVX1), or Advanced Vector Extensions 690 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 691 Instructions) when available. 692 693config CRYPTO_SHA512_SSSE3 694 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 695 depends on X86 && 64BIT 696 select CRYPTO_SHA512 697 select CRYPTO_HASH 698 help 699 SHA-512 secure hash standard (DFIPS 180-2) implemented 700 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 701 Extensions version 1 (AVX1), or Advanced Vector Extensions 702 version 2 (AVX2) instructions, when available. 703 704config CRYPTO_SHA1_OCTEON 705 tristate "SHA1 digest algorithm (OCTEON)" 706 depends on CPU_CAVIUM_OCTEON 707 select CRYPTO_SHA1 708 select CRYPTO_HASH 709 help 710 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 711 using OCTEON crypto instructions, when available. 712 713config CRYPTO_SHA1_SPARC64 714 tristate "SHA1 digest algorithm (SPARC64)" 715 depends on SPARC64 716 select CRYPTO_SHA1 717 select CRYPTO_HASH 718 help 719 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 720 using sparc64 crypto instructions, when available. 721 722config CRYPTO_SHA1_PPC 723 tristate "SHA1 digest algorithm (powerpc)" 724 depends on PPC 725 help 726 This is the powerpc hardware accelerated implementation of the 727 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 728 729config CRYPTO_SHA1_PPC_SPE 730 tristate "SHA1 digest algorithm (PPC SPE)" 731 depends on PPC && SPE 732 help 733 SHA-1 secure hash standard (DFIPS 180-4) implemented 734 using powerpc SPE SIMD instruction set. 735 736config CRYPTO_SHA1_MB 737 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 738 depends on X86 && 64BIT 739 select CRYPTO_SHA1 740 select CRYPTO_HASH 741 select CRYPTO_MCRYPTD 742 help 743 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 744 using multi-buffer technique. This algorithm computes on 745 multiple data lanes concurrently with SIMD instructions for 746 better throughput. It should not be enabled by default but 747 used when there is significant amount of work to keep the keep 748 the data lanes filled to get performance benefit. If the data 749 lanes remain unfilled, a flush operation will be initiated to 750 process the crypto jobs, adding a slight latency. 751 752config CRYPTO_SHA256_MB 753 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 754 depends on X86 && 64BIT 755 select CRYPTO_SHA256 756 select CRYPTO_HASH 757 select CRYPTO_MCRYPTD 758 help 759 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 760 using multi-buffer technique. This algorithm computes on 761 multiple data lanes concurrently with SIMD instructions for 762 better throughput. It should not be enabled by default but 763 used when there is significant amount of work to keep the keep 764 the data lanes filled to get performance benefit. If the data 765 lanes remain unfilled, a flush operation will be initiated to 766 process the crypto jobs, adding a slight latency. 767 768config CRYPTO_SHA512_MB 769 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 770 depends on X86 && 64BIT 771 select CRYPTO_SHA512 772 select CRYPTO_HASH 773 select CRYPTO_MCRYPTD 774 help 775 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 776 using multi-buffer technique. This algorithm computes on 777 multiple data lanes concurrently with SIMD instructions for 778 better throughput. It should not be enabled by default but 779 used when there is significant amount of work to keep the keep 780 the data lanes filled to get performance benefit. If the data 781 lanes remain unfilled, a flush operation will be initiated to 782 process the crypto jobs, adding a slight latency. 783 784config CRYPTO_SHA256 785 tristate "SHA224 and SHA256 digest algorithm" 786 select CRYPTO_HASH 787 help 788 SHA256 secure hash standard (DFIPS 180-2). 789 790 This version of SHA implements a 256 bit hash with 128 bits of 791 security against collision attacks. 792 793 This code also includes SHA-224, a 224 bit hash with 112 bits 794 of security against collision attacks. 795 796config CRYPTO_SHA256_PPC_SPE 797 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 798 depends on PPC && SPE 799 select CRYPTO_SHA256 800 select CRYPTO_HASH 801 help 802 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 803 implemented using powerpc SPE SIMD instruction set. 804 805config CRYPTO_SHA256_OCTEON 806 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 807 depends on CPU_CAVIUM_OCTEON 808 select CRYPTO_SHA256 809 select CRYPTO_HASH 810 help 811 SHA-256 secure hash standard (DFIPS 180-2) implemented 812 using OCTEON crypto instructions, when available. 