1# 2# Generic algorithms support 3# 4config XOR_BLOCKS 5 tristate 6 7# 8# async_tx api: hardware offloaded memory transfer/transform support 9# 10source "crypto/async_tx/Kconfig" 11 12# 13# Cryptographic API Configuration 14# 15menuconfig CRYPTO 16 tristate "Cryptographic API" 17 help 18 This option provides the core Cryptographic API. 19 20if CRYPTO 21 22comment "Crypto core or helper" 23 24config CRYPTO_FIPS 25 bool "FIPS 200 compliance" 26 depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS 27 help 28 This options enables the fips boot option which is 29 required if you want to system to operate in a FIPS 200 30 certification. You should say no unless you know what 31 this is. 32 33config CRYPTO_ALGAPI 34 tristate 35 select CRYPTO_ALGAPI2 36 help 37 This option provides the API for cryptographic algorithms. 38 39config CRYPTO_ALGAPI2 40 tristate 41 42config CRYPTO_AEAD 43 tristate 44 select CRYPTO_AEAD2 45 select CRYPTO_ALGAPI 46 47config CRYPTO_AEAD2 48 tristate 49 select CRYPTO_ALGAPI2 50 51config CRYPTO_BLKCIPHER 52 tristate 53 select CRYPTO_BLKCIPHER2 54 select CRYPTO_ALGAPI 55 56config CRYPTO_BLKCIPHER2 57 tristate 58 select CRYPTO_ALGAPI2 59 select CRYPTO_RNG2 60 select CRYPTO_WORKQUEUE 61 62config CRYPTO_HASH 63 tristate 64 select CRYPTO_HASH2 65 select CRYPTO_ALGAPI 66 67config CRYPTO_HASH2 68 tristate 69 select CRYPTO_ALGAPI2 70 71config CRYPTO_RNG 72 tristate 73 select CRYPTO_RNG2 74 select CRYPTO_ALGAPI 75 76config CRYPTO_RNG2 77 tristate 78 select CRYPTO_ALGAPI2 79 80config CRYPTO_PCOMP 81 tristate 82 select CRYPTO_PCOMP2 83 select CRYPTO_ALGAPI 84 85config CRYPTO_PCOMP2 86 tristate 87 select CRYPTO_ALGAPI2 88 89config CRYPTO_MANAGER 90 tristate "Cryptographic algorithm manager" 91 select CRYPTO_MANAGER2 92 help 93 Create default cryptographic template instantiations such as 94 cbc(aes). 95 96config CRYPTO_MANAGER2 97 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 98 select CRYPTO_AEAD2 99 select CRYPTO_HASH2 100 select CRYPTO_BLKCIPHER2 101 select CRYPTO_PCOMP2 102 103config CRYPTO_USER 104 tristate "Userspace cryptographic algorithm configuration" 105 depends on NET 106 select CRYPTO_MANAGER 107 help 108 Userspace configuration for cryptographic instantiations such as 109 cbc(aes). 110 111config CRYPTO_MANAGER_DISABLE_TESTS 112 bool "Disable run-time self tests" 113 default y 114 depends on CRYPTO_MANAGER2 115 help 116 Disable run-time self tests that normally take place at 117 algorithm registration. 118 119config CRYPTO_GF128MUL 120 tristate "GF(2^128) multiplication functions" 121 help 122 Efficient table driven implementation of multiplications in the 123 field GF(2^128). This is needed by some cypher modes. This 124 option will be selected automatically if you select such a 125 cipher mode. Only select this option by hand if you expect to load 126 an external module that requires these functions. 127 128config CRYPTO_NULL 129 tristate "Null algorithms" 130 select CRYPTO_ALGAPI 131 select CRYPTO_BLKCIPHER 132 select CRYPTO_HASH 133 help 134 These are 'Null' algorithms, used by IPsec, which do nothing. 135 136config CRYPTO_PCRYPT 137 tristate "Parallel crypto engine" 138 depends on SMP 139 select PADATA 140 select CRYPTO_MANAGER 141 select CRYPTO_AEAD 142 help 143 This converts an arbitrary crypto algorithm into a parallel 144 algorithm that executes in kernel threads. 145 146config CRYPTO_WORKQUEUE 147 tristate 148 149config CRYPTO_CRYPTD 150 tristate "Software async crypto daemon" 151 select CRYPTO_BLKCIPHER 152 select CRYPTO_HASH 153 select CRYPTO_MANAGER 154 select CRYPTO_WORKQUEUE 155 help 156 This is a generic software asynchronous crypto daemon that 157 converts an arbitrary synchronous software crypto algorithm 158 into an asynchronous algorithm that executes in a kernel thread. 159 160config CRYPTO_AUTHENC 161 tristate "Authenc support" 162 select CRYPTO_AEAD 163 select CRYPTO_BLKCIPHER 164 select CRYPTO_MANAGER 165 select CRYPTO_HASH 166 help 167 Authenc: Combined mode wrapper for IPsec. 168 This is required for IPSec. 169 170config CRYPTO_TEST 171 tristate "Testing module" 172 depends on m 173 select CRYPTO_MANAGER 174 help 175 Quick & dirty crypto test module. 176 177config CRYPTO_ABLK_HELPER_X86 178 tristate 179 depends on X86 180 select CRYPTO_CRYPTD 181 182config CRYPTO_GLUE_HELPER_X86 183 tristate 184 depends on X86 185 select CRYPTO_ALGAPI 186 187comment "Authenticated Encryption with Associated Data" 188 189config CRYPTO_CCM 190 tristate "CCM support" 191 select CRYPTO_CTR 192 select CRYPTO_AEAD 193 help 194 Support for Counter with CBC MAC. Required for IPsec. 195 196config CRYPTO_GCM 197 tristate "GCM/GMAC support" 198 select CRYPTO_CTR 199 select CRYPTO_AEAD 200 select CRYPTO_GHASH 201 select CRYPTO_NULL 202 help 203 Support for Galois/Counter Mode (GCM) and Galois Message 204 Authentication Code (GMAC). Required for IPSec. 205 206config CRYPTO_SEQIV 207 tristate "Sequence Number IV Generator" 208 select CRYPTO_AEAD 209 select CRYPTO_BLKCIPHER 210 select CRYPTO_RNG 211 help 212 This IV generator generates an IV based on a sequence number by 213 xoring it with a salt. This algorithm is mainly useful for CTR 214 215comment "Block modes" 216 217config CRYPTO_CBC 218 tristate "CBC support" 219 select CRYPTO_BLKCIPHER 220 select CRYPTO_MANAGER 221 help 222 CBC: Cipher Block Chaining mode 223 This block cipher algorithm is required for IPSec. 224 225config CRYPTO_CTR 226 tristate "CTR support" 227 select CRYPTO_BLKCIPHER 228 select CRYPTO_SEQIV 229 select CRYPTO_MANAGER 230 help 231 CTR: Counter mode 232 This block cipher algorithm is required for IPSec. 