xref: /openbmc/linux/crypto/Kconfig (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6	tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17	tristate "Cryptographic API"
18	help
19	  This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26	bool "FIPS 200 compliance"
27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28	depends on (MODULE_SIG || !MODULES)
29	help
30	  This options enables the fips boot option which is
31	  required if you want to system to operate in a FIPS 200
32	  certification.  You should say no unless you know what
33	  this is.
34
35config CRYPTO_ALGAPI
36	tristate
37	select CRYPTO_ALGAPI2
38	help
39	  This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42	tristate
43
44config CRYPTO_AEAD
45	tristate
46	select CRYPTO_AEAD2
47	select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50	tristate
51	select CRYPTO_ALGAPI2
52	select CRYPTO_NULL2
53	select CRYPTO_RNG2
54
55config CRYPTO_BLKCIPHER
56	tristate
57	select CRYPTO_BLKCIPHER2
58	select CRYPTO_ALGAPI
59
60config CRYPTO_BLKCIPHER2
61	tristate
62	select CRYPTO_ALGAPI2
63	select CRYPTO_RNG2
64	select CRYPTO_WORKQUEUE
65
66config CRYPTO_HASH
67	tristate
68	select CRYPTO_HASH2
69	select CRYPTO_ALGAPI
70
71config CRYPTO_HASH2
72	tristate
73	select CRYPTO_ALGAPI2
74
75config CRYPTO_RNG
76	tristate
77	select CRYPTO_RNG2
78	select CRYPTO_ALGAPI
79
80config CRYPTO_RNG2
81	tristate
82	select CRYPTO_ALGAPI2
83
84config CRYPTO_RNG_DEFAULT
85	tristate
86	select CRYPTO_DRBG_MENU
87
88config CRYPTO_AKCIPHER2
89	tristate
90	select CRYPTO_ALGAPI2
91
92config CRYPTO_AKCIPHER
93	tristate
94	select CRYPTO_AKCIPHER2
95	select CRYPTO_ALGAPI
96
97config CRYPTO_KPP2
98	tristate
99	select CRYPTO_ALGAPI2
100
101config CRYPTO_KPP
102	tristate
103	select CRYPTO_ALGAPI
104	select CRYPTO_KPP2
105
106config CRYPTO_ACOMP2
107	tristate
108	select CRYPTO_ALGAPI2
109	select SGL_ALLOC
110
111config CRYPTO_ACOMP
112	tristate
113	select CRYPTO_ALGAPI
114	select CRYPTO_ACOMP2
115
116config CRYPTO_RSA
117	tristate "RSA algorithm"
118	select CRYPTO_AKCIPHER
119	select CRYPTO_MANAGER
120	select MPILIB
121	select ASN1
122	help
123	  Generic implementation of the RSA public key algorithm.
124
125config CRYPTO_DH
126	tristate "Diffie-Hellman algorithm"
127	select CRYPTO_KPP
128	select MPILIB
129	help
130	  Generic implementation of the Diffie-Hellman algorithm.
131
132config CRYPTO_ECDH
133	tristate "ECDH algorithm"
134	select CRYPTO_KPP
135	select CRYPTO_RNG_DEFAULT
136	help
137	  Generic implementation of the ECDH algorithm
138
139config CRYPTO_MANAGER
140	tristate "Cryptographic algorithm manager"
141	select CRYPTO_MANAGER2
142	help
143	  Create default cryptographic template instantiations such as
144	  cbc(aes).
145
146config CRYPTO_MANAGER2
147	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
148	select CRYPTO_AEAD2
149	select CRYPTO_HASH2
150	select CRYPTO_BLKCIPHER2
151	select CRYPTO_AKCIPHER2
152	select CRYPTO_KPP2
153	select CRYPTO_ACOMP2
154
155config CRYPTO_USER
156	tristate "Userspace cryptographic algorithm configuration"
157	depends on NET
158	select CRYPTO_MANAGER
159	help
160	  Userspace configuration for cryptographic instantiations such as
161	  cbc(aes).
162
163config CRYPTO_MANAGER_DISABLE_TESTS
164	bool "Disable run-time self tests"
165	default y
166	depends on CRYPTO_MANAGER2
167	help
168	  Disable run-time self tests that normally take place at
169	  algorithm registration.
170
171config CRYPTO_GF128MUL
172	tristate "GF(2^128) multiplication functions"
173	help
174	  Efficient table driven implementation of multiplications in the
175	  field GF(2^128).  This is needed by some cypher modes. This
176	  option will be selected automatically if you select such a
177	  cipher mode.  Only select this option by hand if you expect to load
178	  an external module that requires these functions.
179
180config CRYPTO_NULL
181	tristate "Null algorithms"
182	select CRYPTO_NULL2
183	help
184	  These are 'Null' algorithms, used by IPsec, which do nothing.
185
186config CRYPTO_NULL2
187	tristate
188	select CRYPTO_ALGAPI2
189	select CRYPTO_BLKCIPHER2
190	select CRYPTO_HASH2
191
192config CRYPTO_PCRYPT
193	tristate "Parallel crypto engine"
194	depends on SMP
195	select PADATA
196	select CRYPTO_MANAGER
197	select CRYPTO_AEAD
198	help
199	  This converts an arbitrary crypto algorithm into a parallel
200	  algorithm that executes in kernel threads.
201
202config CRYPTO_WORKQUEUE
203       tristate
204
205config CRYPTO_CRYPTD
206	tristate "Software async crypto daemon"
207	select CRYPTO_BLKCIPHER
208	select CRYPTO_HASH
209	select CRYPTO_MANAGER
210	select CRYPTO_WORKQUEUE
211	help
212	  This is a generic software asynchronous crypto daemon that
213	  converts an arbitrary synchronous software crypto algorithm
214	  into an asynchronous algorithm that executes in a kernel thread.
215
216config CRYPTO_MCRYPTD
217	tristate "Software async multi-buffer crypto daemon"
218	select CRYPTO_BLKCIPHER
219	select CRYPTO_HASH
220	select CRYPTO_MANAGER
221	select CRYPTO_WORKQUEUE
222	help
223	  This is a generic software asynchronous crypto daemon that
224	  provides the kernel thread to assist multi-buffer crypto
225	  algorithms for submitting jobs and flushing jobs in multi-buffer
226	  crypto algorithms.  Multi-buffer crypto algorithms are executed
227	  in the context of this kernel thread and drivers can post
228	  their crypto request asynchronously to be processed by this daemon.