813 814config CRYPTO_SHA256_SPARC64 815 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 816 depends on SPARC64 817 select CRYPTO_SHA256 818 select CRYPTO_HASH 819 help 820 SHA-256 secure hash standard (DFIPS 180-2) implemented 821 using sparc64 crypto instructions, when available. 822 823config CRYPTO_SHA512 824 tristate "SHA384 and SHA512 digest algorithms" 825 select CRYPTO_HASH 826 help 827 SHA512 secure hash standard (DFIPS 180-2). 828 829 This version of SHA implements a 512 bit hash with 256 bits of 830 security against collision attacks. 831 832 This code also includes SHA-384, a 384 bit hash with 192 bits 833 of security against collision attacks. 834 835config CRYPTO_SHA512_OCTEON 836 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 837 depends on CPU_CAVIUM_OCTEON 838 select CRYPTO_SHA512 839 select CRYPTO_HASH 840 help 841 SHA-512 secure hash standard (DFIPS 180-2) implemented 842 using OCTEON crypto instructions, when available. 843 844config CRYPTO_SHA512_SPARC64 845 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 846 depends on SPARC64 847 select CRYPTO_SHA512 848 select CRYPTO_HASH 849 help 850 SHA-512 secure hash standard (DFIPS 180-2) implemented 851 using sparc64 crypto instructions, when available. 852 853config CRYPTO_SHA3 854 tristate "SHA3 digest algorithm" 855 select CRYPTO_HASH 856 help 857 SHA-3 secure hash standard (DFIPS 202). It's based on 858 cryptographic sponge function family called Keccak. 859 860 References: 861 http://keccak.noekeon.org/ 862 863config CRYPTO_SM3 864 tristate "SM3 digest algorithm" 865 select CRYPTO_HASH 866 help 867 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 868 It is part of the Chinese Commercial Cryptography suite. 869 870 References: 871 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 872 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 873 874config CRYPTO_TGR192 875 tristate "Tiger digest algorithms" 876 select CRYPTO_HASH 877 help 878 Tiger hash algorithm 192, 160 and 128-bit hashes 879 880 Tiger is a hash function optimized for 64-bit processors while 881 still having decent performance on 32-bit processors. 882 Tiger was developed by Ross Anderson and Eli Biham. 883 884 See also: 885 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 886 887config CRYPTO_WP512 888 tristate "Whirlpool digest algorithms" 889 select CRYPTO_HASH 890 help 891 Whirlpool hash algorithm 512, 384 and 256-bit hashes 892 893 Whirlpool-512 is part of the NESSIE cryptographic primitives. 894 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 895 896 See also: 897 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 898 899config CRYPTO_GHASH_CLMUL_NI_INTEL 900 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 901 depends on X86 && 64BIT 902 select CRYPTO_CRYPTD 903 help 904 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 905 The implementation is accelerated by CLMUL-NI of Intel. 906 907comment "Ciphers" 908 909config CRYPTO_AES 910 tristate "AES cipher algorithms" 911 select CRYPTO_ALGAPI 912 help 913 AES cipher algorithms (FIPS-197). AES uses the Rijndael 914 algorithm. 915 916 Rijndael appears to be consistently a very good performer in 917 both hardware and software across a wide range of computing 918 environments regardless of its use in feedback or non-feedback 919 modes. Its key setup time is excellent, and its key agility is 920 good. Rijndael's very low memory requirements make it very well 921 suited for restricted-space environments, in which it also 922 demonstrates excellent performance. Rijndael's operations are 923 among the easiest to defend against power and timing attacks. 924 925 The AES specifies three key sizes: 128, 192 and 256 bits 926 927 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 928 929config CRYPTO_AES_TI 930 tristate "Fixed time AES cipher" 931 select CRYPTO_ALGAPI 932 help 933 This is a generic implementation of AES that attempts to eliminate 934 data dependent latencies as much as possible without affecting 935 performance too much. It is intended for use by the generic CCM 936 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 937 solely on encryption (although decryption is supported as well, but 938 with a more dramatic performance hit) 939 940 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 941 8 for decryption), this implementation only uses just two S-boxes of 942 256 bytes each, and attempts to eliminate data dependent latencies by 943 prefetching the entire table into the cache at the start of each 944 block. 