1# 2# Generic algorithms support 3# 4config XOR_BLOCKS 5 tristate 6 7# 8# async_tx api: hardware offloaded memory transfer/transform support 9# 10source "crypto/async_tx/Kconfig" 11 12# 13# Cryptographic API Configuration 14# 15menuconfig CRYPTO 16 tristate "Cryptographic API" 17 help 18 This option provides the core Cryptographic API. 19 20if CRYPTO 21 22comment "Crypto core or helper" 23 24config CRYPTO_FIPS 25 bool "FIPS 200 compliance" 26 depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS 27 help 28 This options enables the fips boot option which is 29 required if you want to system to operate in a FIPS 200 30 certification. You should say no unless you know what 31 this is. 32 33config CRYPTO_ALGAPI 34 tristate 35 select CRYPTO_ALGAPI2 36 help 37 This option provides the API for cryptographic algorithms. 38 39config CRYPTO_ALGAPI2 40 tristate 41 42config CRYPTO_AEAD 43 tristate 44 select CRYPTO_AEAD2 45 select CRYPTO_ALGAPI 46 47config CRYPTO_AEAD2 48 tristate 49 select CRYPTO_ALGAPI2 50 51config CRYPTO_BLKCIPHER 52 tristate 53 select CRYPTO_BLKCIPHER2 54 select CRYPTO_ALGAPI 55 56config CRYPTO_BLKCIPHER2 57 tristate 58 select CRYPTO_ALGAPI2 59 select CRYPTO_RNG2 60 select CRYPTO_WORKQUEUE 61 62config CRYPTO_HASH 63 tristate 64 select CRYPTO_HASH2 65 select CRYPTO_ALGAPI 66 67config CRYPTO_HASH2 68 tristate 69 select CRYPTO_ALGAPI2 70 71config CRYPTO_RNG 72 tristate 73 select CRYPTO_RNG2 74 select CRYPTO_ALGAPI 75 76config CRYPTO_RNG2 77 tristate 78 select CRYPTO_ALGAPI2 79 80config CRYPTO_PCOMP 81 tristate 82 select CRYPTO_PCOMP2 83 select CRYPTO_ALGAPI 84 85config CRYPTO_PCOMP2 86 tristate 87 select CRYPTO_ALGAPI2 88 89config CRYPTO_MANAGER 90 tristate "Cryptographic algorithm manager" 91 select CRYPTO_MANAGER2 92 help 93 Create default cryptographic template instantiations such as 94 cbc(aes). 95 96config CRYPTO_MANAGER2 97 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 98 select CRYPTO_AEAD2 99 select CRYPTO_HASH2 100 select CRYPTO_BLKCIPHER2 101 select CRYPTO_PCOMP2 102 103config CRYPTO_USER 104 tristate "Userspace cryptographic algorithm configuration" 105 depends on NET 106 select CRYPTO_MANAGER 107 help 108 Userspace configuration for cryptographic instantiations such as 109 cbc(aes). 110 111config CRYPTO_MANAGER_DISABLE_TESTS 112 bool "Disable run-time self tests" 113 default y 114 depends on CRYPTO_MANAGER2 115 help 116 Disable run-time self tests that normally take place at 117 algorithm registration. 118 119config CRYPTO_GF128MUL 120 tristate "GF(2^128) multiplication functions" 121 help 122 Efficient table driven implementation of multiplications in the 123 field GF(2^128). This is needed by some cypher modes. This 124 option will be selected automatically if you select such a 125 cipher mode. Only select this option by hand if you expect to load 126 an external module that requires these functions. 127 128config CRYPTO_NULL 129 tristate "Null algorithms" 130 select CRYPTO_ALGAPI 131 select CRYPTO_BLKCIPHER 132 select CRYPTO_HASH 133 help 134 These are 'Null' algorithms, used by IPsec, which do nothing. 135 136config CRYPTO_PCRYPT 137 tristate "Parallel crypto engine" 138 depends on SMP 139 select PADATA 140 select CRYPTO_MANAGER 141 select CRYPTO_AEAD 142 help 143 This converts an arbitrary crypto algorithm into a parallel 144 algorithm that executes in kernel threads. 145 146config CRYPTO_WORKQUEUE 147 tristate 148 149config CRYPTO_CRYPTD 150 tristate "Software async crypto daemon" 151 select CRYPTO_BLKCIPHER 152 select CRYPTO_HASH 153 select CRYPTO_MANAGER 154 select CRYPTO_WORKQUEUE 155 help 156 This is a generic software asynchronous crypto daemon that 157 converts an arbitrary synchronous software crypto algorithm 158 into an asynchronous algorithm that executes in a kernel thread. 159 160config CRYPTO_AUTHENC 161 tristate "Authenc support" 162 select CRYPTO_AEAD 163 select CRYPTO_BLKCIPHER 164 select CRYPTO_MANAGER 165 select CRYPTO_HASH 166 help 167 Authenc: Combined mode wrapper for IPsec. 168 This is required for IPSec. 169 170config CRYPTO_TEST 171 tristate "Testing module" 172 depends on m 173 select CRYPTO_MANAGER 174 help 175 Quick & dirty crypto test module. 176 177config CRYPTO_ABLK_HELPER_X86 178 tristate 179 depends on X86 180 select CRYPTO_CRYPTD 181 182config CRYPTO_GLUE_HELPER_X86 183 tristate 184 depends on X86 185 select CRYPTO_ALGAPI 186 187comment "Authenticated Encryption with Associated Data" 188 189config CRYPTO_CCM 190 tristate "CCM support" 191 select CRYPTO_CTR 192 select CRYPTO_AEAD 193 help 194 Support for Counter with CBC MAC. Required for IPsec. 195 196config CRYPTO_GCM 197 tristate "GCM/GMAC support" 198 select CRYPTO_CTR 199 select CRYPTO_AEAD 200 select CRYPTO_GHASH 201 select CRYPTO_NULL 202 help 203 Support for Galois/Counter Mode (GCM) and Galois Message 204 Authentication Code (GMAC). Required for IPSec. 205 206config CRYPTO_SEQIV 207 tristate "Sequence Number IV Generator" 208 select CRYPTO_AEAD 209 select CRYPTO_BLKCIPHER 210 select CRYPTO_RNG 211 help 212 This IV generator generates an IV based on a sequence number by 213 xoring it with a salt. This algorithm is mainly useful for CTR 214 215comment "Block modes" 216 217config CRYPTO_CBC 218 tristate "CBC support" 219 select CRYPTO_BLKCIPHER 220 select CRYPTO_MANAGER 221 help 222 CBC: Cipher Block Chaining mode 223 This block cipher algorithm is required for IPSec. 