229
230config CRYPTO_AUTHENC
231	tristate "Authenc support"
232	select CRYPTO_AEAD
233	select CRYPTO_BLKCIPHER
234	select CRYPTO_MANAGER
235	select CRYPTO_HASH
236	select CRYPTO_NULL
237	help
238	  Authenc: Combined mode wrapper for IPsec.
239	  This is required for IPSec.
240
241config CRYPTO_TEST
242	tristate "Testing module"
243	depends on m
244	select CRYPTO_MANAGER
245	help
246	  Quick & dirty crypto test module.
247
248config CRYPTO_SIMD
249	tristate
250	select CRYPTO_CRYPTD
251
252config CRYPTO_GLUE_HELPER_X86
253	tristate
254	depends on X86
255	select CRYPTO_BLKCIPHER
256
257config CRYPTO_ENGINE
258	tristate
259
260comment "Authenticated Encryption with Associated Data"
261
262config CRYPTO_CCM
263	tristate "CCM support"
264	select CRYPTO_CTR
265	select CRYPTO_HASH
266	select CRYPTO_AEAD
267	help
268	  Support for Counter with CBC MAC. Required for IPsec.
269
270config CRYPTO_GCM
271	tristate "GCM/GMAC support"
272	select CRYPTO_CTR
273	select CRYPTO_AEAD
274	select CRYPTO_GHASH
275	select CRYPTO_NULL
276	help
277	  Support for Galois/Counter Mode (GCM) and Galois Message
278	  Authentication Code (GMAC). Required for IPSec.
279
280config CRYPTO_CHACHA20POLY1305
281	tristate "ChaCha20-Poly1305 AEAD support"
282	select CRYPTO_CHACHA20
283	select CRYPTO_POLY1305
284	select CRYPTO_AEAD
285	help
286	  ChaCha20-Poly1305 AEAD support, RFC7539.
287
288	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
289	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
290	  IETF protocols.
291
292config CRYPTO_SEQIV
293	tristate "Sequence Number IV Generator"
294	select CRYPTO_AEAD
295	select CRYPTO_BLKCIPHER
296	select CRYPTO_NULL
297	select CRYPTO_RNG_DEFAULT
298	help
299	  This IV generator generates an IV based on a sequence number by
300	  xoring it with a salt.  This algorithm is mainly useful for CTR
301
302config CRYPTO_ECHAINIV
303	tristate "Encrypted Chain IV Generator"
304	select CRYPTO_AEAD
305	select CRYPTO_NULL
306	select CRYPTO_RNG_DEFAULT
307	default m
308	help
309	  This IV generator generates an IV based on the encryption of
310	  a sequence number xored with a salt.  This is the default
311	  algorithm for CBC.
312
313comment "Block modes"
314
315config CRYPTO_CBC
316	tristate "CBC support"
317	select CRYPTO_BLKCIPHER
318	select CRYPTO_MANAGER
319	help
320	  CBC: Cipher Block Chaining mode
321	  This block cipher algorithm is required for IPSec.
322
323config CRYPTO_CFB
324	tristate "CFB support"
325	select CRYPTO_BLKCIPHER
326	select CRYPTO_MANAGER
327	help
328	  CFB: Cipher FeedBack mode
329	  This block cipher algorithm is required for TPM2 Cryptography.
330
331config CRYPTO_CTR
332	tristate "CTR support"
333	select CRYPTO_BLKCIPHER
334	select CRYPTO_SEQIV
335	select CRYPTO_MANAGER
336	help
337	  CTR: Counter mode
338	  This block cipher algorithm is required for IPSec.
339
340config CRYPTO_CTS
341	tristate "CTS support"
342	select CRYPTO_BLKCIPHER
343	help
344	  CTS: Cipher Text Stealing
345	  This is the Cipher Text Stealing mode as described by
346	  Section 8 of rfc2040 and referenced by rfc3962.
347	  (rfc3962 includes errata information in its Appendix A)
348	  This mode is required for Kerberos gss mechanism support
349	  for AES encryption.
350
351config CRYPTO_ECB
352	tristate "ECB support"
353	select CRYPTO_BLKCIPHER
354	select CRYPTO_MANAGER
355	help
356	  ECB: Electronic CodeBook mode
357	  This is the simplest block cipher algorithm.  It simply encrypts
358	  the input block by block.
359
360config CRYPTO_LRW
361	tristate "LRW support"
362	select CRYPTO_BLKCIPHER
363	select CRYPTO_MANAGER
364	select CRYPTO_GF128MUL
365	help
366	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
367	  narrow block cipher mode for dm-crypt.  Use it with cipher
368	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
369	  The first 128, 192 or 256 bits in the key are used for AES and the
370	  rest is used to tie each cipher block to its logical position.
371
372config CRYPTO_PCBC
373	tristate "PCBC support"
374	select CRYPTO_BLKCIPHER
375	select CRYPTO_MANAGER
376	help
377	  PCBC: Propagating Cipher Block Chaining mode
378	  This block cipher algorithm is required for RxRPC.
379
380config CRYPTO_XTS
381	tristate "XTS support"
382	select CRYPTO_BLKCIPHER
383	select CRYPTO_MANAGER
384	select CRYPTO_ECB
385	help
386	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
387	  key size 256, 384 or 512 bits. This implementation currently
388	  can't handle a sectorsize which is not a multiple of 16 bytes.
389
390config CRYPTO_KEYWRAP
391	tristate "Key wrapping support"
392	select CRYPTO_BLKCIPHER
393	help
394	  Support for key wrapping (NIST SP800-38F / RFC3394) without
395	  padding.
396
397comment "Hash modes"
398
399config CRYPTO_CMAC
400	tristate "CMAC support"
401	select CRYPTO_HASH
402	select CRYPTO_MANAGER
403	help
404	  Cipher-based Message Authentication Code (CMAC) specified by
405	  The National Institute of Standards and Technology (NIST).
406
407	  https://tools.ietf.org/html/rfc4493
408	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
409
410config CRYPTO_HMAC
411	tristate "HMAC support"
412	select CRYPTO_HASH
413	select CRYPTO_MANAGER
414	help
415	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
416	  This is required for IPSec.
417
418config CRYPTO_XCBC
419	tristate "XCBC support"
420	select CRYPTO_HASH
421	select CRYPTO_MANAGER
422	help
423	  XCBC: Keyed-Hashing with encryption algorithm
424		http://www.ietf.org/rfc/rfc3566.txt
425		http://csrc.nist.gov/encryption/modes/proposedmodes/
426		 xcbc-mac/xcbc-mac-spec.pdf
427
428config CRYPTO_VMAC
429	tristate "VMAC support"
430	select CRYPTO_HASH
431	select CRYPTO_MANAGER
432	help
433	  VMAC is a message authentication algorithm designed for
434	  very high speed on 64-bit architectures.
435
436	  See also:
437	  <http://fastcrypto.org/vmac>
438
439comment "Digest"
440
441config CRYPTO_CRC32C
442	tristate "CRC32c CRC algorithm"
443	select CRYPTO_HASH
444	select CRC32
445	help
446	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
447	  by iSCSI for header and data digests and by others.
448	  See Castagnoli93.  Module will be crc32c.
449
450config CRYPTO_CRC32C_INTEL
451	tristate "CRC32c INTEL hardware acceleration"
452	depends on X86
453	select CRYPTO_HASH
454	help
455	  In Intel processor with SSE4.2 supported, the processor will
456	  support CRC32C implementation using hardware accelerated CRC32
457	  instruction. This option will create 'crc32c-intel' module,
458	  which will enable any routine to use the CRC32 instruction to
459	  gain performance compared with software implementation.
460	  Module will be crc32c-intel.
461
462config CRYPTO_CRC32C_VPMSUM
463	tristate "CRC32c CRC algorithm (powerpc64)"
464	depends on PPC64 && ALTIVEC
465	select CRYPTO_HASH
466	select CRC32
467	help
468	  CRC32c algorithm implemented using vector polynomial multiply-sum
469	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
470	  and newer processors for improved performance.
471
472
473config CRYPTO_CRC32C_SPARC64
474	tristate "CRC32c CRC algorithm (SPARC64)"
475	depends on SPARC64
476	select CRYPTO_HASH
477	select CRC32
478	help
479	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
480	  when available.