945 946config CRYPTO_AES_586 947 tristate "AES cipher algorithms (i586)" 948 depends on (X86 || UML_X86) && !64BIT 949 select CRYPTO_ALGAPI 950 select CRYPTO_AES 951 help 952 AES cipher algorithms (FIPS-197). AES uses the Rijndael 953 algorithm. 954 955 Rijndael appears to be consistently a very good performer in 956 both hardware and software across a wide range of computing 957 environments regardless of its use in feedback or non-feedback 958 modes. Its key setup time is excellent, and its key agility is 959 good. Rijndael's very low memory requirements make it very well 960 suited for restricted-space environments, in which it also 961 demonstrates excellent performance. Rijndael's operations are 962 among the easiest to defend against power and timing attacks. 963 964 The AES specifies three key sizes: 128, 192 and 256 bits 965 966 See <http://csrc.nist.gov/encryption/aes/> for more information. 967 968config CRYPTO_AES_X86_64 969 tristate "AES cipher algorithms (x86_64)" 970 depends on (X86 || UML_X86) && 64BIT 971 select CRYPTO_ALGAPI 972 select CRYPTO_AES 973 help 974 AES cipher algorithms (FIPS-197). AES uses the Rijndael 975 algorithm. 976 977 Rijndael appears to be consistently a very good performer in 978 both hardware and software across a wide range of computing 979 environments regardless of its use in feedback or non-feedback 980 modes. Its key setup time is excellent, and its key agility is 981 good. Rijndael's very low memory requirements make it very well 982 suited for restricted-space environments, in which it also 983 demonstrates excellent performance. Rijndael's operations are 984 among the easiest to defend against power and timing attacks. 985 986 The AES specifies three key sizes: 128, 192 and 256 bits 987 988 See <http://csrc.nist.gov/encryption/aes/> for more information. 989 990config CRYPTO_AES_NI_INTEL 991 tristate "AES cipher algorithms (AES-NI)" 992 depends on X86 993 select CRYPTO_AEAD 994 select CRYPTO_AES_X86_64 if 64BIT 995 select CRYPTO_AES_586 if !64BIT 996 select CRYPTO_ALGAPI 997 select CRYPTO_BLKCIPHER 998 select CRYPTO_GLUE_HELPER_X86 if 64BIT 999 select CRYPTO_SIMD 1000 help 1001 Use Intel AES-NI instructions for AES algorithm. 1002 1003 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1004 algorithm. 1005 1006 Rijndael appears to be consistently a very good performer in 1007 both hardware and software across a wide range of computing 1008 environments regardless of its use in feedback or non-feedback 1009 modes. Its key setup time is excellent, and its key agility is 1010 good. Rijndael's very low memory requirements make it very well 1011 suited for restricted-space environments, in which it also 1012 demonstrates excellent performance. Rijndael's operations are 1013 among the easiest to defend against power and timing attacks. 1014 1015 The AES specifies three key sizes: 128, 192 and 256 bits 1016 1017 See <http://csrc.nist.gov/encryption/aes/> for more information. 1018 1019 In addition to AES cipher algorithm support, the acceleration 1020 for some popular block cipher mode is supported too, including 1021 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 1022 acceleration for CTR. 1023 1024config CRYPTO_AES_SPARC64 1025 tristate "AES cipher algorithms (SPARC64)" 1026 depends on SPARC64 1027 select CRYPTO_CRYPTD 1028 select CRYPTO_ALGAPI 1029 help 1030 Use SPARC64 crypto opcodes for AES algorithm. 1031 1032 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1033 algorithm. 1034 1035 Rijndael appears to be consistently a very good performer in 1036 both hardware and software across a wide range of computing 1037 environments regardless of its use in feedback or non-feedback 1038 modes. Its key setup time is excellent, and its key agility is 1039 good. Rijndael's very low memory requirements make it very well 1040 suited for restricted-space environments, in which it also 1041 demonstrates excellent performance. Rijndael's operations are 1042 among the easiest to defend against power and timing attacks. 1043 1044 The AES specifies three key sizes: 128, 192 and 256 bits 1045 1046 See <http://csrc.nist.gov/encryption/aes/> for more information. 1047 1048 In addition to AES cipher algorithm support, the acceleration 1049 for some popular block cipher mode is supported too, including 1050 ECB and CBC. 1051 1052config CRYPTO_AES_PPC_SPE 1053 tristate "AES cipher algorithms (PPC SPE)" 1054 depends on PPC && SPE 1055 help 1056 AES cipher algorithms (FIPS-197). Additionally the acceleration 1057 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1058 This module should only be used for low power (router) devices 1059 without hardware AES acceleration (e.g. caam crypto). It reduces the 1060 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1061 timining attacks. Nevertheless it might be not as secure as other 1062 architecture specific assembler implementations that work on 1KB 1063 tables or 256 bytes S-boxes. 