224 225config CRYPTO_CTR 226 tristate "CTR support" 227 select CRYPTO_BLKCIPHER 228 select CRYPTO_SEQIV 229 select CRYPTO_MANAGER 230 help 231 CTR: Counter mode 232 This block cipher algorithm is required for IPSec. 233 234config CRYPTO_CTS 235 tristate "CTS support" 236 select CRYPTO_BLKCIPHER 237 help 238 CTS: Cipher Text Stealing 239 This is the Cipher Text Stealing mode as described by 240 Section 8 of rfc2040 and referenced by rfc3962. 241 (rfc3962 includes errata information in its Appendix A) 242 This mode is required for Kerberos gss mechanism support 243 for AES encryption. 244 245config CRYPTO_ECB 246 tristate "ECB support" 247 select CRYPTO_BLKCIPHER 248 select CRYPTO_MANAGER 249 help 250 ECB: Electronic CodeBook mode 251 This is the simplest block cipher algorithm. It simply encrypts 252 the input block by block. 253 254config CRYPTO_LRW 255 tristate "LRW support" 256 select CRYPTO_BLKCIPHER 257 select CRYPTO_MANAGER 258 select CRYPTO_GF128MUL 259 help 260 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 261 narrow block cipher mode for dm-crypt. Use it with cipher 262 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 263 The first 128, 192 or 256 bits in the key are used for AES and the 264 rest is used to tie each cipher block to its logical position. 265 266config CRYPTO_PCBC 267 tristate "PCBC support" 268 select CRYPTO_BLKCIPHER 269 select CRYPTO_MANAGER 270 help 271 PCBC: Propagating Cipher Block Chaining mode 272 This block cipher algorithm is required for RxRPC. 273 274config CRYPTO_XTS 275 tristate "XTS support" 276 select CRYPTO_BLKCIPHER 277 select CRYPTO_MANAGER 278 select CRYPTO_GF128MUL 279 help 280 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 281 key size 256, 384 or 512 bits. This implementation currently 282 can't handle a sectorsize which is not a multiple of 16 bytes. 283 284comment "Hash modes" 285 286config CRYPTO_CMAC 287 tristate "CMAC support" 288 select CRYPTO_HASH 289 select CRYPTO_MANAGER 290 help 291 Cipher-based Message Authentication Code (CMAC) specified by 292 The National Institute of Standards and Technology (NIST). 293 294 https://tools.ietf.org/html/rfc4493 295 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 296 297config CRYPTO_HMAC 298 tristate "HMAC support" 299 select CRYPTO_HASH 300 select CRYPTO_MANAGER 301 help 302 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 303 This is required for IPSec. 304 305config CRYPTO_XCBC 306 tristate "XCBC support" 307 select CRYPTO_HASH 308 select CRYPTO_MANAGER 309 help 310 XCBC: Keyed-Hashing with encryption algorithm 311 http://www.ietf.org/rfc/rfc3566.txt 312 http://csrc.nist.gov/encryption/modes/proposedmodes/ 313 xcbc-mac/xcbc-mac-spec.pdf 314 315config CRYPTO_VMAC 316 tristate "VMAC support" 317 select CRYPTO_HASH 318 select CRYPTO_MANAGER 319 help 320 VMAC is a message authentication algorithm designed for 321 very high speed on 64-bit architectures. 322 323 See also: 324 <http://fastcrypto.org/vmac> 325 326comment "Digest" 327 328config CRYPTO_CRC32C 329 tristate "CRC32c CRC algorithm" 330 select CRYPTO_HASH 331 select CRC32 332 help 333 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 334 by iSCSI for header and data digests and by others. 335 See Castagnoli93. Module will be crc32c. 336 337config CRYPTO_CRC32C_INTEL 338 tristate "CRC32c INTEL hardware acceleration" 339 depends on X86 340 select CRYPTO_HASH 341 help 342 In Intel processor with SSE4.2 supported, the processor will 343 support CRC32C implementation using hardware accelerated CRC32 344 instruction. This option will create 'crc32c-intel' module, 345 which will enable any routine to use the CRC32 instruction to 346 gain performance compared with software implementation. 347 Module will be crc32c-intel. 348 349config CRYPTO_CRC32C_SPARC64 350 tristate "CRC32c CRC algorithm (SPARC64)" 351 depends on SPARC64 352 select CRYPTO_HASH 353 select CRC32 354 help 355 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 356 when available. 357 358config CRYPTO_CRC32 359 tristate "CRC32 CRC algorithm" 360 select CRYPTO_HASH 361 select CRC32 362 help 363 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 364 Shash crypto api wrappers to crc32_le function. 365 366config CRYPTO_CRC32_PCLMUL 367 tristate "CRC32 PCLMULQDQ hardware acceleration" 368 depends on X86 369 select CRYPTO_HASH 370 select CRC32 371 help 372 From Intel Westmere and AMD Bulldozer processor with SSE4.2 373 and PCLMULQDQ supported, the processor will support 374 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 375 instruction. This option will create 'crc32-plcmul' module, 376 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 377 and gain better performance as compared with the table implementation. 378 379config CRYPTO_CRCT10DIF 380 tristate "CRCT10DIF algorithm" 381 select CRYPTO_HASH 382 help 383 CRC T10 Data Integrity Field computation is being cast as 384 a crypto transform. This allows for faster crc t10 diff 385 transforms to be used if they are available. 386 387config CRYPTO_CRCT10DIF_PCLMUL 388 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 389 depends on X86 && 64BIT && CRC_T10DIF 390 select CRYPTO_HASH 391 help 392 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 393 CRC T10 DIF PCLMULQDQ computation can be hardware 394 accelerated PCLMULQDQ instruction. This option will create 395 'crct10dif-plcmul' module, which is faster when computing the 396 crct10dif checksum as compared with the generic table implementation. 