481
482config CRYPTO_CRC32
483	tristate "CRC32 CRC algorithm"
484	select CRYPTO_HASH
485	select CRC32
486	help
487	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
488	  Shash crypto api wrappers to crc32_le function.
489
490config CRYPTO_CRC32_PCLMUL
491	tristate "CRC32 PCLMULQDQ hardware acceleration"
492	depends on X86
493	select CRYPTO_HASH
494	select CRC32
495	help
496	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
497	  and PCLMULQDQ supported, the processor will support
498	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
499	  instruction. This option will create 'crc32-plcmul' module,
500	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
501	  and gain better performance as compared with the table implementation.
502
503config CRYPTO_CRC32_MIPS
504	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
505	depends on MIPS_CRC_SUPPORT
506	select CRYPTO_HASH
507	help
508	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
509	  instructions, when available.
510
511
512config CRYPTO_CRCT10DIF
513	tristate "CRCT10DIF algorithm"
514	select CRYPTO_HASH
515	help
516	  CRC T10 Data Integrity Field computation is being cast as
517	  a crypto transform.  This allows for faster crc t10 diff
518	  transforms to be used if they are available.
519
520config CRYPTO_CRCT10DIF_PCLMUL
521	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
522	depends on X86 && 64BIT && CRC_T10DIF
523	select CRYPTO_HASH
524	help
525	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
526	  CRC T10 DIF PCLMULQDQ computation can be hardware
527	  accelerated PCLMULQDQ instruction. This option will create
528	  'crct10dif-plcmul' module, which is faster when computing the
529	  crct10dif checksum as compared with the generic table implementation.
530
531config CRYPTO_CRCT10DIF_VPMSUM
532	tristate "CRC32T10DIF powerpc64 hardware acceleration"
533	depends on PPC64 && ALTIVEC && CRC_T10DIF
534	select CRYPTO_HASH
535	help
536	  CRC10T10DIF algorithm implemented using vector polynomial
537	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
538	  POWER8 and newer processors for improved performance.
539
540config CRYPTO_VPMSUM_TESTER
541	tristate "Powerpc64 vpmsum hardware acceleration tester"
542	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
543	help
544	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
545	  POWER8 vpmsum instructions.
546	  Unless you are testing these algorithms, you don't need this.
547
548config CRYPTO_GHASH
549	tristate "GHASH digest algorithm"
550	select CRYPTO_GF128MUL
551	select CRYPTO_HASH
552	help
553	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
554
555config CRYPTO_POLY1305
556	tristate "Poly1305 authenticator algorithm"
557	select CRYPTO_HASH
558	help
559	  Poly1305 authenticator algorithm, RFC7539.
560
561	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
562	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
563	  in IETF protocols. This is the portable C implementation of Poly1305.
564
565config CRYPTO_POLY1305_X86_64
566	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
567	depends on X86 && 64BIT
568	select CRYPTO_POLY1305
569	help
570	  Poly1305 authenticator algorithm, RFC7539.
571
572	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
573	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
574	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
575	  instructions.
576
577config CRYPTO_MD4
578	tristate "MD4 digest algorithm"
579	select CRYPTO_HASH
580	help
581	  MD4 message digest algorithm (RFC1320).
582
583config CRYPTO_MD5
584	tristate "MD5 digest algorithm"
585	select CRYPTO_HASH
586	help
587	  MD5 message digest algorithm (RFC1321).
588
589config CRYPTO_MD5_OCTEON
590	tristate "MD5 digest algorithm (OCTEON)"
591	depends on CPU_CAVIUM_OCTEON
592	select CRYPTO_MD5
593	select CRYPTO_HASH
594	help
595	  MD5 message digest algorithm (RFC1321) implemented
596	  using OCTEON crypto instructions, when available.
597
598config CRYPTO_MD5_PPC
599	tristate "MD5 digest algorithm (PPC)"
600	depends on PPC
601	select CRYPTO_HASH
602	help
603	  MD5 message digest algorithm (RFC1321) implemented
604	  in PPC assembler.
605
606config CRYPTO_MD5_SPARC64
607	tristate "MD5 digest algorithm (SPARC64)"
608	depends on SPARC64
609	select CRYPTO_MD5
610	select CRYPTO_HASH
611	help
612	  MD5 message digest algorithm (RFC1321) implemented
613	  using sparc64 crypto instructions, when available.
614
615config CRYPTO_MICHAEL_MIC
616	tristate "Michael MIC keyed digest algorithm"
617	select CRYPTO_HASH
618	help
619	  Michael MIC is used for message integrity protection in TKIP
620	  (IEEE 802.11i). This algorithm is required for TKIP, but it
621	  should not be used for other purposes because of the weakness
622	  of the algorithm.
623
624config CRYPTO_RMD128
625	tristate "RIPEMD-128 digest algorithm"
626	select CRYPTO_HASH
627	help
628	  RIPEMD-128 (ISO/IEC 10118-3:2004).
629
630	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
631	  be used as a secure replacement for RIPEMD. For other use cases,
632	  RIPEMD-160 should be used.
633
634	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
635	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
636
637config CRYPTO_RMD160
638	tristate "RIPEMD-160 digest algorithm"
639	select CRYPTO_HASH
640	help
641	  RIPEMD-160 (ISO/IEC 10118-3:2004).
642
643	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
644	  to be used as a secure replacement for the 128-bit hash functions
645	  MD4, MD5 and it's predecessor RIPEMD
646	  (not to be confused with RIPEMD-128).
647
648	  It's speed is comparable to SHA1 and there are no known attacks
649	  against RIPEMD-160.
650
651	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
652	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
653
654config CRYPTO_RMD256
655	tristate "RIPEMD-256 digest algorithm"
656	select CRYPTO_HASH
657	help
658	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
659	  256 bit hash. It is intended for applications that require
660	  longer hash-results, without needing a larger security level
661	  (than RIPEMD-128).
662
663	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
664	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
665
666config CRYPTO_RMD320
667	tristate "RIPEMD-320 digest algorithm"
668	select CRYPTO_HASH
669	help
670	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
671	  320 bit hash. It is intended for applications that require
672	  longer hash-results, without needing a larger security level
673	  (than RIPEMD-160).
674
675	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
676	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
677
678config CRYPTO_SHA1
679	tristate "SHA1 digest algorithm"
680	select CRYPTO_HASH
681	help
682	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
683
684config CRYPTO_SHA1_SSSE3
685	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
686	depends on X86 && 64BIT
687	select CRYPTO_SHA1
688	select CRYPTO_HASH
689	help
690	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
691	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
692	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
693	  when available.
694
695config CRYPTO_SHA256_SSSE3
696	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
697	depends on X86 && 64BIT
698	select CRYPTO_SHA256
699	select CRYPTO_HASH
700	help
701	  SHA-256 secure hash standard (DFIPS 180-2) implemented
702	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
703	  Extensions version 1 (AVX1), or Advanced Vector Extensions
704	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
705	  Instructions) when available.
706
707config CRYPTO_SHA512_SSSE3
708	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
709	depends on X86 && 64BIT
710	select CRYPTO_SHA512
711	select CRYPTO_HASH
712	help
713	  SHA-512 secure hash standard (DFIPS 180-2) implemented
714	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
715	  Extensions version 1 (AVX1), or Advanced Vector Extensions
716	  version 2 (AVX2) instructions, when available.