233 234config CRYPTO_CTS 235 tristate "CTS support" 236 select CRYPTO_BLKCIPHER 237 help 238 CTS: Cipher Text Stealing 239 This is the Cipher Text Stealing mode as described by 240 Section 8 of rfc2040 and referenced by rfc3962. 241 (rfc3962 includes errata information in its Appendix A) 242 This mode is required for Kerberos gss mechanism support 243 for AES encryption. 244 245config CRYPTO_ECB 246 tristate "ECB support" 247 select CRYPTO_BLKCIPHER 248 select CRYPTO_MANAGER 249 help 250 ECB: Electronic CodeBook mode 251 This is the simplest block cipher algorithm. It simply encrypts 252 the input block by block. 253 254config CRYPTO_LRW 255 tristate "LRW support" 256 select CRYPTO_BLKCIPHER 257 select CRYPTO_MANAGER 258 select CRYPTO_GF128MUL 259 help 260 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 261 narrow block cipher mode for dm-crypt. Use it with cipher 262 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 263 The first 128, 192 or 256 bits in the key are used for AES and the 264 rest is used to tie each cipher block to its logical position. 265 266config CRYPTO_PCBC 267 tristate "PCBC support" 268 select CRYPTO_BLKCIPHER 269 select CRYPTO_MANAGER 270 help 271 PCBC: Propagating Cipher Block Chaining mode 272 This block cipher algorithm is required for RxRPC. 273 274config CRYPTO_XTS 275 tristate "XTS support" 276 select CRYPTO_BLKCIPHER 277 select CRYPTO_MANAGER 278 select CRYPTO_GF128MUL 279 help 280 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 281 key size 256, 384 or 512 bits. This implementation currently 282 can't handle a sectorsize which is not a multiple of 16 bytes. 283 284comment "Hash modes" 285 286config CRYPTO_CMAC 287 tristate "CMAC support" 288 select CRYPTO_HASH 289 select CRYPTO_MANAGER 290 help 291 Cipher-based Message Authentication Code (CMAC) specified by 292 The National Institute of Standards and Technology (NIST). 293 294 https://tools.ietf.org/html/rfc4493 295 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 296 297config CRYPTO_HMAC 298 tristate "HMAC support" 299 select CRYPTO_HASH 300 select CRYPTO_MANAGER 301 help 302 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 303 This is required for IPSec. 304 305config CRYPTO_XCBC 306 tristate "XCBC support" 307 select CRYPTO_HASH 308 select CRYPTO_MANAGER 309 help 310 XCBC: Keyed-Hashing with encryption algorithm 311 http://www.ietf.org/rfc/rfc3566.txt 312 http://csrc.nist.gov/encryption/modes/proposedmodes/ 313 xcbc-mac/xcbc-mac-spec.pdf 314 315config CRYPTO_VMAC 316 tristate "VMAC support" 317 select CRYPTO_HASH 318 select CRYPTO_MANAGER 319 help 320 VMAC is a message authentication algorithm designed for 321 very high speed on 64-bit architectures. 322 323 See also: 324 <http://fastcrypto.org/vmac> 325 326comment "Digest" 327 328config CRYPTO_CRC32C 329 tristate "CRC32c CRC algorithm" 330 select CRYPTO_HASH 331 select CRC32 332 help 333 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 334 by iSCSI for header and data digests and by others. 335 See Castagnoli93. Module will be crc32c. 336 337config CRYPTO_CRC32C_INTEL 338 tristate "CRC32c INTEL hardware acceleration" 339 depends on X86 340 select CRYPTO_HASH 341 help 342 In Intel processor with SSE4.2 supported, the processor will 343 support CRC32C implementation using hardware accelerated CRC32 344 instruction. This option will create 'crc32c-intel' module, 345 which will enable any routine to use the CRC32 instruction to 346 gain performance compared with software implementation. 347 Module will be crc32c-intel. 348 349config CRYPTO_CRC32C_SPARC64 350 tristate "CRC32c CRC algorithm (SPARC64)" 351 depends on SPARC64 352 select CRYPTO_HASH 353 select CRC32 354 help 355 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 356 when available. 357 358config CRYPTO_CRC32 359 tristate "CRC32 CRC algorithm" 360 select CRYPTO_HASH 361 select CRC32 362 help 363 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 364 Shash crypto api wrappers to crc32_le function. 365 366config CRYPTO_CRC32_PCLMUL 367 tristate "CRC32 PCLMULQDQ hardware acceleration" 368 depends on X86 369 select CRYPTO_HASH 370 select CRC32 371 help 372 From Intel Westmere and AMD Bulldozer processor with SSE4.2 373 and PCLMULQDQ supported, the processor will support 374 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 375 instruction. This option will create 'crc32-plcmul' module, 376 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 377 and gain better performance as compared with the table implementation. 378 379config CRYPTO_CRCT10DIF 380 tristate "CRCT10DIF algorithm" 381 select CRYPTO_HASH 382 help 383 CRC T10 Data Integrity Field computation is being cast as 384 a crypto transform. This allows for faster crc t10 diff 385 transforms to be used if they are available. 386 387config CRYPTO_CRCT10DIF_PCLMUL 388 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 389 depends on X86 && 64BIT && CRC_T10DIF 390 select CRYPTO_HASH 391 help 392 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 393 CRC T10 DIF PCLMULQDQ computation can be hardware 394 accelerated PCLMULQDQ instruction. This option will create 395 'crct10dif-plcmul' module, which is faster when computing the 396 crct10dif checksum as compared with the generic table implementation. 397 398config CRYPTO_GHASH 399 tristate "GHASH digest algorithm" 400 select CRYPTO_GF128MUL 401 help 402 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 403 404config CRYPTO_MD4 405 tristate "MD4 digest algorithm" 406 select CRYPTO_HASH 407 help 408 MD4 message digest algorithm (RFC1320). 