397 398config CRYPTO_GHASH 399 tristate "GHASH digest algorithm" 400 select CRYPTO_GF128MUL 401 help 402 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 403 404config CRYPTO_MD4 405 tristate "MD4 digest algorithm" 406 select CRYPTO_HASH 407 help 408 MD4 message digest algorithm (RFC1320). 409 410config CRYPTO_MD5 411 tristate "MD5 digest algorithm" 412 select CRYPTO_HASH 413 help 414 MD5 message digest algorithm (RFC1321). 415 416config CRYPTO_MD5_SPARC64 417 tristate "MD5 digest algorithm (SPARC64)" 418 depends on SPARC64 419 select CRYPTO_MD5 420 select CRYPTO_HASH 421 help 422 MD5 message digest algorithm (RFC1321) implemented 423 using sparc64 crypto instructions, when available. 424 425config CRYPTO_MICHAEL_MIC 426 tristate "Michael MIC keyed digest algorithm" 427 select CRYPTO_HASH 428 help 429 Michael MIC is used for message integrity protection in TKIP 430 (IEEE 802.11i). This algorithm is required for TKIP, but it 431 should not be used for other purposes because of the weakness 432 of the algorithm. 433 434config CRYPTO_RMD128 435 tristate "RIPEMD-128 digest algorithm" 436 select CRYPTO_HASH 437 help 438 RIPEMD-128 (ISO/IEC 10118-3:2004). 439 440 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 441 be used as a secure replacement for RIPEMD. For other use cases, 442 RIPEMD-160 should be used. 443 444 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 445 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 446 447config CRYPTO_RMD160 448 tristate "RIPEMD-160 digest algorithm" 449 select CRYPTO_HASH 450 help 451 RIPEMD-160 (ISO/IEC 10118-3:2004). 452 453 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 454 to be used as a secure replacement for the 128-bit hash functions 455 MD4, MD5 and it's predecessor RIPEMD 456 (not to be confused with RIPEMD-128). 457 458 It's speed is comparable to SHA1 and there are no known attacks 459 against RIPEMD-160. 460 461 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 462 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 463 464config CRYPTO_RMD256 465 tristate "RIPEMD-256 digest algorithm" 466 select CRYPTO_HASH 467 help 468 RIPEMD-256 is an optional extension of RIPEMD-128 with a 469 256 bit hash. It is intended for applications that require 470 longer hash-results, without needing a larger security level 471 (than RIPEMD-128). 472 473 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 474 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 475 476config CRYPTO_RMD320 477 tristate "RIPEMD-320 digest algorithm" 478 select CRYPTO_HASH 479 help 480 RIPEMD-320 is an optional extension of RIPEMD-160 with a 481 320 bit hash. It is intended for applications that require 482 longer hash-results, without needing a larger security level 483 (than RIPEMD-160). 484 485 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 486 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 487 488config CRYPTO_SHA1 489 tristate "SHA1 digest algorithm" 490 select CRYPTO_HASH 491 help 492 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 493 494config CRYPTO_SHA1_SSSE3 495 tristate "SHA1 digest algorithm (SSSE3/AVX)" 496 depends on X86 && 64BIT 497 select CRYPTO_SHA1 498 select CRYPTO_HASH 499 help 500 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 501 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 502 Extensions (AVX), when available. 503 504config CRYPTO_SHA256_SSSE3 505 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)" 506 depends on X86 && 64BIT 507 select CRYPTO_SHA256 508 select CRYPTO_HASH 509 help 510 SHA-256 secure hash standard (DFIPS 180-2) implemented 511 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 512 Extensions version 1 (AVX1), or Advanced Vector Extensions 513 version 2 (AVX2) instructions, when available. 514 515config CRYPTO_SHA512_SSSE3 516 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 517 depends on X86 && 64BIT 518 select CRYPTO_SHA512 519 select CRYPTO_HASH 520 help 521 SHA-512 secure hash standard (DFIPS 180-2) implemented 522 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 523 Extensions version 1 (AVX1), or Advanced Vector Extensions 524 version 2 (AVX2) instructions, when available. 525 526config CRYPTO_SHA1_SPARC64 527 tristate "SHA1 digest algorithm (SPARC64)" 528 depends on SPARC64 529 select CRYPTO_SHA1 530 select CRYPTO_HASH 531 help 532 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 533 using sparc64 crypto instructions, when available. 534 535config CRYPTO_SHA1_ARM 536 tristate "SHA1 digest algorithm (ARM-asm)" 537 depends on ARM 538 select CRYPTO_SHA1 539 select CRYPTO_HASH 540 help 541 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 542 using optimized ARM assembler. 543 544config CRYPTO_SHA1_PPC 545 tristate "SHA1 digest algorithm (powerpc)" 546 depends on PPC 547 help 548 This is the powerpc hardware accelerated implementation of the 549 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 550 551config CRYPTO_SHA256 552 tristate "SHA224 and SHA256 digest algorithm" 553 select CRYPTO_HASH 554 help 555 SHA256 secure hash standard (DFIPS 180-2). 556 557 This version of SHA implements a 256 bit hash with 128 bits of 558 security against collision attacks. 559 560 This code also includes SHA-224, a 224 bit hash with 112 bits 561 of security against collision attacks. 