717
718config CRYPTO_SHA1_OCTEON
719	tristate "SHA1 digest algorithm (OCTEON)"
720	depends on CPU_CAVIUM_OCTEON
721	select CRYPTO_SHA1
722	select CRYPTO_HASH
723	help
724	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
725	  using OCTEON crypto instructions, when available.
726
727config CRYPTO_SHA1_SPARC64
728	tristate "SHA1 digest algorithm (SPARC64)"
729	depends on SPARC64
730	select CRYPTO_SHA1
731	select CRYPTO_HASH
732	help
733	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
734	  using sparc64 crypto instructions, when available.
735
736config CRYPTO_SHA1_PPC
737	tristate "SHA1 digest algorithm (powerpc)"
738	depends on PPC
739	help
740	  This is the powerpc hardware accelerated implementation of the
741	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
742
743config CRYPTO_SHA1_PPC_SPE
744	tristate "SHA1 digest algorithm (PPC SPE)"
745	depends on PPC && SPE
746	help
747	  SHA-1 secure hash standard (DFIPS 180-4) implemented
748	  using powerpc SPE SIMD instruction set.
749
750config CRYPTO_SHA1_MB
751	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
752	depends on X86 && 64BIT
753	select CRYPTO_SHA1
754	select CRYPTO_HASH
755	select CRYPTO_MCRYPTD
756	help
757	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
758	  using multi-buffer technique.  This algorithm computes on
759	  multiple data lanes concurrently with SIMD instructions for
760	  better throughput.  It should not be enabled by default but
761	  used when there is significant amount of work to keep the keep
762	  the data lanes filled to get performance benefit.  If the data
763	  lanes remain unfilled, a flush operation will be initiated to
764	  process the crypto jobs, adding a slight latency.
765
766config CRYPTO_SHA256_MB
767	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
768	depends on X86 && 64BIT
769	select CRYPTO_SHA256
770	select CRYPTO_HASH
771	select CRYPTO_MCRYPTD
772	help
773	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
774	  using multi-buffer technique.  This algorithm computes on
775	  multiple data lanes concurrently with SIMD instructions for
776	  better throughput.  It should not be enabled by default but
777	  used when there is significant amount of work to keep the keep
778	  the data lanes filled to get performance benefit.  If the data
779	  lanes remain unfilled, a flush operation will be initiated to
780	  process the crypto jobs, adding a slight latency.
781
782config CRYPTO_SHA512_MB
783        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
784        depends on X86 && 64BIT
785        select CRYPTO_SHA512
786        select CRYPTO_HASH
787        select CRYPTO_MCRYPTD
788        help
789          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
790          using multi-buffer technique.  This algorithm computes on
791          multiple data lanes concurrently with SIMD instructions for
792          better throughput.  It should not be enabled by default but
793          used when there is significant amount of work to keep the keep
794          the data lanes filled to get performance benefit.  If the data
795          lanes remain unfilled, a flush operation will be initiated to
796          process the crypto jobs, adding a slight latency.
797
798config CRYPTO_SHA256
799	tristate "SHA224 and SHA256 digest algorithm"
800	select CRYPTO_HASH
801	help
802	  SHA256 secure hash standard (DFIPS 180-2).
803
804	  This version of SHA implements a 256 bit hash with 128 bits of
805	  security against collision attacks.
806
807	  This code also includes SHA-224, a 224 bit hash with 112 bits
808	  of security against collision attacks.
809
810config CRYPTO_SHA256_PPC_SPE
811	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
812	depends on PPC && SPE
813	select CRYPTO_SHA256
814	select CRYPTO_HASH
815	help
816	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
817	  implemented using powerpc SPE SIMD instruction set.
818
819config CRYPTO_SHA256_OCTEON
820	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
821	depends on CPU_CAVIUM_OCTEON
822	select CRYPTO_SHA256
823	select CRYPTO_HASH
824	help
825	  SHA-256 secure hash standard (DFIPS 180-2) implemented
826	  using OCTEON crypto instructions, when available.
827
828config CRYPTO_SHA256_SPARC64
829	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
830	depends on SPARC64
831	select CRYPTO_SHA256
832	select CRYPTO_HASH
833	help
834	  SHA-256 secure hash standard (DFIPS 180-2) implemented
835	  using sparc64 crypto instructions, when available.
836
837config CRYPTO_SHA512
838	tristate "SHA384 and SHA512 digest algorithms"
839	select CRYPTO_HASH
840	help
841	  SHA512 secure hash standard (DFIPS 180-2).
842
843	  This version of SHA implements a 512 bit hash with 256 bits of
844	  security against collision attacks.
845
846	  This code also includes SHA-384, a 384 bit hash with 192 bits
847	  of security against collision attacks.
848
849config CRYPTO_SHA512_OCTEON
850	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
851	depends on CPU_CAVIUM_OCTEON
852	select CRYPTO_SHA512
853	select CRYPTO_HASH
854	help
855	  SHA-512 secure hash standard (DFIPS 180-2) implemented
856	  using OCTEON crypto instructions, when available.
857
858config CRYPTO_SHA512_SPARC64
859	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
860	depends on SPARC64
861	select CRYPTO_SHA512
862	select CRYPTO_HASH
863	help
864	  SHA-512 secure hash standard (DFIPS 180-2) implemented
865	  using sparc64 crypto instructions, when available.
866
867config CRYPTO_SHA3
868	tristate "SHA3 digest algorithm"
869	select CRYPTO_HASH
870	help
871	  SHA-3 secure hash standard (DFIPS 202). It's based on
872	  cryptographic sponge function family called Keccak.
873
874	  References:
875	  http://keccak.noekeon.org/
876
877config CRYPTO_SM3
878	tristate "SM3 digest algorithm"
879	select CRYPTO_HASH
880	help
881	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
882	  It is part of the Chinese Commercial Cryptography suite.
883
884	  References:
885	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
886	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
887
888config CRYPTO_TGR192
889	tristate "Tiger digest algorithms"
890	select CRYPTO_HASH
891	help
892	  Tiger hash algorithm 192, 160 and 128-bit hashes
893
894	  Tiger is a hash function optimized for 64-bit processors while
895	  still having decent performance on 32-bit processors.
896	  Tiger was developed by Ross Anderson and Eli Biham.
897
898	  See also:
899	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
900
901config CRYPTO_WP512
902	tristate "Whirlpool digest algorithms"
903	select CRYPTO_HASH
904	help
905	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
906
907	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
908	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
909
910	  See also:
911	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
912
913config CRYPTO_GHASH_CLMUL_NI_INTEL
914	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
915	depends on X86 && 64BIT
916	select CRYPTO_CRYPTD
917	help
918	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
919	  The implementation is accelerated by CLMUL-NI of Intel.
920
921comment "Ciphers"
922
923config CRYPTO_AES
924	tristate "AES cipher algorithms"
925	select CRYPTO_ALGAPI
926	help
927	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
928	  algorithm.
929
930	  Rijndael appears to be consistently a very good performer in
931	  both hardware and software across a wide range of computing
932	  environments regardless of its use in feedback or non-feedback
933	  modes. Its key setup time is excellent, and its key agility is
934	  good. Rijndael's very low memory requirements make it very well
935	  suited for restricted-space environments, in which it also
936	  demonstrates excellent performance. Rijndael's operations are
937	  among the easiest to defend against power and timing attacks.