1064 1065config CRYPTO_ANUBIS 1066 tristate "Anubis cipher algorithm" 1067 select CRYPTO_ALGAPI 1068 help 1069 Anubis cipher algorithm. 1070 1071 Anubis is a variable key length cipher which can use keys from 1072 128 bits to 320 bits in length. It was evaluated as a entrant 1073 in the NESSIE competition. 1074 1075 See also: 1076 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1077 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1078 1079config CRYPTO_ARC4 1080 tristate "ARC4 cipher algorithm" 1081 select CRYPTO_BLKCIPHER 1082 help 1083 ARC4 cipher algorithm. 1084 1085 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1086 bits in length. This algorithm is required for driver-based 1087 WEP, but it should not be for other purposes because of the 1088 weakness of the algorithm. 1089 1090config CRYPTO_BLOWFISH 1091 tristate "Blowfish cipher algorithm" 1092 select CRYPTO_ALGAPI 1093 select CRYPTO_BLOWFISH_COMMON 1094 help 1095 Blowfish cipher algorithm, by Bruce Schneier. 1096 1097 This is a variable key length cipher which can use keys from 32 1098 bits to 448 bits in length. It's fast, simple and specifically 1099 designed for use on "large microprocessors". 1100 1101 See also: 1102 <http://www.schneier.com/blowfish.html> 1103 1104config CRYPTO_BLOWFISH_COMMON 1105 tristate 1106 help 1107 Common parts of the Blowfish cipher algorithm shared by the 1108 generic c and the assembler implementations. 1109 1110 See also: 1111 <http://www.schneier.com/blowfish.html> 1112 1113config CRYPTO_BLOWFISH_X86_64 1114 tristate "Blowfish cipher algorithm (x86_64)" 1115 depends on X86 && 64BIT 1116 select CRYPTO_ALGAPI 1117 select CRYPTO_BLOWFISH_COMMON 1118 help 1119 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1120 1121 This is a variable key length cipher which can use keys from 32 1122 bits to 448 bits in length. It's fast, simple and specifically 1123 designed for use on "large microprocessors". 1124 1125 See also: 1126 <http://www.schneier.com/blowfish.html> 1127 1128config CRYPTO_CAMELLIA 1129 tristate "Camellia cipher algorithms" 1130 depends on CRYPTO 1131 select CRYPTO_ALGAPI 1132 help 1133 Camellia cipher algorithms module. 1134 1135 Camellia is a symmetric key block cipher developed jointly 1136 at NTT and Mitsubishi Electric Corporation. 1137 1138 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1139 1140 See also: 1141 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1142 1143config CRYPTO_CAMELLIA_X86_64 1144 tristate "Camellia cipher algorithm (x86_64)" 1145 depends on X86 && 64BIT 1146 depends on CRYPTO 1147 select CRYPTO_ALGAPI 1148 select CRYPTO_GLUE_HELPER_X86 1149 select CRYPTO_LRW 1150 select CRYPTO_XTS 1151 help 1152 Camellia cipher algorithm module (x86_64). 1153 1154 Camellia is a symmetric key block cipher developed jointly 1155 at NTT and Mitsubishi Electric Corporation. 1156 1157 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1158 1159 See also: 1160 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1161 1162config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1163 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1164 depends on X86 && 64BIT 1165 depends on CRYPTO 1166 select CRYPTO_ALGAPI 1167 select CRYPTO_CRYPTD 1168 select CRYPTO_ABLK_HELPER 1169 select CRYPTO_GLUE_HELPER_X86 1170 select CRYPTO_CAMELLIA_X86_64 1171 select CRYPTO_LRW 1172 select CRYPTO_XTS 1173 help 1174 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1175 1176 Camellia is a symmetric key block cipher developed jointly 1177 at NTT and Mitsubishi Electric Corporation. 1178 1179 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1180 1181 See also: 1182 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1183 1184config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1185 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1186 depends on X86 && 64BIT 1187 depends on CRYPTO 1188 select CRYPTO_ALGAPI 1189 select CRYPTO_CRYPTD 1190 select CRYPTO_ABLK_HELPER 1191 select CRYPTO_GLUE_HELPER_X86 1192 select CRYPTO_CAMELLIA_X86_64 1193 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1194 select CRYPTO_LRW 1195 select CRYPTO_XTS 1196 help 1197 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1198 1199 Camellia is a symmetric key block cipher developed jointly 1200 at NTT and Mitsubishi Electric Corporation. 