562 563config CRYPTO_SHA256_SPARC64 564 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 565 depends on SPARC64 566 select CRYPTO_SHA256 567 select CRYPTO_HASH 568 help 569 SHA-256 secure hash standard (DFIPS 180-2) implemented 570 using sparc64 crypto instructions, when available. 571 572config CRYPTO_SHA512 573 tristate "SHA384 and SHA512 digest algorithms" 574 select CRYPTO_HASH 575 help 576 SHA512 secure hash standard (DFIPS 180-2). 577 578 This version of SHA implements a 512 bit hash with 256 bits of 579 security against collision attacks. 580 581 This code also includes SHA-384, a 384 bit hash with 192 bits 582 of security against collision attacks. 583 584config CRYPTO_SHA512_SPARC64 585 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 586 depends on SPARC64 587 select CRYPTO_SHA512 588 select CRYPTO_HASH 589 help 590 SHA-512 secure hash standard (DFIPS 180-2) implemented 591 using sparc64 crypto instructions, when available. 592 593config CRYPTO_TGR192 594 tristate "Tiger digest algorithms" 595 select CRYPTO_HASH 596 help 597 Tiger hash algorithm 192, 160 and 128-bit hashes 598 599 Tiger is a hash function optimized for 64-bit processors while 600 still having decent performance on 32-bit processors. 601 Tiger was developed by Ross Anderson and Eli Biham. 602 603 See also: 604 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 605 606config CRYPTO_WP512 607 tristate "Whirlpool digest algorithms" 608 select CRYPTO_HASH 609 help 610 Whirlpool hash algorithm 512, 384 and 256-bit hashes 611 612 Whirlpool-512 is part of the NESSIE cryptographic primitives. 613 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 614 615 See also: 616 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 617 618config CRYPTO_GHASH_CLMUL_NI_INTEL 619 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 620 depends on X86 && 64BIT 621 select CRYPTO_CRYPTD 622 help 623 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 624 The implementation is accelerated by CLMUL-NI of Intel. 625 626comment "Ciphers" 627 628config CRYPTO_AES 629 tristate "AES cipher algorithms" 630 select CRYPTO_ALGAPI 631 help 632 AES cipher algorithms (FIPS-197). AES uses the Rijndael 633 algorithm. 634 635 Rijndael appears to be consistently a very good performer in 636 both hardware and software across a wide range of computing 637 environments regardless of its use in feedback or non-feedback 638 modes. Its key setup time is excellent, and its key agility is 639 good. Rijndael's very low memory requirements make it very well 640 suited for restricted-space environments, in which it also 641 demonstrates excellent performance. Rijndael's operations are 642 among the easiest to defend against power and timing attacks. 643 644 The AES specifies three key sizes: 128, 192 and 256 bits 645 646 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 647 648config CRYPTO_AES_586 649 tristate "AES cipher algorithms (i586)" 650 depends on (X86 || UML_X86) && !64BIT 651 select CRYPTO_ALGAPI 652 select CRYPTO_AES 653 help 654 AES cipher algorithms (FIPS-197). AES uses the Rijndael 655 algorithm. 656 657 Rijndael appears to be consistently a very good performer in 658 both hardware and software across a wide range of computing 659 environments regardless of its use in feedback or non-feedback 660 modes. Its key setup time is excellent, and its key agility is 661 good. Rijndael's very low memory requirements make it very well 662 suited for restricted-space environments, in which it also 663 demonstrates excellent performance. Rijndael's operations are 664 among the easiest to defend against power and timing attacks. 665 666 The AES specifies three key sizes: 128, 192 and 256 bits 667 668 See <http://csrc.nist.gov/encryption/aes/> for more information. 669 670config CRYPTO_AES_X86_64 671 tristate "AES cipher algorithms (x86_64)" 672 depends on (X86 || UML_X86) && 64BIT 673 select CRYPTO_ALGAPI 674 select CRYPTO_AES 675 help 676 AES cipher algorithms (FIPS-197). AES uses the Rijndael 677 algorithm. 678 679 Rijndael appears to be consistently a very good performer in 680 both hardware and software across a wide range of computing 681 environments regardless of its use in feedback or non-feedback 682 modes. Its key setup time is excellent, and its key agility is 683 good. Rijndael's very low memory requirements make it very well 684 suited for restricted-space environments, in which it also 685 demonstrates excellent performance. Rijndael's operations are 686 among the easiest to defend against power and timing attacks. 687 688 The AES specifies three key sizes: 128, 192 and 256 bits 689 690 See <http://csrc.nist.gov/encryption/aes/> for more information. 691 692config CRYPTO_AES_NI_INTEL 693 tristate "AES cipher algorithms (AES-NI)" 694 depends on X86 695 select CRYPTO_AES_X86_64 if 64BIT 696 select CRYPTO_AES_586 if !64BIT 697 select CRYPTO_CRYPTD 698 select CRYPTO_ABLK_HELPER_X86 699 select CRYPTO_ALGAPI 700 select CRYPTO_GLUE_HELPER_X86 if 64BIT 701 select CRYPTO_LRW 702 select CRYPTO_XTS 703 help 704 Use Intel AES-NI instructions for AES algorithm. 705 706 AES cipher algorithms (FIPS-197). AES uses the Rijndael 707 algorithm. 708 709 Rijndael appears to be consistently a very good performer in 710 both hardware and software across a wide range of computing 711 environments regardless of its use in feedback or non-feedback 712 modes. Its key setup time is excellent, and its key agility is 713 good. Rijndael's very low memory requirements make it very well 714 suited for restricted-space environments, in which it also 715 demonstrates excellent performance. Rijndael's operations are 716 among the easiest to defend against power and timing attacks. 