938
939	  The AES specifies three key sizes: 128, 192 and 256 bits
940
941	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
942
943config CRYPTO_AES_TI
944	tristate "Fixed time AES cipher"
945	select CRYPTO_ALGAPI
946	help
947	  This is a generic implementation of AES that attempts to eliminate
948	  data dependent latencies as much as possible without affecting
949	  performance too much. It is intended for use by the generic CCM
950	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
951	  solely on encryption (although decryption is supported as well, but
952	  with a more dramatic performance hit)
953
954	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
955	  8 for decryption), this implementation only uses just two S-boxes of
956	  256 bytes each, and attempts to eliminate data dependent latencies by
957	  prefetching the entire table into the cache at the start of each
958	  block.
959
960config CRYPTO_AES_586
961	tristate "AES cipher algorithms (i586)"
962	depends on (X86 || UML_X86) && !64BIT
963	select CRYPTO_ALGAPI
964	select CRYPTO_AES
965	help
966	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
967	  algorithm.
968
969	  Rijndael appears to be consistently a very good performer in
970	  both hardware and software across a wide range of computing
971	  environments regardless of its use in feedback or non-feedback
972	  modes. Its key setup time is excellent, and its key agility is
973	  good. Rijndael's very low memory requirements make it very well
974	  suited for restricted-space environments, in which it also
975	  demonstrates excellent performance. Rijndael's operations are
976	  among the easiest to defend against power and timing attacks.
977
978	  The AES specifies three key sizes: 128, 192 and 256 bits
979
980	  See <http://csrc.nist.gov/encryption/aes/> for more information.
981
982config CRYPTO_AES_X86_64
983	tristate "AES cipher algorithms (x86_64)"
984	depends on (X86 || UML_X86) && 64BIT
985	select CRYPTO_ALGAPI
986	select CRYPTO_AES
987	help
988	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
989	  algorithm.
990
991	  Rijndael appears to be consistently a very good performer in
992	  both hardware and software across a wide range of computing
993	  environments regardless of its use in feedback or non-feedback
994	  modes. Its key setup time is excellent, and its key agility is
995	  good. Rijndael's very low memory requirements make it very well
996	  suited for restricted-space environments, in which it also
997	  demonstrates excellent performance. Rijndael's operations are
998	  among the easiest to defend against power and timing attacks.
999
1000	  The AES specifies three key sizes: 128, 192 and 256 bits
1001
1002	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1003
1004config CRYPTO_AES_NI_INTEL
1005	tristate "AES cipher algorithms (AES-NI)"
1006	depends on X86
1007	select CRYPTO_AEAD
1008	select CRYPTO_AES_X86_64 if 64BIT
1009	select CRYPTO_AES_586 if !64BIT
1010	select CRYPTO_ALGAPI
1011	select CRYPTO_BLKCIPHER
1012	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1013	select CRYPTO_SIMD
1014	help
1015	  Use Intel AES-NI instructions for AES algorithm.
1016
1017	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1018	  algorithm.
1019
1020	  Rijndael appears to be consistently a very good performer in
1021	  both hardware and software across a wide range of computing
1022	  environments regardless of its use in feedback or non-feedback
1023	  modes. Its key setup time is excellent, and its key agility is
1024	  good. Rijndael's very low memory requirements make it very well
1025	  suited for restricted-space environments, in which it also
1026	  demonstrates excellent performance. Rijndael's operations are
1027	  among the easiest to defend against power and timing attacks.
1028
1029	  The AES specifies three key sizes: 128, 192 and 256 bits
1030
1031	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1032
1033	  In addition to AES cipher algorithm support, the acceleration
1034	  for some popular block cipher mode is supported too, including
1035	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1036	  acceleration for CTR.
1037
1038config CRYPTO_AES_SPARC64
1039	tristate "AES cipher algorithms (SPARC64)"
1040	depends on SPARC64
1041	select CRYPTO_CRYPTD
1042	select CRYPTO_ALGAPI
1043	help
1044	  Use SPARC64 crypto opcodes for AES algorithm.
1045
1046	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1047	  algorithm.
1048
1049	  Rijndael appears to be consistently a very good performer in
1050	  both hardware and software across a wide range of computing
1051	  environments regardless of its use in feedback or non-feedback
1052	  modes. Its key setup time is excellent, and its key agility is
1053	  good. Rijndael's very low memory requirements make it very well
1054	  suited for restricted-space environments, in which it also
1055	  demonstrates excellent performance. Rijndael's operations are
1056	  among the easiest to defend against power and timing attacks.
1057
1058	  The AES specifies three key sizes: 128, 192 and 256 bits
1059
1060	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1061
1062	  In addition to AES cipher algorithm support, the acceleration
1063	  for some popular block cipher mode is supported too, including
1064	  ECB and CBC.
1065
1066config CRYPTO_AES_PPC_SPE
1067	tristate "AES cipher algorithms (PPC SPE)"
1068	depends on PPC && SPE
1069	help
1070	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1071	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1072	  This module should only be used for low power (router) devices
1073	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1074	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1075	  timining attacks. Nevertheless it might be not as secure as other
1076	  architecture specific assembler implementations that work on 1KB
1077	  tables or 256 bytes S-boxes.
1078
1079config CRYPTO_ANUBIS
1080	tristate "Anubis cipher algorithm"
1081	select CRYPTO_ALGAPI
1082	help
1083	  Anubis cipher algorithm.
1084
1085	  Anubis is a variable key length cipher which can use keys from
1086	  128 bits to 320 bits in length.  It was evaluated as a entrant
1087	  in the NESSIE competition.
1088
1089	  See also:
1090	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1091	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1092
1093config CRYPTO_ARC4
1094	tristate "ARC4 cipher algorithm"
1095	select CRYPTO_BLKCIPHER
1096	help
1097	  ARC4 cipher algorithm.
1098
1099	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1100	  bits in length.  This algorithm is required for driver-based
1101	  WEP, but it should not be for other purposes because of the
1102	  weakness of the algorithm.
1103
1104config CRYPTO_BLOWFISH
1105	tristate "Blowfish cipher algorithm"
1106	select CRYPTO_ALGAPI
1107	select CRYPTO_BLOWFISH_COMMON
1108	help
1109	  Blowfish cipher algorithm, by Bruce Schneier.
1110
1111	  This is a variable key length cipher which can use keys from 32
1112	  bits to 448 bits in length.  It's fast, simple and specifically
1113	  designed for use on "large microprocessors".
1114
1115	  See also:
1116	  <http://www.schneier.com/blowfish.html>
1117
1118config CRYPTO_BLOWFISH_COMMON
1119	tristate
1120	help
1121	  Common parts of the Blowfish cipher algorithm shared by the
1122	  generic c and the assembler implementations.
1123
1124	  See also:
1125	  <http://www.schneier.com/blowfish.html>
1126
1127config CRYPTO_BLOWFISH_X86_64
1128	tristate "Blowfish cipher algorithm (x86_64)"
1129	depends on X86 && 64BIT
1130	select CRYPTO_BLKCIPHER
1131	select CRYPTO_BLOWFISH_COMMON
1132	help
1133	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1134
1135	  This is a variable key length cipher which can use keys from 32
1136	  bits to 448 bits in length.  It's fast, simple and specifically
1137	  designed for use on "large microprocessors".