409 410config CRYPTO_MD5 411 tristate "MD5 digest algorithm" 412 select CRYPTO_HASH 413 help 414 MD5 message digest algorithm (RFC1321). 415 416config CRYPTO_MD5_SPARC64 417 tristate "MD5 digest algorithm (SPARC64)" 418 depends on SPARC64 419 select CRYPTO_MD5 420 select CRYPTO_HASH 421 help 422 MD5 message digest algorithm (RFC1321) implemented 423 using sparc64 crypto instructions, when available. 424 425config CRYPTO_MICHAEL_MIC 426 tristate "Michael MIC keyed digest algorithm" 427 select CRYPTO_HASH 428 help 429 Michael MIC is used for message integrity protection in TKIP 430 (IEEE 802.11i). This algorithm is required for TKIP, but it 431 should not be used for other purposes because of the weakness 432 of the algorithm. 433 434config CRYPTO_RMD128 435 tristate "RIPEMD-128 digest algorithm" 436 select CRYPTO_HASH 437 help 438 RIPEMD-128 (ISO/IEC 10118-3:2004). 439 440 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 441 be used as a secure replacement for RIPEMD. For other use cases, 442 RIPEMD-160 should be used. 443 444 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 445 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 446 447config CRYPTO_RMD160 448 tristate "RIPEMD-160 digest algorithm" 449 select CRYPTO_HASH 450 help 451 RIPEMD-160 (ISO/IEC 10118-3:2004). 452 453 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 454 to be used as a secure replacement for the 128-bit hash functions 455 MD4, MD5 and it's predecessor RIPEMD 456 (not to be confused with RIPEMD-128). 457 458 It's speed is comparable to SHA1 and there are no known attacks 459 against RIPEMD-160. 460 461 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 462 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 463 464config CRYPTO_RMD256 465 tristate "RIPEMD-256 digest algorithm" 466 select CRYPTO_HASH 467 help 468 RIPEMD-256 is an optional extension of RIPEMD-128 with a 469 256 bit hash. It is intended for applications that require 470 longer hash-results, without needing a larger security level 471 (than RIPEMD-128). 472 473 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 474 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 475 476config CRYPTO_RMD320 477 tristate "RIPEMD-320 digest algorithm" 478 select CRYPTO_HASH 479 help 480 RIPEMD-320 is an optional extension of RIPEMD-160 with a 481 320 bit hash. It is intended for applications that require 482 longer hash-results, without needing a larger security level 483 (than RIPEMD-160). 484 485 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 486 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 487 488config CRYPTO_SHA1 489 tristate "SHA1 digest algorithm" 490 select CRYPTO_HASH 491 help 492 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 493 494config CRYPTO_SHA1_SSSE3 495 tristate "SHA1 digest algorithm (SSSE3/AVX)" 496 depends on X86 && 64BIT 497 select CRYPTO_SHA1 498 select CRYPTO_HASH 499 help 500 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 501 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 502 Extensions (AVX), when available. 503 504config CRYPTO_SHA256_SSSE3 505 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)" 506 depends on X86 && 64BIT 507 select CRYPTO_SHA256 508 select CRYPTO_HASH 509 help 510 SHA-256 secure hash standard (DFIPS 180-2) implemented 511 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 512 Extensions version 1 (AVX1), or Advanced Vector Extensions 513 version 2 (AVX2) instructions, when available. 514 515config CRYPTO_SHA512_SSSE3 516 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 517 depends on X86 && 64BIT 518 select CRYPTO_SHA512 519 select CRYPTO_HASH 520 help 521 SHA-512 secure hash standard (DFIPS 180-2) implemented 522 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 523 Extensions version 1 (AVX1), or Advanced Vector Extensions 524 version 2 (AVX2) instructions, when available. 525 526config CRYPTO_SHA1_SPARC64 527 tristate "SHA1 digest algorithm (SPARC64)" 528 depends on SPARC64 529 select CRYPTO_SHA1 530 select CRYPTO_HASH 531 help 532 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 533 using sparc64 crypto instructions, when available. 534 535config CRYPTO_SHA1_ARM 536 tristate "SHA1 digest algorithm (ARM-asm)" 537 depends on ARM 538 select CRYPTO_SHA1 539 select CRYPTO_HASH 540 help 541 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 542 using optimized ARM assembler. 543 544config CRYPTO_SHA1_PPC 545 tristate "SHA1 digest algorithm (powerpc)" 546 depends on PPC 547 help 548 This is the powerpc hardware accelerated implementation of the 549 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 550 551config CRYPTO_SHA256 552 tristate "SHA224 and SHA256 digest algorithm" 553 select CRYPTO_HASH 554 help 555 SHA256 secure hash standard (DFIPS 180-2). 556 557 This version of SHA implements a 256 bit hash with 128 bits of 558 security against collision attacks. 559 560 This code also includes SHA-224, a 224 bit hash with 112 bits 561 of security against collision attacks. 562 563config CRYPTO_SHA256_SPARC64 564 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 565 depends on SPARC64 566 select CRYPTO_SHA256 567 select CRYPTO_HASH 568 help 569 SHA-256 secure hash standard (DFIPS 180-2) implemented 570 using sparc64 crypto instructions, when available. 