717 718 The AES specifies three key sizes: 128, 192 and 256 bits 719 720 See <http://csrc.nist.gov/encryption/aes/> for more information. 721 722 In addition to AES cipher algorithm support, the acceleration 723 for some popular block cipher mode is supported too, including 724 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 725 acceleration for CTR. 726 727config CRYPTO_AES_SPARC64 728 tristate "AES cipher algorithms (SPARC64)" 729 depends on SPARC64 730 select CRYPTO_CRYPTD 731 select CRYPTO_ALGAPI 732 help 733 Use SPARC64 crypto opcodes for AES algorithm. 734 735 AES cipher algorithms (FIPS-197). AES uses the Rijndael 736 algorithm. 737 738 Rijndael appears to be consistently a very good performer in 739 both hardware and software across a wide range of computing 740 environments regardless of its use in feedback or non-feedback 741 modes. Its key setup time is excellent, and its key agility is 742 good. Rijndael's very low memory requirements make it very well 743 suited for restricted-space environments, in which it also 744 demonstrates excellent performance. Rijndael's operations are 745 among the easiest to defend against power and timing attacks. 746 747 The AES specifies three key sizes: 128, 192 and 256 bits 748 749 See <http://csrc.nist.gov/encryption/aes/> for more information. 750 751 In addition to AES cipher algorithm support, the acceleration 752 for some popular block cipher mode is supported too, including 753 ECB and CBC. 754 755config CRYPTO_AES_ARM 756 tristate "AES cipher algorithms (ARM-asm)" 757 depends on ARM 758 select CRYPTO_ALGAPI 759 select CRYPTO_AES 760 help 761 Use optimized AES assembler routines for ARM platforms. 762 763 AES cipher algorithms (FIPS-197). AES uses the Rijndael 764 algorithm. 765 766 Rijndael appears to be consistently a very good performer in 767 both hardware and software across a wide range of computing 768 environments regardless of its use in feedback or non-feedback 769 modes. Its key setup time is excellent, and its key agility is 770 good. Rijndael's very low memory requirements make it very well 771 suited for restricted-space environments, in which it also 772 demonstrates excellent performance. Rijndael's operations are 773 among the easiest to defend against power and timing attacks. 774 775 The AES specifies three key sizes: 128, 192 and 256 bits 776 777 See <http://csrc.nist.gov/encryption/aes/> for more information. 778 779config CRYPTO_ANUBIS 780 tristate "Anubis cipher algorithm" 781 select CRYPTO_ALGAPI 782 help 783 Anubis cipher algorithm. 784 785 Anubis is a variable key length cipher which can use keys from 786 128 bits to 320 bits in length. It was evaluated as a entrant 787 in the NESSIE competition. 788 789 See also: 790 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 791 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 792 793config CRYPTO_ARC4 794 tristate "ARC4 cipher algorithm" 795 select CRYPTO_BLKCIPHER 796 help 797 ARC4 cipher algorithm. 798 799 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 800 bits in length. This algorithm is required for driver-based 801 WEP, but it should not be for other purposes because of the 802 weakness of the algorithm. 803 804config CRYPTO_BLOWFISH 805 tristate "Blowfish cipher algorithm" 806 select CRYPTO_ALGAPI 807 select CRYPTO_BLOWFISH_COMMON 808 help 809 Blowfish cipher algorithm, by Bruce Schneier. 810 811 This is a variable key length cipher which can use keys from 32 812 bits to 448 bits in length. It's fast, simple and specifically 813 designed for use on "large microprocessors". 814 815 See also: 816 <http://www.schneier.com/blowfish.html> 817 818config CRYPTO_BLOWFISH_COMMON 819 tristate 820 help 821 Common parts of the Blowfish cipher algorithm shared by the 822 generic c and the assembler implementations. 823 824 See also: 825 <http://www.schneier.com/blowfish.html> 826 827config CRYPTO_BLOWFISH_X86_64 828 tristate "Blowfish cipher algorithm (x86_64)" 829 depends on X86 && 64BIT 830 select CRYPTO_ALGAPI 831 select CRYPTO_BLOWFISH_COMMON 832 help 833 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 834 835 This is a variable key length cipher which can use keys from 32 836 bits to 448 bits in length. It's fast, simple and specifically 837 designed for use on "large microprocessors". 838 839 See also: 840 <http://www.schneier.com/blowfish.html> 841 842config CRYPTO_CAMELLIA 843 tristate "Camellia cipher algorithms" 844 depends on CRYPTO 845 select CRYPTO_ALGAPI 846 help 847 Camellia cipher algorithms module. 848 849 Camellia is a symmetric key block cipher developed jointly 850 at NTT and Mitsubishi Electric Corporation. 851 852 The Camellia specifies three key sizes: 128, 192 and 256 bits. 853 854 See also: 855 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 856 857config CRYPTO_CAMELLIA_X86_64 858 tristate "Camellia cipher algorithm (x86_64)" 859 depends on X86 && 64BIT 860 depends on CRYPTO 861 select CRYPTO_ALGAPI 862 select CRYPTO_GLUE_HELPER_X86 863 select CRYPTO_LRW 864 select CRYPTO_XTS 865 help 866 Camellia cipher algorithm module (x86_64). 867 868 Camellia is a symmetric key block cipher developed jointly 869 at NTT and Mitsubishi Electric Corporation. 