1138
1139	  See also:
1140	  <http://www.schneier.com/blowfish.html>
1141
1142config CRYPTO_CAMELLIA
1143	tristate "Camellia cipher algorithms"
1144	depends on CRYPTO
1145	select CRYPTO_ALGAPI
1146	help
1147	  Camellia cipher algorithms module.
1148
1149	  Camellia is a symmetric key block cipher developed jointly
1150	  at NTT and Mitsubishi Electric Corporation.
1151
1152	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1153
1154	  See also:
1155	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1156
1157config CRYPTO_CAMELLIA_X86_64
1158	tristate "Camellia cipher algorithm (x86_64)"
1159	depends on X86 && 64BIT
1160	depends on CRYPTO
1161	select CRYPTO_BLKCIPHER
1162	select CRYPTO_GLUE_HELPER_X86
1163	help
1164	  Camellia cipher algorithm module (x86_64).
1165
1166	  Camellia is a symmetric key block cipher developed jointly
1167	  at NTT and Mitsubishi Electric Corporation.
1168
1169	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1170
1171	  See also:
1172	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1173
1174config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1175	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1176	depends on X86 && 64BIT
1177	depends on CRYPTO
1178	select CRYPTO_BLKCIPHER
1179	select CRYPTO_CAMELLIA_X86_64
1180	select CRYPTO_GLUE_HELPER_X86
1181	select CRYPTO_SIMD
1182	select CRYPTO_XTS
1183	help
1184	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1185
1186	  Camellia is a symmetric key block cipher developed jointly
1187	  at NTT and Mitsubishi Electric Corporation.
1188
1189	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1190
1191	  See also:
1192	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1193
1194config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1195	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1196	depends on X86 && 64BIT
1197	depends on CRYPTO
1198	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1199	help
1200	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1201
1202	  Camellia is a symmetric key block cipher developed jointly
1203	  at NTT and Mitsubishi Electric Corporation.
1204
1205	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1206
1207	  See also:
1208	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1209
1210config CRYPTO_CAMELLIA_SPARC64
1211	tristate "Camellia cipher algorithm (SPARC64)"
1212	depends on SPARC64
1213	depends on CRYPTO
1214	select CRYPTO_ALGAPI
1215	help
1216	  Camellia cipher algorithm module (SPARC64).
1217
1218	  Camellia is a symmetric key block cipher developed jointly
1219	  at NTT and Mitsubishi Electric Corporation.
1220
1221	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1222
1223	  See also:
1224	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1225
1226config CRYPTO_CAST_COMMON
1227	tristate
1228	help
1229	  Common parts of the CAST cipher algorithms shared by the
1230	  generic c and the assembler implementations.
1231
1232config CRYPTO_CAST5
1233	tristate "CAST5 (CAST-128) cipher algorithm"
1234	select CRYPTO_ALGAPI
1235	select CRYPTO_CAST_COMMON
1236	help
1237	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1238	  described in RFC2144.
1239
1240config CRYPTO_CAST5_AVX_X86_64
1241	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1242	depends on X86 && 64BIT
1243	select CRYPTO_BLKCIPHER
1244	select CRYPTO_CAST5
1245	select CRYPTO_CAST_COMMON
1246	select CRYPTO_SIMD
1247	help
1248	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1249	  described in RFC2144.
1250
1251	  This module provides the Cast5 cipher algorithm that processes
1252	  sixteen blocks parallel using the AVX instruction set.
1253
1254config CRYPTO_CAST6
1255	tristate "CAST6 (CAST-256) cipher algorithm"
1256	select CRYPTO_ALGAPI
1257	select CRYPTO_CAST_COMMON
1258	help
1259	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1260	  described in RFC2612.
1261
1262config CRYPTO_CAST6_AVX_X86_64
1263	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1264	depends on X86 && 64BIT
1265	select CRYPTO_BLKCIPHER
1266	select CRYPTO_CAST6
1267	select CRYPTO_CAST_COMMON
1268	select CRYPTO_GLUE_HELPER_X86
1269	select CRYPTO_SIMD
1270	select CRYPTO_XTS
1271	help
1272	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1273	  described in RFC2612.
1274
1275	  This module provides the Cast6 cipher algorithm that processes
1276	  eight blocks parallel using the AVX instruction set.
1277
1278config CRYPTO_DES
1279	tristate "DES and Triple DES EDE cipher algorithms"
1280	select CRYPTO_ALGAPI
1281	help
1282	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1283
1284config CRYPTO_DES_SPARC64
1285	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1286	depends on SPARC64
1287	select CRYPTO_ALGAPI
1288	select CRYPTO_DES
1289	help
1290	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1291	  optimized using SPARC64 crypto opcodes.
1292
1293config CRYPTO_DES3_EDE_X86_64
1294	tristate "Triple DES EDE cipher algorithm (x86-64)"
1295	depends on X86 && 64BIT
1296	select CRYPTO_BLKCIPHER
1297	select CRYPTO_DES
1298	help
1299	  Triple DES EDE (FIPS 46-3) algorithm.
1300
1301	  This module provides implementation of the Triple DES EDE cipher
1302	  algorithm that is optimized for x86-64 processors. Two versions of
1303	  algorithm are provided; regular processing one input block and
1304	  one that processes three blocks parallel.
1305
1306config CRYPTO_FCRYPT
1307	tristate "FCrypt cipher algorithm"
1308	select CRYPTO_ALGAPI
1309	select CRYPTO_BLKCIPHER
1310	help
1311	  FCrypt algorithm used by RxRPC.
1312
1313config CRYPTO_KHAZAD
1314	tristate "Khazad cipher algorithm"
1315	select CRYPTO_ALGAPI
1316	help
1317	  Khazad cipher algorithm.
1318
1319	  Khazad was a finalist in the initial NESSIE competition.  It is
1320	  an algorithm optimized for 64-bit processors with good performance
1321	  on 32-bit processors.  Khazad uses an 128 bit key size.
1322
1323	  See also:
1324	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1325
1326config CRYPTO_SALSA20
1327	tristate "Salsa20 stream cipher algorithm"
1328	select CRYPTO_BLKCIPHER
1329	help
1330	  Salsa20 stream cipher algorithm.
1331
1332	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1333	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1334
1335	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1336	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1337
1338config CRYPTO_SALSA20_586
1339	tristate "Salsa20 stream cipher algorithm (i586)"
1340	depends on (X86 || UML_X86) && !64BIT
1341	select CRYPTO_BLKCIPHER
1342	select CRYPTO_SALSA20
1343	help
1344	  Salsa20 stream cipher algorithm.
1345
1346	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1347	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1348
1349	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1350	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1351
1352config CRYPTO_SALSA20_X86_64
1353	tristate "Salsa20 stream cipher algorithm (x86_64)"
1354	depends on (X86 || UML_X86) && 64BIT
1355	select CRYPTO_BLKCIPHER
1356	select CRYPTO_SALSA20
1357	help
1358	  Salsa20 stream cipher algorithm.
1359
1360	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1361	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1362
1363	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1364	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1365
1366config CRYPTO_CHACHA20
1367	tristate "ChaCha20 cipher algorithm"
1368	select CRYPTO_BLKCIPHER
1369	help
1370	  ChaCha20 cipher algorithm, RFC7539.
1371
1372	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1373	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1374	  This is the portable C implementation of ChaCha20.