1201 1202 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1203 1204 See also: 1205 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1206 1207config CRYPTO_CAMELLIA_SPARC64 1208 tristate "Camellia cipher algorithm (SPARC64)" 1209 depends on SPARC64 1210 depends on CRYPTO 1211 select CRYPTO_ALGAPI 1212 help 1213 Camellia cipher algorithm module (SPARC64). 1214 1215 Camellia is a symmetric key block cipher developed jointly 1216 at NTT and Mitsubishi Electric Corporation. 1217 1218 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1219 1220 See also: 1221 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1222 1223config CRYPTO_CAST_COMMON 1224 tristate 1225 help 1226 Common parts of the CAST cipher algorithms shared by the 1227 generic c and the assembler implementations. 1228 1229config CRYPTO_CAST5 1230 tristate "CAST5 (CAST-128) cipher algorithm" 1231 select CRYPTO_ALGAPI 1232 select CRYPTO_CAST_COMMON 1233 help 1234 The CAST5 encryption algorithm (synonymous with CAST-128) is 1235 described in RFC2144. 1236 1237config CRYPTO_CAST5_AVX_X86_64 1238 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1239 depends on X86 && 64BIT 1240 select CRYPTO_ALGAPI 1241 select CRYPTO_CRYPTD 1242 select CRYPTO_ABLK_HELPER 1243 select CRYPTO_CAST_COMMON 1244 select CRYPTO_CAST5 1245 help 1246 The CAST5 encryption algorithm (synonymous with CAST-128) is 1247 described in RFC2144. 1248 1249 This module provides the Cast5 cipher algorithm that processes 1250 sixteen blocks parallel using the AVX instruction set. 1251 1252config CRYPTO_CAST6 1253 tristate "CAST6 (CAST-256) cipher algorithm" 1254 select CRYPTO_ALGAPI 1255 select CRYPTO_CAST_COMMON 1256 help 1257 The CAST6 encryption algorithm (synonymous with CAST-256) is 1258 described in RFC2612. 1259 1260config CRYPTO_CAST6_AVX_X86_64 1261 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1262 depends on X86 && 64BIT 1263 select CRYPTO_ALGAPI 1264 select CRYPTO_CRYPTD 1265 select CRYPTO_ABLK_HELPER 1266 select CRYPTO_GLUE_HELPER_X86 1267 select CRYPTO_CAST_COMMON 1268 select CRYPTO_CAST6 1269 select CRYPTO_LRW 1270 select CRYPTO_XTS 1271 help 1272 The CAST6 encryption algorithm (synonymous with CAST-256) is 1273 described in RFC2612. 1274 1275 This module provides the Cast6 cipher algorithm that processes 1276 eight blocks parallel using the AVX instruction set. 1277 1278config CRYPTO_DES 1279 tristate "DES and Triple DES EDE cipher algorithms" 1280 select CRYPTO_ALGAPI 1281 help 1282 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1283 1284config CRYPTO_DES_SPARC64 1285 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1286 depends on SPARC64 1287 select CRYPTO_ALGAPI 1288 select CRYPTO_DES 1289 help 1290 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1291 optimized using SPARC64 crypto opcodes. 1292 1293config CRYPTO_DES3_EDE_X86_64 1294 tristate "Triple DES EDE cipher algorithm (x86-64)" 1295 depends on X86 && 64BIT 1296 select CRYPTO_ALGAPI 1297 select CRYPTO_DES 1298 help 1299 Triple DES EDE (FIPS 46-3) algorithm. 1300 1301 This module provides implementation of the Triple DES EDE cipher 1302 algorithm that is optimized for x86-64 processors. Two versions of 1303 algorithm are provided; regular processing one input block and 1304 one that processes three blocks parallel. 1305 1306config CRYPTO_FCRYPT 1307 tristate "FCrypt cipher algorithm" 1308 select CRYPTO_ALGAPI 1309 select CRYPTO_BLKCIPHER 1310 help 1311 FCrypt algorithm used by RxRPC. 1312 1313config CRYPTO_KHAZAD 1314 tristate "Khazad cipher algorithm" 1315 select CRYPTO_ALGAPI 1316 help 1317 Khazad cipher algorithm. 1318 1319 Khazad was a finalist in the initial NESSIE competition. It is 1320 an algorithm optimized for 64-bit processors with good performance 1321 on 32-bit processors. Khazad uses an 128 bit key size. 1322 1323 See also: 1324 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1325 1326config CRYPTO_SALSA20 1327 tristate "Salsa20 stream cipher algorithm" 1328 select CRYPTO_BLKCIPHER 1329 help 1330 Salsa20 stream cipher algorithm. 1331 1332 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1333 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1334 1335 The Salsa20 stream cipher algorithm is designed by Daniel J. 1336 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1337 1338config CRYPTO_SALSA20_586 1339 tristate "Salsa20 stream cipher algorithm (i586)" 1340 depends on (X86 || UML_X86) && !64BIT 1341 select CRYPTO_BLKCIPHER 1342 help 1343 Salsa20 stream cipher algorithm. 