870 871 The Camellia specifies three key sizes: 128, 192 and 256 bits. 872 873 See also: 874 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 875 876config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 877 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 878 depends on X86 && 64BIT 879 depends on CRYPTO 880 select CRYPTO_ALGAPI 881 select CRYPTO_CRYPTD 882 select CRYPTO_ABLK_HELPER_X86 883 select CRYPTO_GLUE_HELPER_X86 884 select CRYPTO_CAMELLIA_X86_64 885 select CRYPTO_LRW 886 select CRYPTO_XTS 887 help 888 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 889 890 Camellia is a symmetric key block cipher developed jointly 891 at NTT and Mitsubishi Electric Corporation. 892 893 The Camellia specifies three key sizes: 128, 192 and 256 bits. 894 895 See also: 896 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 897 898config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 899 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 900 depends on X86 && 64BIT 901 depends on CRYPTO 902 select CRYPTO_ALGAPI 903 select CRYPTO_CRYPTD 904 select CRYPTO_ABLK_HELPER_X86 905 select CRYPTO_GLUE_HELPER_X86 906 select CRYPTO_CAMELLIA_X86_64 907 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 908 select CRYPTO_LRW 909 select CRYPTO_XTS 910 help 911 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 912 913 Camellia is a symmetric key block cipher developed jointly 914 at NTT and Mitsubishi Electric Corporation. 915 916 The Camellia specifies three key sizes: 128, 192 and 256 bits. 917 918 See also: 919 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 920 921config CRYPTO_CAMELLIA_SPARC64 922 tristate "Camellia cipher algorithm (SPARC64)" 923 depends on SPARC64 924 depends on CRYPTO 925 select CRYPTO_ALGAPI 926 help 927 Camellia cipher algorithm module (SPARC64). 928 929 Camellia is a symmetric key block cipher developed jointly 930 at NTT and Mitsubishi Electric Corporation. 931 932 The Camellia specifies three key sizes: 128, 192 and 256 bits. 933 934 See also: 935 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 936 937config CRYPTO_CAST_COMMON 938 tristate 939 help 940 Common parts of the CAST cipher algorithms shared by the 941 generic c and the assembler implementations. 942 943config CRYPTO_CAST5 944 tristate "CAST5 (CAST-128) cipher algorithm" 945 select CRYPTO_ALGAPI 946 select CRYPTO_CAST_COMMON 947 help 948 The CAST5 encryption algorithm (synonymous with CAST-128) is 949 described in RFC2144. 950 951config CRYPTO_CAST5_AVX_X86_64 952 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 953 depends on X86 && 64BIT 954 select CRYPTO_ALGAPI 955 select CRYPTO_CRYPTD 956 select CRYPTO_ABLK_HELPER_X86 957 select CRYPTO_CAST_COMMON 958 select CRYPTO_CAST5 959 help 960 The CAST5 encryption algorithm (synonymous with CAST-128) is 961 described in RFC2144. 962 963 This module provides the Cast5 cipher algorithm that processes 964 sixteen blocks parallel using the AVX instruction set. 965 966config CRYPTO_CAST6 967 tristate "CAST6 (CAST-256) cipher algorithm" 968 select CRYPTO_ALGAPI 969 select CRYPTO_CAST_COMMON 970 help 971 The CAST6 encryption algorithm (synonymous with CAST-256) is 972 described in RFC2612. 973 974config CRYPTO_CAST6_AVX_X86_64 975 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 976 depends on X86 && 64BIT 977 select CRYPTO_ALGAPI 978 select CRYPTO_CRYPTD 979 select CRYPTO_ABLK_HELPER_X86 980 select CRYPTO_GLUE_HELPER_X86 981 select CRYPTO_CAST_COMMON 982 select CRYPTO_CAST6 983 select CRYPTO_LRW 984 select CRYPTO_XTS 985 help 986 The CAST6 encryption algorithm (synonymous with CAST-256) is 987 described in RFC2612. 988 989 This module provides the Cast6 cipher algorithm that processes 990 eight blocks parallel using the AVX instruction set. 991 992config CRYPTO_DES 993 tristate "DES and Triple DES EDE cipher algorithms" 994 select CRYPTO_ALGAPI 995 help 996 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 997 998config CRYPTO_DES_SPARC64 999 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1000 depends on SPARC64 1001 select CRYPTO_ALGAPI 1002 select CRYPTO_DES 1003 help 1004 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1005 optimized using SPARC64 crypto opcodes. 1006 1007config CRYPTO_FCRYPT 1008 tristate "FCrypt cipher algorithm" 1009 select CRYPTO_ALGAPI 1010 select CRYPTO_BLKCIPHER 1011 help 1012 FCrypt algorithm used by RxRPC. 1013 1014config CRYPTO_KHAZAD 1015 tristate "Khazad cipher algorithm" 1016 select CRYPTO_ALGAPI 1017 help 1018 Khazad cipher algorithm. 1019 1020 Khazad was a finalist in the initial NESSIE competition. It is 1021 an algorithm optimized for 64-bit processors with good performance 1022 on 32-bit processors. Khazad uses an 128 bit key size. 1023 1024 See also: 1025 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1026 1027config CRYPTO_SALSA20 1028 tristate "Salsa20 stream cipher algorithm" 1029 select CRYPTO_BLKCIPHER 1030 help 1031 Salsa20 stream cipher algorithm. 1032 1033 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1034 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1035 1036 The Salsa20 stream cipher algorithm is designed by Daniel J. 1037 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1038 1039config CRYPTO_SALSA20_586 1040 tristate "Salsa20 stream cipher algorithm (i586)" 1041 depends on (X86 || UML_X86) && !64BIT 1042 select CRYPTO_BLKCIPHER 1043 help 1044 Salsa20 stream cipher algorithm. 