1375
1376	  See also:
1377	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1378
1379config CRYPTO_CHACHA20_X86_64
1380	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1381	depends on X86 && 64BIT
1382	select CRYPTO_BLKCIPHER
1383	select CRYPTO_CHACHA20
1384	help
1385	  ChaCha20 cipher algorithm, RFC7539.
1386
1387	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1388	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1389	  This is the x86_64 assembler implementation using SIMD instructions.
1390
1391	  See also:
1392	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1393
1394config CRYPTO_SEED
1395	tristate "SEED cipher algorithm"
1396	select CRYPTO_ALGAPI
1397	help
1398	  SEED cipher algorithm (RFC4269).
1399
1400	  SEED is a 128-bit symmetric key block cipher that has been
1401	  developed by KISA (Korea Information Security Agency) as a
1402	  national standard encryption algorithm of the Republic of Korea.
1403	  It is a 16 round block cipher with the key size of 128 bit.
1404
1405	  See also:
1406	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1407
1408config CRYPTO_SERPENT
1409	tristate "Serpent cipher algorithm"
1410	select CRYPTO_ALGAPI
1411	help
1412	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1413
1414	  Keys are allowed to be from 0 to 256 bits in length, in steps
1415	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1416	  variant of Serpent for compatibility with old kerneli.org code.
1417
1418	  See also:
1419	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1420
1421config CRYPTO_SERPENT_SSE2_X86_64
1422	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1423	depends on X86 && 64BIT
1424	select CRYPTO_BLKCIPHER
1425	select CRYPTO_GLUE_HELPER_X86
1426	select CRYPTO_SERPENT
1427	select CRYPTO_SIMD
1428	help
1429	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1430
1431	  Keys are allowed to be from 0 to 256 bits in length, in steps
1432	  of 8 bits.
1433
1434	  This module provides Serpent cipher algorithm that processes eight
1435	  blocks parallel using SSE2 instruction set.
1436
1437	  See also:
1438	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1439
1440config CRYPTO_SERPENT_SSE2_586
1441	tristate "Serpent cipher algorithm (i586/SSE2)"
1442	depends on X86 && !64BIT
1443	select CRYPTO_BLKCIPHER
1444	select CRYPTO_GLUE_HELPER_X86
1445	select CRYPTO_SERPENT
1446	select CRYPTO_SIMD
1447	help
1448	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1449
1450	  Keys are allowed to be from 0 to 256 bits in length, in steps
1451	  of 8 bits.
1452
1453	  This module provides Serpent cipher algorithm that processes four
1454	  blocks parallel using SSE2 instruction set.
1455
1456	  See also:
1457	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1458
1459config CRYPTO_SERPENT_AVX_X86_64
1460	tristate "Serpent cipher algorithm (x86_64/AVX)"
1461	depends on X86 && 64BIT
1462	select CRYPTO_BLKCIPHER
1463	select CRYPTO_GLUE_HELPER_X86
1464	select CRYPTO_SERPENT
1465	select CRYPTO_SIMD
1466	select CRYPTO_XTS
1467	help
1468	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1469
1470	  Keys are allowed to be from 0 to 256 bits in length, in steps
1471	  of 8 bits.
1472
1473	  This module provides the Serpent cipher algorithm that processes
1474	  eight blocks parallel using the AVX instruction set.
1475
1476	  See also:
1477	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1478
1479config CRYPTO_SERPENT_AVX2_X86_64
1480	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1481	depends on X86 && 64BIT
1482	select CRYPTO_SERPENT_AVX_X86_64
1483	help
1484	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1485
1486	  Keys are allowed to be from 0 to 256 bits in length, in steps
1487	  of 8 bits.
1488
1489	  This module provides Serpent cipher algorithm that processes 16
1490	  blocks parallel using AVX2 instruction set.
1491
1492	  See also:
1493	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1494
1495config CRYPTO_SM4
1496	tristate "SM4 cipher algorithm"
1497	select CRYPTO_ALGAPI
1498	help
1499	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1500
1501	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1502	  Organization of State Commercial Administration of China (OSCCA)
1503	  as an authorized cryptographic algorithms for the use within China.
1504
1505	  SMS4 was originally created for use in protecting wireless
1506	  networks, and is mandated in the Chinese National Standard for
1507	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1508	  (GB.15629.11-2003).
1509
1510	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1511	  standardized through TC 260 of the Standardization Administration
1512	  of the People's Republic of China (SAC).
1513
1514	  The input, output, and key of SMS4 are each 128 bits.
1515
1516	  See also: <https://eprint.iacr.org/2008/329.pdf>
1517
1518	  If unsure, say N.
1519
1520config CRYPTO_SPECK
1521	tristate "Speck cipher algorithm"
1522	select CRYPTO_ALGAPI
1523	help
1524	  Speck is a lightweight block cipher that is tuned for optimal
1525	  performance in software (rather than hardware).
1526
1527	  Speck may not be as secure as AES, and should only be used on systems
1528	  where AES is not fast enough.
1529
1530	  See also: <https://eprint.iacr.org/2013/404.pdf>
1531
1532	  If unsure, say N.
1533
1534config CRYPTO_TEA
1535	tristate "TEA, XTEA and XETA cipher algorithms"
1536	select CRYPTO_ALGAPI
1537	help
1538	  TEA cipher algorithm.
1539
1540	  Tiny Encryption Algorithm is a simple cipher that uses
1541	  many rounds for security.  It is very fast and uses
1542	  little memory.
1543
1544	  Xtendend Tiny Encryption Algorithm is a modification to
1545	  the TEA algorithm to address a potential key weakness
1546	  in the TEA algorithm.
1547
1548	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1549	  of the XTEA algorithm for compatibility purposes.
1550
1551config CRYPTO_TWOFISH
1552	tristate "Twofish cipher algorithm"
1553	select CRYPTO_ALGAPI
1554	select CRYPTO_TWOFISH_COMMON
1555	help
1556	  Twofish cipher algorithm.
1557
1558	  Twofish was submitted as an AES (Advanced Encryption Standard)
1559	  candidate cipher by researchers at CounterPane Systems.  It is a
1560	  16 round block cipher supporting key sizes of 128, 192, and 256
1561	  bits.
1562
1563	  See also:
1564	  <http://www.schneier.com/twofish.html>
1565
1566config CRYPTO_TWOFISH_COMMON
1567	tristate
1568	help
1569	  Common parts of the Twofish cipher algorithm shared by the
1570	  generic c and the assembler implementations.
1571
1572config CRYPTO_TWOFISH_586
1573	tristate "Twofish cipher algorithms (i586)"
1574	depends on (X86 || UML_X86) && !64BIT
1575	select CRYPTO_ALGAPI
1576	select CRYPTO_TWOFISH_COMMON
1577	help
1578	  Twofish cipher algorithm.
1579
1580	  Twofish was submitted as an AES (Advanced Encryption Standard)
1581	  candidate cipher by researchers at CounterPane Systems.  It is a
1582	  16 round block cipher supporting key sizes of 128, 192, and 256
1583	  bits.
1584
1585	  See also:
1586	  <http://www.schneier.com/twofish.html>
1587
1588config CRYPTO_TWOFISH_X86_64
1589	tristate "Twofish cipher algorithm (x86_64)"
1590	depends on (X86 || UML_X86) && 64BIT
1591	select CRYPTO_ALGAPI
1592	select CRYPTO_TWOFISH_COMMON
1593	help
1594	  Twofish cipher algorithm (x86_64).
1595
1596	  Twofish was submitted as an AES (Advanced Encryption Standard)
1597	  candidate cipher by researchers at CounterPane Systems.  It is a
1598	  16 round block cipher supporting key sizes of 128, 192, and 256
1599	  bits.