571 572config CRYPTO_SHA512 573 tristate "SHA384 and SHA512 digest algorithms" 574 select CRYPTO_HASH 575 help 576 SHA512 secure hash standard (DFIPS 180-2). 577 578 This version of SHA implements a 512 bit hash with 256 bits of 579 security against collision attacks. 580 581 This code also includes SHA-384, a 384 bit hash with 192 bits 582 of security against collision attacks. 583 584config CRYPTO_SHA512_SPARC64 585 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 586 depends on SPARC64 587 select CRYPTO_SHA512 588 select CRYPTO_HASH 589 help 590 SHA-512 secure hash standard (DFIPS 180-2) implemented 591 using sparc64 crypto instructions, when available. 592 593config CRYPTO_TGR192 594 tristate "Tiger digest algorithms" 595 select CRYPTO_HASH 596 help 597 Tiger hash algorithm 192, 160 and 128-bit hashes 598 599 Tiger is a hash function optimized for 64-bit processors while 600 still having decent performance on 32-bit processors. 601 Tiger was developed by Ross Anderson and Eli Biham. 602 603 See also: 604 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 605 606config CRYPTO_WP512 607 tristate "Whirlpool digest algorithms" 608 select CRYPTO_HASH 609 help 610 Whirlpool hash algorithm 512, 384 and 256-bit hashes 611 612 Whirlpool-512 is part of the NESSIE cryptographic primitives. 613 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 614 615 See also: 616 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 617 618config CRYPTO_GHASH_CLMUL_NI_INTEL 619 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 620 depends on X86 && 64BIT 621 select CRYPTO_CRYPTD 622 help 623 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 624 The implementation is accelerated by CLMUL-NI of Intel. 625 626comment "Ciphers" 627 628config CRYPTO_AES 629 tristate "AES cipher algorithms" 630 select CRYPTO_ALGAPI 631 help 632 AES cipher algorithms (FIPS-197). AES uses the Rijndael 633 algorithm. 634 635 Rijndael appears to be consistently a very good performer in 636 both hardware and software across a wide range of computing 637 environments regardless of its use in feedback or non-feedback 638 modes. Its key setup time is excellent, and its key agility is 639 good. Rijndael's very low memory requirements make it very well 640 suited for restricted-space environments, in which it also 641 demonstrates excellent performance. Rijndael's operations are 642 among the easiest to defend against power and timing attacks. 643 644 The AES specifies three key sizes: 128, 192 and 256 bits 645 646 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 647 648config CRYPTO_AES_586 649 tristate "AES cipher algorithms (i586)" 650 depends on (X86 || UML_X86) && !64BIT 651 select CRYPTO_ALGAPI 652 select CRYPTO_AES 653 help 654 AES cipher algorithms (FIPS-197). AES uses the Rijndael 655 algorithm. 656 657 Rijndael appears to be consistently a very good performer in 658 both hardware and software across a wide range of computing 659 environments regardless of its use in feedback or non-feedback 660 modes. Its key setup time is excellent, and its key agility is 661 good. Rijndael's very low memory requirements make it very well 662 suited for restricted-space environments, in which it also 663 demonstrates excellent performance. Rijndael's operations are 664 among the easiest to defend against power and timing attacks. 665 666 The AES specifies three key sizes: 128, 192 and 256 bits 667 668 See <http://csrc.nist.gov/encryption/aes/> for more information. 669 670config CRYPTO_AES_X86_64 671 tristate "AES cipher algorithms (x86_64)" 672 depends on (X86 || UML_X86) && 64BIT 673 select CRYPTO_ALGAPI 674 select CRYPTO_AES 675 help 676 AES cipher algorithms (FIPS-197). AES uses the Rijndael 677 algorithm. 678 679 Rijndael appears to be consistently a very good performer in 680 both hardware and software across a wide range of computing 681 environments regardless of its use in feedback or non-feedback 682 modes. Its key setup time is excellent, and its key agility is 683 good. Rijndael's very low memory requirements make it very well 684 suited for restricted-space environments, in which it also 685 demonstrates excellent performance. Rijndael's operations are 686 among the easiest to defend against power and timing attacks. 687 688 The AES specifies three key sizes: 128, 192 and 256 bits 689 690 See <http://csrc.nist.gov/encryption/aes/> for more information. 691 692config CRYPTO_AES_NI_INTEL 693 tristate "AES cipher algorithms (AES-NI)" 694 depends on X86 695 select CRYPTO_AES_X86_64 if 64BIT 696 select CRYPTO_AES_586 if !64BIT 697 select CRYPTO_CRYPTD 698 select CRYPTO_ABLK_HELPER_X86 699 select CRYPTO_ALGAPI 700 select CRYPTO_GLUE_HELPER_X86 if 64BIT 701 select CRYPTO_LRW 702 select CRYPTO_XTS 703 help 704 Use Intel AES-NI instructions for AES algorithm. 705 706 AES cipher algorithms (FIPS-197). AES uses the Rijndael 707 algorithm. 708 709 Rijndael appears to be consistently a very good performer in 710 both hardware and software across a wide range of computing 711 environments regardless of its use in feedback or non-feedback 712 modes. Its key setup time is excellent, and its key agility is 713 good. Rijndael's very low memory requirements make it very well 714 suited for restricted-space environments, in which it also 715 demonstrates excellent performance. Rijndael's operations are 716 among the easiest to defend against power and timing attacks. 717 718 The AES specifies three key sizes: 128, 192 and 256 bits 719 720 See <http://csrc.nist.gov/encryption/aes/> for more information. 