xref: /openbmc/linux/crypto/Kconfig (revision 6dfcd296)
1#
2# Generic algorithms support
3#
4config XOR_BLOCKS
5	tristate
6
7#
8# async_tx api: hardware offloaded memory transfer/transform support
9#
10source "crypto/async_tx/Kconfig"
11
12#
13# Cryptographic API Configuration
14#
15menuconfig CRYPTO
16	tristate "Cryptographic API"
17	help
18	  This option provides the core Cryptographic API.
19
20if CRYPTO
21
22comment "Crypto core or helper"
23
24config CRYPTO_FIPS
25	bool "FIPS 200 compliance"
26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27	depends on MODULE_SIG
28	help
29	  This options enables the fips boot option which is
30	  required if you want to system to operate in a FIPS 200
31	  certification.  You should say no unless you know what
32	  this is.
33
34config CRYPTO_ALGAPI
35	tristate
36	select CRYPTO_ALGAPI2
37	help
38	  This option provides the API for cryptographic algorithms.
39
40config CRYPTO_ALGAPI2
41	tristate
42
43config CRYPTO_AEAD
44	tristate
45	select CRYPTO_AEAD2
46	select CRYPTO_ALGAPI
47
48config CRYPTO_AEAD2
49	tristate
50	select CRYPTO_ALGAPI2
51	select CRYPTO_NULL2
52	select CRYPTO_RNG2
53
54config CRYPTO_BLKCIPHER
55	tristate
56	select CRYPTO_BLKCIPHER2
57	select CRYPTO_ALGAPI
58
59config CRYPTO_BLKCIPHER2
60	tristate
61	select CRYPTO_ALGAPI2
62	select CRYPTO_RNG2
63	select CRYPTO_WORKQUEUE
64
65config CRYPTO_HASH
66	tristate
67	select CRYPTO_HASH2
68	select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71	tristate
72	select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75	tristate
76	select CRYPTO_RNG2
77	select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80	tristate
81	select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84	tristate
85	select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88	tristate
89	select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92	tristate
93	select CRYPTO_AKCIPHER2
94	select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97	tristate
98	select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101	tristate
102	select CRYPTO_ALGAPI
103	select CRYPTO_KPP2
104
105config CRYPTO_RSA
106	tristate "RSA algorithm"
107	select CRYPTO_AKCIPHER
108	select CRYPTO_MANAGER
109	select MPILIB
110	select ASN1
111	help
112	  Generic implementation of the RSA public key algorithm.
113
114config CRYPTO_DH
115	tristate "Diffie-Hellman algorithm"
116	select CRYPTO_KPP
117	select MPILIB
118	help
119	  Generic implementation of the Diffie-Hellman algorithm.
120
121config CRYPTO_ECDH
122	tristate "ECDH algorithm"
123	select CRYTPO_KPP
124	help
125	  Generic implementation of the ECDH algorithm
126
127config CRYPTO_MANAGER
128	tristate "Cryptographic algorithm manager"
129	select CRYPTO_MANAGER2
130	help
131	  Create default cryptographic template instantiations such as
132	  cbc(aes).
133
134config CRYPTO_MANAGER2
135	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
136	select CRYPTO_AEAD2
137	select CRYPTO_HASH2
138	select CRYPTO_BLKCIPHER2
139	select CRYPTO_AKCIPHER2
140	select CRYPTO_KPP2
141
142config CRYPTO_USER
143	tristate "Userspace cryptographic algorithm configuration"
144	depends on NET
145	select CRYPTO_MANAGER
146	help
147	  Userspace configuration for cryptographic instantiations such as
148	  cbc(aes).
149
150config CRYPTO_MANAGER_DISABLE_TESTS
151	bool "Disable run-time self tests"
152	default y
153	depends on CRYPTO_MANAGER2
154	help
155	  Disable run-time self tests that normally take place at
156	  algorithm registration.
157
158config CRYPTO_GF128MUL
159	tristate "GF(2^128) multiplication functions"
160	help
161	  Efficient table driven implementation of multiplications in the
162	  field GF(2^128).  This is needed by some cypher modes. This
163	  option will be selected automatically if you select such a
164	  cipher mode.  Only select this option by hand if you expect to load
165	  an external module that requires these functions.
166
167config CRYPTO_NULL
168	tristate "Null algorithms"
169	select CRYPTO_NULL2
170	help
171	  These are 'Null' algorithms, used by IPsec, which do nothing.
172
173config CRYPTO_NULL2
174	tristate
175	select CRYPTO_ALGAPI2
176	select CRYPTO_BLKCIPHER2
177	select CRYPTO_HASH2
178
179config CRYPTO_PCRYPT
180	tristate "Parallel crypto engine"
181	depends on SMP
182	select PADATA
183	select CRYPTO_MANAGER
184	select CRYPTO_AEAD
185	help
186	  This converts an arbitrary crypto algorithm into a parallel
187	  algorithm that executes in kernel threads.
188
189config CRYPTO_WORKQUEUE
190       tristate
191
192config CRYPTO_CRYPTD
193	tristate "Software async crypto daemon"
194	select CRYPTO_BLKCIPHER
195	select CRYPTO_HASH
196	select CRYPTO_MANAGER
197	select CRYPTO_WORKQUEUE
198	help
199	  This is a generic software asynchronous crypto daemon that
200	  converts an arbitrary synchronous software crypto algorithm
201	  into an asynchronous algorithm that executes in a kernel thread.