1344 1345 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1346 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1347 1348 The Salsa20 stream cipher algorithm is designed by Daniel J. 1349 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1350 1351config CRYPTO_SALSA20_X86_64 1352 tristate "Salsa20 stream cipher algorithm (x86_64)" 1353 depends on (X86 || UML_X86) && 64BIT 1354 select CRYPTO_BLKCIPHER 1355 help 1356 Salsa20 stream cipher algorithm. 1357 1358 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1359 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1360 1361 The Salsa20 stream cipher algorithm is designed by Daniel J. 1362 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1363 1364config CRYPTO_CHACHA20 1365 tristate "ChaCha20 cipher algorithm" 1366 select CRYPTO_BLKCIPHER 1367 help 1368 ChaCha20 cipher algorithm, RFC7539. 1369 1370 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1371 Bernstein and further specified in RFC7539 for use in IETF protocols. 1372 This is the portable C implementation of ChaCha20. 1373 1374 See also: 1375 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1376 1377config CRYPTO_CHACHA20_X86_64 1378 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1379 depends on X86 && 64BIT 1380 select CRYPTO_BLKCIPHER 1381 select CRYPTO_CHACHA20 1382 help 1383 ChaCha20 cipher algorithm, RFC7539. 1384 1385 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1386 Bernstein and further specified in RFC7539 for use in IETF protocols. 1387 This is the x86_64 assembler implementation using SIMD instructions. 1388 1389 See also: 1390 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1391 1392config CRYPTO_SEED 1393 tristate "SEED cipher algorithm" 1394 select CRYPTO_ALGAPI 1395 help 1396 SEED cipher algorithm (RFC4269). 1397 1398 SEED is a 128-bit symmetric key block cipher that has been 1399 developed by KISA (Korea Information Security Agency) as a 1400 national standard encryption algorithm of the Republic of Korea. 1401 It is a 16 round block cipher with the key size of 128 bit. 1402 1403 See also: 1404 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1405 1406config CRYPTO_SERPENT 1407 tristate "Serpent cipher algorithm" 1408 select CRYPTO_ALGAPI 1409 help 1410 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1411 1412 Keys are allowed to be from 0 to 256 bits in length, in steps 1413 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1414 variant of Serpent for compatibility with old kerneli.org code. 1415 1416 See also: 1417 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1418 1419config CRYPTO_SERPENT_SSE2_X86_64 1420 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1421 depends on X86 && 64BIT 1422 select CRYPTO_ALGAPI 1423 select CRYPTO_CRYPTD 1424 select CRYPTO_ABLK_HELPER 1425 select CRYPTO_GLUE_HELPER_X86 1426 select CRYPTO_SERPENT 1427 select CRYPTO_LRW 1428 select CRYPTO_XTS 1429 help 1430 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1431 1432 Keys are allowed to be from 0 to 256 bits in length, in steps 1433 of 8 bits. 1434 1435 This module provides Serpent cipher algorithm that processes eight 1436 blocks parallel using SSE2 instruction set. 1437 1438 See also: 1439 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1440 1441config CRYPTO_SERPENT_SSE2_586 1442 tristate "Serpent cipher algorithm (i586/SSE2)" 1443 depends on X86 && !64BIT 1444 select CRYPTO_ALGAPI 1445 select CRYPTO_CRYPTD 1446 select CRYPTO_ABLK_HELPER 1447 select CRYPTO_GLUE_HELPER_X86 1448 select CRYPTO_SERPENT 1449 select CRYPTO_LRW 1450 select CRYPTO_XTS 1451 help 1452 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1453 1454 Keys are allowed to be from 0 to 256 bits in length, in steps 1455 of 8 bits. 1456 1457 This module provides Serpent cipher algorithm that processes four 1458 blocks parallel using SSE2 instruction set. 1459 1460 See also: 1461 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1462 1463config CRYPTO_SERPENT_AVX_X86_64 1464 tristate "Serpent cipher algorithm (x86_64/AVX)" 1465 depends on X86 && 64BIT 1466 select CRYPTO_ALGAPI 1467 select CRYPTO_CRYPTD 1468 select CRYPTO_ABLK_HELPER 1469 select CRYPTO_GLUE_HELPER_X86 1470 select CRYPTO_SERPENT 1471 select CRYPTO_LRW 1472 select CRYPTO_XTS 1473 help 1474 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1475 1476 Keys are allowed to be from 0 to 256 bits in length, in steps 1477 of 8 bits. 1478 1479 This module provides the Serpent cipher algorithm