721 722 In addition to AES cipher algorithm support, the acceleration 723 for some popular block cipher mode is supported too, including 724 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 725 acceleration for CTR. 726 727config CRYPTO_AES_SPARC64 728 tristate "AES cipher algorithms (SPARC64)" 729 depends on SPARC64 730 select CRYPTO_CRYPTD 731 select CRYPTO_ALGAPI 732 help 733 Use SPARC64 crypto opcodes for AES algorithm. 734 735 AES cipher algorithms (FIPS-197). AES uses the Rijndael 736 algorithm. 737 738 Rijndael appears to be consistently a very good performer in 739 both hardware and software across a wide range of computing 740 environments regardless of its use in feedback or non-feedback 741 modes. Its key setup time is excellent, and its key agility is 742 good. Rijndael's very low memory requirements make it very well 743 suited for restricted-space environments, in which it also 744 demonstrates excellent performance. Rijndael's operations are 745 among the easiest to defend against power and timing attacks. 746 747 The AES specifies three key sizes: 128, 192 and 256 bits 748 749 See <http://csrc.nist.gov/encryption/aes/> for more information. 750 751 In addition to AES cipher algorithm support, the acceleration 752 for some popular block cipher mode is supported too, including 753 ECB and CBC. 754 755config CRYPTO_AES_ARM 756 tristate "AES cipher algorithms (ARM-asm)" 757 depends on ARM 758 select CRYPTO_ALGAPI 759 select CRYPTO_AES 760 help 761 Use optimized AES assembler routines for ARM platforms. 762 763 AES cipher algorithms (FIPS-197). AES uses the Rijndael 764 algorithm. 765 766 Rijndael appears to be consistently a very good performer in 767 both hardware and software across a wide range of computing 768 environments regardless of its use in feedback or non-feedback 769 modes. Its key setup time is excellent, and its key agility is 770 good. Rijndael's very low memory requirements make it very well 771 suited for restricted-space environments, in which it also 772 demonstrates excellent performance. Rijndael's operations are 773 among the easiest to defend against power and timing attacks. 774 775 The AES specifies three key sizes: 128, 192 and 256 bits 776 777 See <http://csrc.nist.gov/encryption/aes/> for more information. 778 779config CRYPTO_AES_ARM_BS 780 tristate "Bit sliced AES using NEON instructions" 781 depends on ARM && KERNEL_MODE_NEON 782 select CRYPTO_ALGAPI 783 select CRYPTO_AES_ARM 784 select CRYPTO_ABLK_HELPER 785 help 786 Use a faster and more secure NEON based implementation of AES in CBC, 787 CTR and XTS modes 788 789 Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode 790 and for XTS mode encryption, CBC and XTS mode decryption speedup is 791 around 25%. (CBC encryption speed is not affected by this driver.) 792 This implementation does not rely on any lookup tables so it is 793 believed to be invulnerable to cache timing attacks. 794 795config CRYPTO_ANUBIS 796 tristate "Anubis cipher algorithm" 797 select CRYPTO_ALGAPI 798 help 799 Anubis cipher algorithm. 800 801 Anubis is a variable key length cipher which can use keys from 802 128 bits to 320 bits in length. It was evaluated as a entrant 803 in the NESSIE competition. 804 805 See also: 806 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 807 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 808 809config CRYPTO_ARC4 810 tristate "ARC4 cipher algorithm" 811 select CRYPTO_BLKCIPHER 812 help 813 ARC4 cipher algorithm. 814 815 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 816 bits in length. This algorithm is required for driver-based 817 WEP, but it should not be for other purposes because of the 818 weakness of the algorithm. 819 820config CRYPTO_BLOWFISH 821 tristate "Blowfish cipher algorithm" 822 select CRYPTO_ALGAPI 823 select CRYPTO_BLOWFISH_COMMON 824 help 825 Blowfish cipher algorithm, by Bruce Schneier. 826 827 This is a variable key length cipher which can use keys from 32 828 bits to 448 bits in length. It's fast, simple and specifically 829 designed for use on "large microprocessors". 830 831 See also: 832 <http://www.schneier.com/blowfish.html> 833 834config CRYPTO_BLOWFISH_COMMON 835 tristate 836 help 837 Common parts of the Blowfish cipher algorithm shared by the 838 generic c and the assembler implementations. 839 840 See also: 841 <http://www.schneier.com/blowfish.html> 842 843config CRYPTO_BLOWFISH_X86_64 844 tristate "Blowfish cipher algorithm (x86_64)" 845 depends on X86 && 64BIT 846 select CRYPTO_ALGAPI 847 select CRYPTO_BLOWFISH_COMMON 848 help 849 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 850 851 This is a variable key length cipher which can use keys from 32 852 bits to 448 bits in length. It's fast, simple and specifically 853 designed for use on "large microprocessors". 854 855 See also: 856 <http://www.schneier.com/blowfish.html> 857 858config CRYPTO_CAMELLIA 859 tristate "Camellia cipher algorithms" 860 depends on CRYPTO 861 select CRYPTO_ALGAPI 862 help 863 Camellia cipher algorithms module. 864 865 Camellia is a symmetric key block cipher developed jointly 866 at NTT and Mitsubishi Electric Corporation. 867 868 The Camellia specifies three key sizes: 128, 192 and 256 bits. 869 870 See also: 871 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 872 873config CRYPTO_CAMELLIA_X86_64 874 tristate "Camellia cipher algorithm (x86_64)" 875 depends on X86 && 64BIT 876 depends on CRYPTO 877 select CRYPTO_ALGAPI 878 select CRYPTO_GLUE_HELPER_X86 879 select CRYPTO_LRW 880 select CRYPTO_XTS 881 help 882 Camellia cipher algorithm module (x86_64). 