1045 1046 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1047 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1048 1049 The Salsa20 stream cipher algorithm is designed by Daniel J. 1050 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1051 1052config CRYPTO_SALSA20_X86_64 1053 tristate "Salsa20 stream cipher algorithm (x86_64)" 1054 depends on (X86 || UML_X86) && 64BIT 1055 select CRYPTO_BLKCIPHER 1056 help 1057 Salsa20 stream cipher algorithm. 1058 1059 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1060 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1061 1062 The Salsa20 stream cipher algorithm is designed by Daniel J. 1063 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1064 1065config CRYPTO_SEED 1066 tristate "SEED cipher algorithm" 1067 select CRYPTO_ALGAPI 1068 help 1069 SEED cipher algorithm (RFC4269). 1070 1071 SEED is a 128-bit symmetric key block cipher that has been 1072 developed by KISA (Korea Information Security Agency) as a 1073 national standard encryption algorithm of the Republic of Korea. 1074 It is a 16 round block cipher with the key size of 128 bit. 1075 1076 See also: 1077 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1078 1079config CRYPTO_SERPENT 1080 tristate "Serpent cipher algorithm" 1081 select CRYPTO_ALGAPI 1082 help 1083 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1084 1085 Keys are allowed to be from 0 to 256 bits in length, in steps 1086 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1087 variant of Serpent for compatibility with old kerneli.org code. 1088 1089 See also: 1090 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1091 1092config CRYPTO_SERPENT_SSE2_X86_64 1093 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1094 depends on X86 && 64BIT 1095 select CRYPTO_ALGAPI 1096 select CRYPTO_CRYPTD 1097 select CRYPTO_ABLK_HELPER_X86 1098 select CRYPTO_GLUE_HELPER_X86 1099 select CRYPTO_SERPENT 1100 select CRYPTO_LRW 1101 select CRYPTO_XTS 1102 help 1103 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1104 1105 Keys are allowed to be from 0 to 256 bits in length, in steps 1106 of 8 bits. 1107 1108 This module provides Serpent cipher algorithm that processes eigth 1109 blocks parallel using SSE2 instruction set. 1110 1111 See also: 1112 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1113 1114config CRYPTO_SERPENT_SSE2_586 1115 tristate "Serpent cipher algorithm (i586/SSE2)" 1116 depends on X86 && !64BIT 1117 select CRYPTO_ALGAPI 1118 select CRYPTO_CRYPTD 1119 select CRYPTO_ABLK_HELPER_X86 1120 select CRYPTO_GLUE_HELPER_X86 1121 select CRYPTO_SERPENT 1122 select CRYPTO_LRW 1123 select CRYPTO_XTS 1124 help 1125 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1126 1127 Keys are allowed to be from 0 to 256 bits in length, in steps 1128 of 8 bits. 1129 1130 This module provides Serpent cipher algorithm that processes four 1131 blocks parallel using SSE2 instruction set. 1132 1133 See also: 1134 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1135 1136config CRYPTO_SERPENT_AVX_X86_64 1137 tristate "Serpent cipher algorithm (x86_64/AVX)" 1138 depends on X86 && 64BIT 1139 select CRYPTO_ALGAPI 1140 select CRYPTO_CRYPTD 1141 select CRYPTO_ABLK_HELPER_X86 1142 select CRYPTO_GLUE_HELPER_X86 1143 select CRYPTO_SERPENT 1144 select CRYPTO_LRW 1145 select CRYPTO_XTS 1146 help 1147 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1148 1149 Keys are allowed to be from 0 to 256 bits in length, in steps 1150 of 8 bits. 1151 1152 This module provides the Serpent cipher algorithm that processes 1153 eight blocks parallel using the AVX instruction set. 1154 1155 See also: 1156 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1157 1158config CRYPTO_SERPENT_AVX2_X86_64 1159 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1160 depends on X86 && 64BIT 1161 select CRYPTO_ALGAPI 1162 select CRYPTO_CRYPTD 1163 select CRYPTO_ABLK_HELPER_X86 1164 select CRYPTO_GLUE_HELPER_X86 1165 select CRYPTO_SERPENT 1166 select CRYPTO_SERPENT_AVX_X86_64 1167 select CRYPTO_LRW 1168 select CRYPTO_XTS 1169 help 1170 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1171 1172 Keys are allowed to be from 0 to 256 bits in length, in steps 1173 of 8 bits. 1174 1175 This module provides Serpent cipher algorithm that processes 16 1176 blocks parallel using AVX2 instruction set. 1177 1178 See also: 1179 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1180 1181config CRYPTO_TEA 1182 tristate "TEA, XTEA and XETA cipher algorithms" 1183 select CRYPTO_ALGAPI 1184 help 1185 TEA cipher algorithm. 1186 1187 Tiny Encryption Algorithm is a simple cipher that uses 1188 many rounds for security. It is very fast and uses 1189 little memory. 1190 1191 Xtendend Tiny Encryption Algorithm is a modification to 1192 the TEA algorithm to address a potential key weakness 1193 in the TEA algorithm. 1194 1195 Xtendend Encryption Tiny Algorithm is a mis-implementation 1196 of the XTEA algorithm for compatibility purposes. 1197 1198config CRYPTO_TWOFISH 1199 tristate "Twofish cipher algorithm" 1200 select CRYPTO_ALGAPI 1201 select CRYPTO_TWOFISH_COMMON 1202 help 1203 Twofish cipher algorithm. 1204 1205 Twofish was submitted as an AES (Advanced Encryption Standard) 1206 candidate cipher by researchers at CounterPane Systems. It is a 1207 16 round block cipher supporting key sizes of 128, 192, and 256 1208 bits. 1209 1210 See also: 1211 <http://www.schneier.com/twofish.html> 1212 1213config CRYPTO_TWOFISH_COMMON 1214 tristate 1215 help 1216 Common parts of the Twofish cipher algorithm shared by the 1217 generic c and the assembler implementations. 