1600
1601	  See also:
1602	  <http://www.schneier.com/twofish.html>
1603
1604config CRYPTO_TWOFISH_X86_64_3WAY
1605	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1606	depends on X86 && 64BIT
1607	select CRYPTO_BLKCIPHER
1608	select CRYPTO_TWOFISH_COMMON
1609	select CRYPTO_TWOFISH_X86_64
1610	select CRYPTO_GLUE_HELPER_X86
1611	help
1612	  Twofish cipher algorithm (x86_64, 3-way parallel).
1613
1614	  Twofish was submitted as an AES (Advanced Encryption Standard)
1615	  candidate cipher by researchers at CounterPane Systems.  It is a
1616	  16 round block cipher supporting key sizes of 128, 192, and 256
1617	  bits.
1618
1619	  This module provides Twofish cipher algorithm that processes three
1620	  blocks parallel, utilizing resources of out-of-order CPUs better.
1621
1622	  See also:
1623	  <http://www.schneier.com/twofish.html>
1624
1625config CRYPTO_TWOFISH_AVX_X86_64
1626	tristate "Twofish cipher algorithm (x86_64/AVX)"
1627	depends on X86 && 64BIT
1628	select CRYPTO_BLKCIPHER
1629	select CRYPTO_GLUE_HELPER_X86
1630	select CRYPTO_SIMD
1631	select CRYPTO_TWOFISH_COMMON
1632	select CRYPTO_TWOFISH_X86_64
1633	select CRYPTO_TWOFISH_X86_64_3WAY
1634	help
1635	  Twofish cipher algorithm (x86_64/AVX).
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  This module provides the Twofish cipher algorithm that processes
1643	  eight blocks parallel using the AVX Instruction Set.
1644
1645	  See also:
1646	  <http://www.schneier.com/twofish.html>
1647
1648comment "Compression"
1649
1650config CRYPTO_DEFLATE
1651	tristate "Deflate compression algorithm"
1652	select CRYPTO_ALGAPI
1653	select CRYPTO_ACOMP2
1654	select ZLIB_INFLATE
1655	select ZLIB_DEFLATE
1656	help
1657	  This is the Deflate algorithm (RFC1951), specified for use in
1658	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1659
1660	  You will most probably want this if using IPSec.
1661
1662config CRYPTO_LZO
1663	tristate "LZO compression algorithm"
1664	select CRYPTO_ALGAPI
1665	select CRYPTO_ACOMP2
1666	select LZO_COMPRESS
1667	select LZO_DECOMPRESS
1668	help
1669	  This is the LZO algorithm.
1670
1671config CRYPTO_842
1672	tristate "842 compression algorithm"
1673	select CRYPTO_ALGAPI
1674	select CRYPTO_ACOMP2
1675	select 842_COMPRESS
1676	select 842_DECOMPRESS
1677	help
1678	  This is the 842 algorithm.
1679
1680config CRYPTO_LZ4
1681	tristate "LZ4 compression algorithm"
1682	select CRYPTO_ALGAPI
1683	select CRYPTO_ACOMP2
1684	select LZ4_COMPRESS
1685	select LZ4_DECOMPRESS
1686	help
1687	  This is the LZ4 algorithm.
1688
1689config CRYPTO_LZ4HC
1690	tristate "LZ4HC compression algorithm"
1691	select CRYPTO_ALGAPI
1692	select CRYPTO_ACOMP2
1693	select LZ4HC_COMPRESS
1694	select LZ4_DECOMPRESS
1695	help
1696	  This is the LZ4 high compression mode algorithm.
1697
1698comment "Random Number Generation"
1699
1700config CRYPTO_ANSI_CPRNG
1701	tristate "Pseudo Random Number Generation for Cryptographic modules"
1702	select CRYPTO_AES
1703	select CRYPTO_RNG
1704	help
1705	  This option enables the generic pseudo random number generator
1706	  for cryptographic modules.  Uses the Algorithm specified in
1707	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1708	  CRYPTO_FIPS is selected
1709
1710menuconfig CRYPTO_DRBG_MENU
1711	tristate "NIST SP800-90A DRBG"
1712	help
1713	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1714	  more of the DRBG types must be selected.
1715
1716if CRYPTO_DRBG_MENU
1717
1718config CRYPTO_DRBG_HMAC
1719	bool
1720	default y
1721	select CRYPTO_HMAC
1722	select CRYPTO_SHA256
1723
1724config CRYPTO_DRBG_HASH
1725	bool "Enable Hash DRBG"
1726	select CRYPTO_SHA256
1727	help
1728	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1729
1730config CRYPTO_DRBG_CTR
1731	bool "Enable CTR DRBG"
1732	select CRYPTO_AES
1733	depends on CRYPTO_CTR
1734	help
1735	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1736
1737config CRYPTO_DRBG
1738	tristate
1739	default CRYPTO_DRBG_MENU
1740	select CRYPTO_RNG
1741	select CRYPTO_JITTERENTROPY
1742
1743endif	# if CRYPTO_DRBG_MENU
1744
1745config CRYPTO_JITTERENTROPY
1746	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1747	select CRYPTO_RNG
1748	help
1749	  The Jitterentropy RNG is a noise that is intended
1750	  to provide seed to another RNG. The RNG does not
1751	  perform any cryptographic whitening of the generated
1752	  random numbers. This Jitterentropy RNG registers with
1753	  the kernel crypto API and can be used by any caller.
1754
1755config CRYPTO_USER_API
1756	tristate
1757
1758config CRYPTO_USER_API_HASH
1759	tristate "User-space interface for hash algorithms"
1760	depends on NET
1761	select CRYPTO_HASH
1762	select CRYPTO_USER_API
1763	help
1764	  This option enables the user-spaces interface for hash
1765	  algorithms.
1766
1767config CRYPTO_USER_API_SKCIPHER
1768	tristate "User-space interface for symmetric key cipher algorithms"
1769	depends on NET
1770	select CRYPTO_BLKCIPHER
1771	select CRYPTO_USER_API
1772	help
1773	  This option enables the user-spaces interface for symmetric
1774	  key cipher algorithms.
1775
1776config CRYPTO_USER_API_RNG
1777	tristate "User-space interface for random number generator algorithms"
1778	depends on NET
1779	select CRYPTO_RNG
1780	select CRYPTO_USER_API
1781	help
1782	  This option enables the user-spaces interface for random
1783	  number generator algorithms.
1784
1785config CRYPTO_USER_API_AEAD
1786	tristate "User-space interface for AEAD cipher algorithms"
1787	depends on NET
1788	select CRYPTO_AEAD
1789	select CRYPTO_BLKCIPHER
1790	select CRYPTO_NULL
1791	select CRYPTO_USER_API
1792	help
1793	  This option enables the user-spaces interface for AEAD
1794	  cipher algorithms.
1795
1796config CRYPTO_HASH_INFO
1797	bool
1798
1799source "drivers/crypto/Kconfig"
1800source crypto/asymmetric_keys/Kconfig
1801source certs/Kconfig
1802
1803endif	# if CRYPTO
1804