883 884 Camellia is a symmetric key block cipher developed jointly 885 at NTT and Mitsubishi Electric Corporation. 886 887 The Camellia specifies three key sizes: 128, 192 and 256 bits. 888 889 See also: 890 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 891 892config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 893 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 894 depends on X86 && 64BIT 895 depends on CRYPTO 896 select CRYPTO_ALGAPI 897 select CRYPTO_CRYPTD 898 select CRYPTO_ABLK_HELPER_X86 899 select CRYPTO_GLUE_HELPER_X86 900 select CRYPTO_CAMELLIA_X86_64 901 select CRYPTO_LRW 902 select CRYPTO_XTS 903 help 904 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 905 906 Camellia is a symmetric key block cipher developed jointly 907 at NTT and Mitsubishi Electric Corporation. 908 909 The Camellia specifies three key sizes: 128, 192 and 256 bits. 910 911 See also: 912 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 913 914config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 915 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 916 depends on X86 && 64BIT 917 depends on CRYPTO 918 select CRYPTO_ALGAPI 919 select CRYPTO_CRYPTD 920 select CRYPTO_ABLK_HELPER_X86 921 select CRYPTO_GLUE_HELPER_X86 922 select CRYPTO_CAMELLIA_X86_64 923 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 924 select CRYPTO_LRW 925 select CRYPTO_XTS 926 help 927 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 928 929 Camellia is a symmetric key block cipher developed jointly 930 at NTT and Mitsubishi Electric Corporation. 931 932 The Camellia specifies three key sizes: 128, 192 and 256 bits. 933 934 See also: 935 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 936 937config CRYPTO_CAMELLIA_SPARC64 938 tristate "Camellia cipher algorithm (SPARC64)" 939 depends on SPARC64 940 depends on CRYPTO 941 select CRYPTO_ALGAPI 942 help 943 Camellia cipher algorithm module (SPARC64). 944 945 Camellia is a symmetric key block cipher developed jointly 946 at NTT and Mitsubishi Electric Corporation. 947 948 The Camellia specifies three key sizes: 128, 192 and 256 bits. 949 950 See also: 951 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 952 953config CRYPTO_CAST_COMMON 954 tristate 955 help 956 Common parts of the CAST cipher algorithms shared by the 957 generic c and the assembler implementations. 958 959config CRYPTO_CAST5 960 tristate "CAST5 (CAST-128) cipher algorithm" 961 select CRYPTO_ALGAPI 962 select CRYPTO_CAST_COMMON 963 help 964 The CAST5 encryption algorithm (synonymous with CAST-128) is 965 described in RFC2144. 966 967config CRYPTO_CAST5_AVX_X86_64 968 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 969 depends on X86 && 64BIT 970 select CRYPTO_ALGAPI 971 select CRYPTO_CRYPTD 972 select CRYPTO_ABLK_HELPER_X86 973 select CRYPTO_CAST_COMMON 974 select CRYPTO_CAST5 975 help 976 The CAST5 encryption algorithm (synonymous with CAST-128) is 977 described in RFC2144. 978 979 This module provides the Cast5 cipher algorithm that processes 980 sixteen blocks parallel using the AVX instruction set. 981 982config CRYPTO_CAST6 983 tristate "CAST6 (CAST-256) cipher algorithm" 984 select CRYPTO_ALGAPI 985 select CRYPTO_CAST_COMMON 986 help 987 The CAST6 encryption algorithm (synonymous with CAST-256) is 988 described in RFC2612. 989 990config CRYPTO_CAST6_AVX_X86_64 991 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 992 depends on X86 && 64BIT 993 select CRYPTO_ALGAPI 994 select CRYPTO_CRYPTD 995 select CRYPTO_ABLK_HELPER_X86 996 select CRYPTO_GLUE_HELPER_X86 997 select CRYPTO_CAST_COMMON 998 select CRYPTO_CAST6 999 select CRYPTO_LRW 1000 select CRYPTO_XTS 1001 help 1002 The CAST6 encryption algorithm (synonymous with CAST-256) is 1003 described in RFC2612. 1004 1005 This module provides the Cast6 cipher algorithm that processes 1006 eight blocks parallel using the AVX instruction set. 1007 1008config CRYPTO_DES 1009 tristate "DES and Triple DES EDE cipher algorithms" 1010 select CRYPTO_ALGAPI 1011 help 1012 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1013 1014config CRYPTO_DES_SPARC64 1015 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1016 depends on SPARC64 1017 select CRYPTO_ALGAPI 1018 select CRYPTO_DES 1019 help 1020 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1021 optimized using SPARC64 crypto opcodes. 1022 1023config CRYPTO_FCRYPT 1024 tristate "FCrypt cipher algorithm" 1025 select CRYPTO_ALGAPI 1026 select CRYPTO_BLKCIPHER 1027 help 1028 FCrypt algorithm used by RxRPC. 1029 1030config CRYPTO_KHAZAD 1031 tristate "Khazad cipher algorithm" 1032 select CRYPTO_ALGAPI 1033 help 1034 Khazad cipher algorithm. 1035 1036 Khazad was a finalist in the initial NESSIE competition. It is 1037 an algorithm optimized for 64-bit processors with good performance 1038 on 32-bit processors. Khazad uses an 128 bit key size. 1039 1040 See also: 1041 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1042 1043config CRYPTO_SALSA20 1044 tristate "Salsa20 stream cipher algorithm" 1045 select CRYPTO_BLKCIPHER 1046 help 1047 Salsa20 stream cipher algorithm. 1048 1049 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1050 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1051 1052 The Salsa20 stream cipher algorithm is designed by Daniel J. 1053 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1054 1055config CRYPTO_SALSA20_586 1056 tristate "Salsa20 stream cipher algorithm (i586)" 1057 depends on (X86 || UML_X86) && !64BIT 1058 select CRYPTO_BLKCIPHER 1059 help 1060 Salsa20 stream cipher algorithm. 