that processes 1480 eight blocks parallel using the AVX instruction set. 1481 1482 See also: 1483 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1484 1485config CRYPTO_SERPENT_AVX2_X86_64 1486 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1487 depends on X86 && 64BIT 1488 select CRYPTO_ALGAPI 1489 select CRYPTO_CRYPTD 1490 select CRYPTO_ABLK_HELPER 1491 select CRYPTO_GLUE_HELPER_X86 1492 select CRYPTO_SERPENT 1493 select CRYPTO_SERPENT_AVX_X86_64 1494 select CRYPTO_LRW 1495 select CRYPTO_XTS 1496 help 1497 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1498 1499 Keys are allowed to be from 0 to 256 bits in length, in steps 1500 of 8 bits. 1501 1502 This module provides Serpent cipher algorithm that processes 16 1503 blocks parallel using AVX2 instruction set. 1504 1505 See also: 1506 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1507 1508config CRYPTO_TEA 1509 tristate "TEA, XTEA and XETA cipher algorithms" 1510 select CRYPTO_ALGAPI 1511 help 1512 TEA cipher algorithm. 1513 1514 Tiny Encryption Algorithm is a simple cipher that uses 1515 many rounds for security. It is very fast and uses 1516 little memory. 1517 1518 Xtendend Tiny Encryption Algorithm is a modification to 1519 the TEA algorithm to address a potential key weakness 1520 in the TEA algorithm. 1521 1522 Xtendend Encryption Tiny Algorithm is a mis-implementation 1523 of the XTEA algorithm for compatibility purposes. 1524 1525config CRYPTO_TWOFISH 1526 tristate "Twofish cipher algorithm" 1527 select CRYPTO_ALGAPI 1528 select CRYPTO_TWOFISH_COMMON 1529 help 1530 Twofish cipher algorithm. 1531 1532 Twofish was submitted as an AES (Advanced Encryption Standard) 1533 candidate cipher by researchers at CounterPane Systems. It is a 1534 16 round block cipher supporting key sizes of 128, 192, and 256 1535 bits. 1536 1537 See also: 1538 <http://www.schneier.com/twofish.html> 1539 1540config CRYPTO_TWOFISH_COMMON 1541 tristate 1542 help 1543 Common parts of the Twofish cipher algorithm shared by the 1544 generic c and the assembler implementations. 1545 1546config CRYPTO_TWOFISH_586 1547 tristate "Twofish cipher algorithms (i586)" 1548 depends on (X86 || UML_X86) && !64BIT 1549 select CRYPTO_ALGAPI 1550 select CRYPTO_TWOFISH_COMMON 1551 help 1552 Twofish cipher algorithm. 1553 1554 Twofish was submitted as an AES (Advanced Encryption Standard) 1555 candidate cipher by researchers at CounterPane Systems. It is a 1556 16 round block cipher supporting key sizes of 128, 192, and 256 1557 bits. 1558 1559 See also: 1560 <http://www.schneier.com/twofish.html> 1561 1562config CRYPTO_TWOFISH_X86_64 1563 tristate "Twofish cipher algorithm (x86_64)" 1564 depends on (X86 || UML_X86) && 64BIT 1565 select CRYPTO_ALGAPI 1566 select CRYPTO_TWOFISH_COMMON 1567 help 1568 Twofish cipher algorithm (x86_64). 1569 1570 Twofish was submitted as an AES (Advanced Encryption Standard) 1571 candidate cipher by researchers at CounterPane Systems. It is a 1572 16 round block cipher supporting key sizes of 128, 192, and 256 1573 bits. 1574 1575 See also: 1576 <http://www.schneier.com/twofish.html> 1577 1578config CRYPTO_TWOFISH_X86_64_3WAY 1579 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1580 depends on X86 && 64BIT 1581 select CRYPTO_ALGAPI 1582 select CRYPTO_TWOFISH_COMMON 1583 select CRYPTO_TWOFISH_X86_64 1584 select CRYPTO_GLUE_HELPER_X86 1585 select CRYPTO_LRW 1586 select CRYPTO_XTS 1587 help 1588 Twofish cipher algorithm (x86_64, 3-way parallel). 1589 1590 Twofish was submitted as an AES (Advanced Encryption Standard) 1591 candidate cipher by researchers at CounterPane Systems. It is a 1592 16 round block cipher supporting key sizes of 128, 192, and 256 1593 bits. 1594 1595 This module provides Twofish cipher algorithm that processes three 1596 blocks parallel, utilizing resources of out-of-order CPUs better. 1597 1598 See also: 1599 <http://www.schneier.com/twofish.html> 1600 1601config CRYPTO_TWOFISH_AVX_X86_64 1602 tristate "Twofish cipher algorithm (x86_64/AVX)" 1603 depends on X86 && 64BIT 1604 select CRYPTO_ALGAPI 1605 select CRYPTO_CRYPTD 1606 select CRYPTO_ABLK_HELPER 1607 select CRYPTO_GLUE_HELPER_X86 1608 select CRYPTO_TWOFISH_COMMON 1609 select CRYPTO_TWOFISH_X86_64 1610 select CRYPTO_TWOFISH_X86_64_3WAY 1611 select CRYPTO_LRW 1612 select CRYPTO_XTS 1613 help 1614 Twofish cipher algorithm (x86_64/AVX). 