1218 1219config CRYPTO_TWOFISH_586 1220 tristate "Twofish cipher algorithms (i586)" 1221 depends on (X86 || UML_X86) && !64BIT 1222 select CRYPTO_ALGAPI 1223 select CRYPTO_TWOFISH_COMMON 1224 help 1225 Twofish cipher algorithm. 1226 1227 Twofish was submitted as an AES (Advanced Encryption Standard) 1228 candidate cipher by researchers at CounterPane Systems. It is a 1229 16 round block cipher supporting key sizes of 128, 192, and 256 1230 bits. 1231 1232 See also: 1233 <http://www.schneier.com/twofish.html> 1234 1235config CRYPTO_TWOFISH_X86_64 1236 tristate "Twofish cipher algorithm (x86_64)" 1237 depends on (X86 || UML_X86) && 64BIT 1238 select CRYPTO_ALGAPI 1239 select CRYPTO_TWOFISH_COMMON 1240 help 1241 Twofish cipher algorithm (x86_64). 1242 1243 Twofish was submitted as an AES (Advanced Encryption Standard) 1244 candidate cipher by researchers at CounterPane Systems. It is a 1245 16 round block cipher supporting key sizes of 128, 192, and 256 1246 bits. 1247 1248 See also: 1249 <http://www.schneier.com/twofish.html> 1250 1251config CRYPTO_TWOFISH_X86_64_3WAY 1252 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1253 depends on X86 && 64BIT 1254 select CRYPTO_ALGAPI 1255 select CRYPTO_TWOFISH_COMMON 1256 select CRYPTO_TWOFISH_X86_64 1257 select CRYPTO_GLUE_HELPER_X86 1258 select CRYPTO_LRW 1259 select CRYPTO_XTS 1260 help 1261 Twofish cipher algorithm (x86_64, 3-way parallel). 1262 1263 Twofish was submitted as an AES (Advanced Encryption Standard) 1264 candidate cipher by researchers at CounterPane Systems. It is a 1265 16 round block cipher supporting key sizes of 128, 192, and 256 1266 bits. 1267 1268 This module provides Twofish cipher algorithm that processes three 1269 blocks parallel, utilizing resources of out-of-order CPUs better. 1270 1271 See also: 1272 <http://www.schneier.com/twofish.html> 1273 1274config CRYPTO_TWOFISH_AVX_X86_64 1275 tristate "Twofish cipher algorithm (x86_64/AVX)" 1276 depends on X86 && 64BIT 1277 select CRYPTO_ALGAPI 1278 select CRYPTO_CRYPTD 1279 select CRYPTO_ABLK_HELPER_X86 1280 select CRYPTO_GLUE_HELPER_X86 1281 select CRYPTO_TWOFISH_COMMON 1282 select CRYPTO_TWOFISH_X86_64 1283 select CRYPTO_TWOFISH_X86_64_3WAY 1284 select CRYPTO_LRW 1285 select CRYPTO_XTS 1286 help 1287 Twofish cipher algorithm (x86_64/AVX). 1288 1289 Twofish was submitted as an AES (Advanced Encryption Standard) 1290 candidate cipher by researchers at CounterPane Systems. It is a 1291 16 round block cipher supporting key sizes of 128, 192, and 256 1292 bits. 1293 1294 This module provides the Twofish cipher algorithm that processes 1295 eight blocks parallel using the AVX Instruction Set. 1296 1297 See also: 1298 <http://www.schneier.com/twofish.html> 1299 1300comment "Compression" 1301 1302config CRYPTO_DEFLATE 1303 tristate "Deflate compression algorithm" 1304 select CRYPTO_ALGAPI 1305 select ZLIB_INFLATE 1306 select ZLIB_DEFLATE 1307 help 1308 This is the Deflate algorithm (RFC1951), specified for use in 1309 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1310 1311 You will most probably want this if using IPSec. 1312 1313config CRYPTO_ZLIB 1314 tristate "Zlib compression algorithm" 1315 select CRYPTO_PCOMP 1316 select ZLIB_INFLATE 1317 select ZLIB_DEFLATE 1318 select NLATTR 1319 help 1320 This is the zlib algorithm. 1321 1322config CRYPTO_LZO 1323 tristate "LZO compression algorithm" 1324 select CRYPTO_ALGAPI 1325 select LZO_COMPRESS 1326 select LZO_DECOMPRESS 1327 help 1328 This is the LZO algorithm. 1329 1330config CRYPTO_842 1331 tristate "842 compression algorithm" 1332 depends on CRYPTO_DEV_NX_COMPRESS 1333 # 842 uses lzo if the hardware becomes unavailable 1334 select LZO_COMPRESS 1335 select LZO_DECOMPRESS 1336 help 1337 This is the 842 algorithm. 1338 1339config CRYPTO_LZ4 1340 tristate "LZ4 compression algorithm" 1341 select CRYPTO_ALGAPI 1342 select LZ4_COMPRESS 1343 select LZ4_DECOMPRESS 1344 help 1345 This is the LZ4 algorithm. 1346 1347config CRYPTO_LZ4HC 1348 tristate "LZ4HC compression algorithm" 1349 select CRYPTO_ALGAPI 1350 select LZ4HC_COMPRESS 1351 select LZ4_DECOMPRESS 1352 help 1353 This is the LZ4 high compression mode algorithm. 1354 1355comment "Random Number Generation" 1356 1357config CRYPTO_ANSI_CPRNG 1358 tristate "Pseudo Random Number Generation for Cryptographic modules" 1359 default m 1360 select CRYPTO_AES 1361 select CRYPTO_RNG 1362 help 1363 This option enables the generic pseudo random number generator 1364 for cryptographic modules. Uses the Algorithm specified in 1365 ANSI X9.31 A.2.4. Note that this option must be enabled if 1366 CRYPTO_FIPS is selected 1367 1368config CRYPTO_USER_API 1369 tristate 1370 1371config CRYPTO_USER_API_HASH 1372 tristate "User-space interface for hash algorithms" 1373 depends on NET 1374 select CRYPTO_HASH 1375 select CRYPTO_USER_API 1376 help 1377 This option enables the user-spaces interface for hash 1378 algorithms. 1379 1380config CRYPTO_USER_API_SKCIPHER 1381 tristate "User-space interface for symmetric key cipher algorithms" 1382 depends on NET 1383 select CRYPTO_BLKCIPHER 1384 select CRYPTO_USER_API 1385 help 1386 This option enables the user-spaces interface for symmetric 1387 key cipher algorithms. 1388 1389source "drivers/crypto/Kconfig" 1390source crypto/asymmetric_keys/Kconfig 1391 1392endif # if CRYPTO 1393