1061 1062 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1063 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1064 1065 The Salsa20 stream cipher algorithm is designed by Daniel J. 1066 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1067 1068config CRYPTO_SALSA20_X86_64 1069 tristate "Salsa20 stream cipher algorithm (x86_64)" 1070 depends on (X86 || UML_X86) && 64BIT 1071 select CRYPTO_BLKCIPHER 1072 help 1073 Salsa20 stream cipher algorithm. 1074 1075 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1076 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1077 1078 The Salsa20 stream cipher algorithm is designed by Daniel J. 1079 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1080 1081config CRYPTO_SEED 1082 tristate "SEED cipher algorithm" 1083 select CRYPTO_ALGAPI 1084 help 1085 SEED cipher algorithm (RFC4269). 1086 1087 SEED is a 128-bit symmetric key block cipher that has been 1088 developed by KISA (Korea Information Security Agency) as a 1089 national standard encryption algorithm of the Republic of Korea. 1090 It is a 16 round block cipher with the key size of 128 bit. 1091 1092 See also: 1093 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1094 1095config CRYPTO_SERPENT 1096 tristate "Serpent cipher algorithm" 1097 select CRYPTO_ALGAPI 1098 help 1099 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1100 1101 Keys are allowed to be from 0 to 256 bits in length, in steps 1102 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1103 variant of Serpent for compatibility with old kerneli.org code. 1104 1105 See also: 1106 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1107 1108config CRYPTO_SERPENT_SSE2_X86_64 1109 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1110 depends on X86 && 64BIT 1111 select CRYPTO_ALGAPI 1112 select CRYPTO_CRYPTD 1113 select CRYPTO_ABLK_HELPER_X86 1114 select CRYPTO_GLUE_HELPER_X86 1115 select CRYPTO_SERPENT 1116 select CRYPTO_LRW 1117 select CRYPTO_XTS 1118 help 1119 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1120 1121 Keys are allowed to be from 0 to 256 bits in length, in steps 1122 of 8 bits. 1123 1124 This module provides Serpent cipher algorithm that processes eigth 1125 blocks parallel using SSE2 instruction set. 1126 1127 See also: 1128 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1129 1130config CRYPTO_SERPENT_SSE2_586 1131 tristate "Serpent cipher algorithm (i586/SSE2)" 1132 depends on X86 && !64BIT 1133 select CRYPTO_ALGAPI 1134 select CRYPTO_CRYPTD 1135 select CRYPTO_ABLK_HELPER_X86 1136 select CRYPTO_GLUE_HELPER_X86 1137 select CRYPTO_SERPENT 1138 select CRYPTO_LRW 1139 select CRYPTO_XTS 1140 help 1141 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1142 1143 Keys are allowed to be from 0 to 256 bits in length, in steps 1144 of 8 bits. 1145 1146 This module provides Serpent cipher algorithm that processes four 1147 blocks parallel using SSE2 instruction set. 1148 1149 See also: 1150 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1151 1152config CRYPTO_SERPENT_AVX_X86_64 1153 tristate "Serpent cipher algorithm (x86_64/AVX)" 1154 depends on X86 && 64BIT 1155 select CRYPTO_ALGAPI 1156 select CRYPTO_CRYPTD 1157 select CRYPTO_ABLK_HELPER_X86 1158 select CRYPTO_GLUE_HELPER_X86 1159 select CRYPTO_SERPENT 1160 select CRYPTO_LRW 1161 select CRYPTO_XTS 1162 help 1163 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1164 1165 Keys are allowed to be from 0 to 256 bits in length, in steps 1166 of 8 bits. 1167 1168 This module provides the Serpent cipher algorithm that processes 1169 eight blocks parallel using the AVX instruction set. 1170 1171 See also: 1172 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1173 1174config CRYPTO_SERPENT_AVX2_X86_64 1175 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1176 depends on X86 && 64BIT 1177 select CRYPTO_ALGAPI 1178 select CRYPTO_CRYPTD 1179 select CRYPTO_ABLK_HELPER_X86 1180 select CRYPTO_GLUE_HELPER_X86 1181 select CRYPTO_SERPENT 1182 select CRYPTO_SERPENT_AVX_X86_64 1183 select CRYPTO_LRW 1184 select CRYPTO_XTS 1185 help 1186 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1187 1188 Keys are allowed to be from 0 to 256 bits in length, in steps 1189 of 8 bits. 1190 1191 This module provides Serpent cipher algorithm that processes 16 1192 blocks parallel using AVX2 instruction set. 1193 1194 See also: 1195 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1196 1197config CRYPTO_TEA 1198 tristate "TEA, XTEA and XETA cipher algorithms" 1199 select CRYPTO_ALGAPI 1200 help 1201 TEA cipher algorithm. 1202 1203 Tiny Encryption Algorithm is a simple cipher that uses 1204 many rounds for security. It is very fast and uses 1205 little memory. 1206 1207 Xtendend Tiny Encryption Algorithm is a modification to 1208 the TEA algorithm to address a potential key weakness 1209 in the TEA algorithm. 1210 1211 Xtendend Encryption Tiny Algorithm is a mis-implementation 1212 of the XTEA algorithm for compatibility purposes. 1213 1214config CRYPTO_TWOFISH 1215 tristate "Twofish cipher algorithm" 1216 select CRYPTO_ALGAPI 1217 select CRYPTO_TWOFISH_COMMON 1218 help 1219 Twofish cipher algorithm. 1220 1221 Twofish was submitted as an AES (Advanced Encryption Standard) 1222 candidate cipher by researchers at CounterPane Systems. It is a 1223 16 round block cipher supporting key sizes of 128, 192, and 256 1224 bits. 1225 1226 See also: 1227 <http://www.schneier.com/twofish.html> 1228 1229config CRYPTO_TWOFISH_COMMON 1230 tristate 1231 help 1232 Common parts of the Twofish cipher algorithm shared by the 1233 generic c and the assembler implementations. 