1615 1616 Twofish was submitted as an AES (Advanced Encryption Standard) 1617 candidate cipher by researchers at CounterPane Systems. It is a 1618 16 round block cipher supporting key sizes of 128, 192, and 256 1619 bits. 1620 1621 This module provides the Twofish cipher algorithm that processes 1622 eight blocks parallel using the AVX Instruction Set. 1623 1624 See also: 1625 <http://www.schneier.com/twofish.html> 1626 1627comment "Compression" 1628 1629config CRYPTO_DEFLATE 1630 tristate "Deflate compression algorithm" 1631 select CRYPTO_ALGAPI 1632 select CRYPTO_ACOMP2 1633 select ZLIB_INFLATE 1634 select ZLIB_DEFLATE 1635 help 1636 This is the Deflate algorithm (RFC1951), specified for use in 1637 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1638 1639 You will most probably want this if using IPSec. 1640 1641config CRYPTO_LZO 1642 tristate "LZO compression algorithm" 1643 select CRYPTO_ALGAPI 1644 select CRYPTO_ACOMP2 1645 select LZO_COMPRESS 1646 select LZO_DECOMPRESS 1647 help 1648 This is the LZO algorithm. 1649 1650config CRYPTO_842 1651 tristate "842 compression algorithm" 1652 select CRYPTO_ALGAPI 1653 select CRYPTO_ACOMP2 1654 select 842_COMPRESS 1655 select 842_DECOMPRESS 1656 help 1657 This is the 842 algorithm. 1658 1659config CRYPTO_LZ4 1660 tristate "LZ4 compression algorithm" 1661 select CRYPTO_ALGAPI 1662 select CRYPTO_ACOMP2 1663 select LZ4_COMPRESS 1664 select LZ4_DECOMPRESS 1665 help 1666 This is the LZ4 algorithm. 1667 1668config CRYPTO_LZ4HC 1669 tristate "LZ4HC compression algorithm" 1670 select CRYPTO_ALGAPI 1671 select CRYPTO_ACOMP2 1672 select LZ4HC_COMPRESS 1673 select LZ4_DECOMPRESS 1674 help 1675 This is the LZ4 high compression mode algorithm. 1676 1677comment "Random Number Generation" 1678 1679config CRYPTO_ANSI_CPRNG 1680 tristate "Pseudo Random Number Generation for Cryptographic modules" 1681 select CRYPTO_AES 1682 select CRYPTO_RNG 1683 help 1684 This option enables the generic pseudo random number generator 1685 for cryptographic modules. Uses the Algorithm specified in 1686 ANSI X9.31 A.2.4. Note that this option must be enabled if 1687 CRYPTO_FIPS is selected 1688 1689menuconfig CRYPTO_DRBG_MENU 1690 tristate "NIST SP800-90A DRBG" 1691 help 1692 NIST SP800-90A compliant DRBG. In the following submenu, one or 1693 more of the DRBG types must be selected. 1694 1695if CRYPTO_DRBG_MENU 1696 1697config CRYPTO_DRBG_HMAC 1698 bool 1699 default y 1700 select CRYPTO_HMAC 1701 select CRYPTO_SHA256 1702 1703config CRYPTO_DRBG_HASH 1704 bool "Enable Hash DRBG" 1705 select CRYPTO_SHA256 1706 help 1707 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1708 1709config CRYPTO_DRBG_CTR 1710 bool "Enable CTR DRBG" 1711 select CRYPTO_AES 1712 depends on CRYPTO_CTR 1713 help 1714 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1715 1716config CRYPTO_DRBG 1717 tristate 1718 default CRYPTO_DRBG_MENU 1719 select CRYPTO_RNG 1720 select CRYPTO_JITTERENTROPY 1721 1722endif # if CRYPTO_DRBG_MENU 1723 1724config CRYPTO_JITTERENTROPY 1725 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1726 select CRYPTO_RNG 1727 help 1728 The Jitterentropy RNG is a noise that is intended 1729 to provide seed to another RNG. The RNG does not 1730 perform any cryptographic whitening of the generated 1731 random numbers. This Jitterentropy RNG registers with 1732 the kernel crypto API and can be used by any caller. 1733 1734config CRYPTO_USER_API 1735 tristate 1736 1737config CRYPTO_USER_API_HASH 1738 tristate "User-space interface for hash algorithms" 1739 depends on NET 1740 select CRYPTO_HASH 1741 select CRYPTO_USER_API 1742 help 1743 This option enables the user-spaces interface for hash 1744 algorithms. 1745 1746config CRYPTO_USER_API_SKCIPHER 1747 tristate "User-space interface for symmetric key cipher algorithms" 1748 depends on NET 1749 select CRYPTO_BLKCIPHER 1750 select CRYPTO_USER_API 1751 help 1752 This option enables the user-spaces interface for symmetric 1753 key cipher algorithms. 1754 1755config CRYPTO_USER_API_RNG 1756 tristate "User-space interface for random number generator algorithms" 1757 depends on NET 1758 select CRYPTO_RNG 1759 select CRYPTO_USER_API 1760 help 1761 This option enables the user-spaces interface for random 1762 number generator algorithms. 1763 1764config CRYPTO_USER_API_AEAD 1765 tristate "User-space interface for AEAD cipher algorithms" 1766 depends on NET 1767 select CRYPTO_AEAD 1768 select CRYPTO_BLKCIPHER 1769 select CRYPTO_NULL 1770 select CRYPTO_USER_API 1771 help 1772 This option enables the user-spaces interface for AEAD 1773 cipher algorithms. 1774 1775config CRYPTO_HASH_INFO 1776 bool 1777 1778source "drivers/crypto/Kconfig" 1779source crypto/asymmetric_keys/Kconfig 1780source certs/Kconfig 1781 1782endif # if CRYPTO 1783