1234 1235config CRYPTO_TWOFISH_586 1236 tristate "Twofish cipher algorithms (i586)" 1237 depends on (X86 || UML_X86) && !64BIT 1238 select CRYPTO_ALGAPI 1239 select CRYPTO_TWOFISH_COMMON 1240 help 1241 Twofish cipher algorithm. 1242 1243 Twofish was submitted as an AES (Advanced Encryption Standard) 1244 candidate cipher by researchers at CounterPane Systems. It is a 1245 16 round block cipher supporting key sizes of 128, 192, and 256 1246 bits. 1247 1248 See also: 1249 <http://www.schneier.com/twofish.html> 1250 1251config CRYPTO_TWOFISH_X86_64 1252 tristate "Twofish cipher algorithm (x86_64)" 1253 depends on (X86 || UML_X86) && 64BIT 1254 select CRYPTO_ALGAPI 1255 select CRYPTO_TWOFISH_COMMON 1256 help 1257 Twofish cipher algorithm (x86_64). 1258 1259 Twofish was submitted as an AES (Advanced Encryption Standard) 1260 candidate cipher by researchers at CounterPane Systems. It is a 1261 16 round block cipher supporting key sizes of 128, 192, and 256 1262 bits. 1263 1264 See also: 1265 <http://www.schneier.com/twofish.html> 1266 1267config CRYPTO_TWOFISH_X86_64_3WAY 1268 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1269 depends on X86 && 64BIT 1270 select CRYPTO_ALGAPI 1271 select CRYPTO_TWOFISH_COMMON 1272 select CRYPTO_TWOFISH_X86_64 1273 select CRYPTO_GLUE_HELPER_X86 1274 select CRYPTO_LRW 1275 select CRYPTO_XTS 1276 help 1277 Twofish cipher algorithm (x86_64, 3-way parallel). 1278 1279 Twofish was submitted as an AES (Advanced Encryption Standard) 1280 candidate cipher by researchers at CounterPane Systems. It is a 1281 16 round block cipher supporting key sizes of 128, 192, and 256 1282 bits. 1283 1284 This module provides Twofish cipher algorithm that processes three 1285 blocks parallel, utilizing resources of out-of-order CPUs better. 1286 1287 See also: 1288 <http://www.schneier.com/twofish.html> 1289 1290config CRYPTO_TWOFISH_AVX_X86_64 1291 tristate "Twofish cipher algorithm (x86_64/AVX)" 1292 depends on X86 && 64BIT 1293 select CRYPTO_ALGAPI 1294 select CRYPTO_CRYPTD 1295 select CRYPTO_ABLK_HELPER_X86 1296 select CRYPTO_GLUE_HELPER_X86 1297 select CRYPTO_TWOFISH_COMMON 1298 select CRYPTO_TWOFISH_X86_64 1299 select CRYPTO_TWOFISH_X86_64_3WAY 1300 select CRYPTO_LRW 1301 select CRYPTO_XTS 1302 help 1303 Twofish cipher algorithm (x86_64/AVX). 1304 1305 Twofish was submitted as an AES (Advanced Encryption Standard) 1306 candidate cipher by researchers at CounterPane Systems. It is a 1307 16 round block cipher supporting key sizes of 128, 192, and 256 1308 bits. 1309 1310 This module provides the Twofish cipher algorithm that processes 1311 eight blocks parallel using the AVX Instruction Set. 1312 1313 See also: 1314 <http://www.schneier.com/twofish.html> 1315 1316comment "Compression" 1317 1318config CRYPTO_DEFLATE 1319 tristate "Deflate compression algorithm" 1320 select CRYPTO_ALGAPI 1321 select ZLIB_INFLATE 1322 select ZLIB_DEFLATE 1323 help 1324 This is the Deflate algorithm (RFC1951), specified for use in 1325 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1326 1327 You will most probably want this if using IPSec. 1328 1329config CRYPTO_ZLIB 1330 tristate "Zlib compression algorithm" 1331 select CRYPTO_PCOMP 1332 select ZLIB_INFLATE 1333 select ZLIB_DEFLATE 1334 select NLATTR 1335 help 1336 This is the zlib algorithm. 1337 1338config CRYPTO_LZO 1339 tristate "LZO compression algorithm" 1340 select CRYPTO_ALGAPI 1341 select LZO_COMPRESS 1342 select LZO_DECOMPRESS 1343 help 1344 This is the LZO algorithm. 1345 1346config CRYPTO_842 1347 tristate "842 compression algorithm" 1348 depends on CRYPTO_DEV_NX_COMPRESS 1349 # 842 uses lzo if the hardware becomes unavailable 1350 select LZO_COMPRESS 1351 select LZO_DECOMPRESS 1352 help 1353 This is the 842 algorithm. 1354 1355config CRYPTO_LZ4 1356 tristate "LZ4 compression algorithm" 1357 select CRYPTO_ALGAPI 1358 select LZ4_COMPRESS 1359 select LZ4_DECOMPRESS 1360 help 1361 This is the LZ4 algorithm. 1362 1363config CRYPTO_LZ4HC 1364 tristate "LZ4HC compression algorithm" 1365 select CRYPTO_ALGAPI 1366 select LZ4HC_COMPRESS 1367 select LZ4_DECOMPRESS 1368 help 1369 This is the LZ4 high compression mode algorithm. 1370 1371comment "Random Number Generation" 1372 1373config CRYPTO_ANSI_CPRNG 1374 tristate "Pseudo Random Number Generation for Cryptographic modules" 1375 default m 1376 select CRYPTO_AES 1377 select CRYPTO_RNG 1378 help 1379 This option enables the generic pseudo random number generator 1380 for cryptographic modules. Uses the Algorithm specified in 1381 ANSI X9.31 A.2.4. Note that this option must be enabled if 1382 CRYPTO_FIPS is selected 1383 1384config CRYPTO_USER_API 1385 tristate 1386 1387config CRYPTO_USER_API_HASH 1388 tristate "User-space interface for hash algorithms" 1389 depends on NET 1390 select CRYPTO_HASH 1391 select CRYPTO_USER_API 1392 help 1393 This option enables the user-spaces interface for hash 1394 algorithms. 1395 1396config CRYPTO_USER_API_SKCIPHER 1397 tristate "User-space interface for symmetric key cipher algorithms" 1398 depends on NET 1399 select CRYPTO_BLKCIPHER 1400 select CRYPTO_USER_API 1401 help 1402 This option enables the user-spaces interface for symmetric 1403 key cipher algorithms. 1404 1405config CRYPTO_HASH_INFO 1406 bool 1407 1408source "drivers/crypto/Kconfig" 1409source crypto/asymmetric_keys/Kconfig 1410 1411endif # if CRYPTO 1412