202
203config CRYPTO_MCRYPTD
204	tristate "Software async multi-buffer crypto daemon"
205	select CRYPTO_BLKCIPHER
206	select CRYPTO_HASH
207	select CRYPTO_MANAGER
208	select CRYPTO_WORKQUEUE
209	help
210	  This is a generic software asynchronous crypto daemon that
211	  provides the kernel thread to assist multi-buffer crypto
212	  algorithms for submitting jobs and flushing jobs in multi-buffer
213	  crypto algorithms.  Multi-buffer crypto algorithms are executed
214	  in the context of this kernel thread and drivers can post
215	  their crypto request asynchronously to be processed by this daemon.
216
217config CRYPTO_AUTHENC
218	tristate "Authenc support"
219	select CRYPTO_AEAD
220	select CRYPTO_BLKCIPHER
221	select CRYPTO_MANAGER
222	select CRYPTO_HASH
223	select CRYPTO_NULL
224	help
225	  Authenc: Combined mode wrapper for IPsec.
226	  This is required for IPSec.
227
228config CRYPTO_TEST
229	tristate "Testing module"
230	depends on m
231	select CRYPTO_MANAGER
232	help
233	  Quick & dirty crypto test module.
234
235config CRYPTO_ABLK_HELPER
236	tristate
237	select CRYPTO_CRYPTD
238
239config CRYPTO_GLUE_HELPER_X86
240	tristate
241	depends on X86
242	select CRYPTO_ALGAPI
243
244config CRYPTO_ENGINE
245	tristate
246
247comment "Authenticated Encryption with Associated Data"
248
249config CRYPTO_CCM
250	tristate "CCM support"
251	select CRYPTO_CTR
252	select CRYPTO_AEAD
253	help
254	  Support for Counter with CBC MAC. Required for IPsec.
255
256config CRYPTO_GCM
257	tristate "GCM/GMAC support"
258	select CRYPTO_CTR
259	select CRYPTO_AEAD
260	select CRYPTO_GHASH
261	select CRYPTO_NULL
262	help
263	  Support for Galois/Counter Mode (GCM) and Galois Message
264	  Authentication Code (GMAC). Required for IPSec.
265
266config CRYPTO_CHACHA20POLY1305
267	tristate "ChaCha20-Poly1305 AEAD support"
268	select CRYPTO_CHACHA20
269	select CRYPTO_POLY1305
270	select CRYPTO_AEAD
271	help
272	  ChaCha20-Poly1305 AEAD support, RFC7539.
273
274	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
275	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
276	  IETF protocols.
277
278config CRYPTO_SEQIV
279	tristate "Sequence Number IV Generator"
280	select CRYPTO_AEAD
281	select CRYPTO_BLKCIPHER
282	select CRYPTO_NULL
283	select CRYPTO_RNG_DEFAULT
284	help
285	  This IV generator generates an IV based on a sequence number by
286	  xoring it with a salt.  This algorithm is mainly useful for CTR
287
288config CRYPTO_ECHAINIV
289	tristate "Encrypted Chain IV Generator"
290	select CRYPTO_AEAD
291	select CRYPTO_NULL
292	select CRYPTO_RNG_DEFAULT
293	default m
294	help
295	  This IV generator generates an IV based on the encryption of
296	  a sequence number xored with a salt.  This is the default
297	  algorithm for CBC.
298
299comment "Block modes"
300
301config CRYPTO_CBC
302	tristate "CBC support"
303	select CRYPTO_BLKCIPHER
304	select CRYPTO_MANAGER
305	help
306	  CBC: Cipher Block Chaining mode
307	  This block cipher algorithm is required for IPSec.
308
309config CRYPTO_CTR
310	tristate "CTR support"
311	select CRYPTO_BLKCIPHER
312	select CRYPTO_SEQIV
313	select CRYPTO_MANAGER
314	help
315	  CTR: Counter mode
316	  This block cipher algorithm is required for IPSec.
317
318config CRYPTO_CTS
319	tristate "CTS support"
320	select CRYPTO_BLKCIPHER
321	help
322	  CTS: Cipher Text Stealing
323	  This is the Cipher Text Stealing mode as described by
324	  Section 8 of rfc2040 and referenced by rfc3962.
325	  (rfc3962 includes errata information in its Appendix A)
326	  This mode is required for Kerberos gss mechanism support
327	  for AES encryption.
328
329config CRYPTO_ECB
330	tristate "ECB support"
331	select CRYPTO_BLKCIPHER
332	select CRYPTO_MANAGER
333	help
334	  ECB: Electronic CodeBook mode
335	  This is the simplest block cipher algorithm.  It simply encrypts
336	  the input block by block.
337
338config CRYPTO_LRW
339	tristate "LRW support"
340	select CRYPTO_BLKCIPHER
341	select CRYPTO_MANAGER
342	select CRYPTO_GF128MUL
343	help
344	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
345	  narrow block cipher mode for dm-crypt.  Use it with cipher
346	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
347	  The first 128, 192 or 256 bits in the key are used for AES and the
348	  rest is used to tie each cipher block to its logical position.
349
350config CRYPTO_PCBC
351	tristate "PCBC support"
352	select CRYPTO_BLKCIPHER
353	select CRYPTO_MANAGER
354	help
355	  PCBC: Propagating Cipher Block Chaining mode
356	  This block cipher algorithm is required for RxRPC.
357
358config CRYPTO_XTS
359	tristate "XTS support"
360	select CRYPTO_BLKCIPHER
361	select CRYPTO_MANAGER
362	select CRYPTO_GF128MUL
363	help
364	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
365	  key size 256, 384 or 512 bits. This implementation currently
366	  can't handle a sectorsize which is not a multiple of 16 bytes.
367
368config CRYPTO_KEYWRAP
369	tristate "Key wrapping support"
370	select CRYPTO_BLKCIPHER
371	help
372	  Support for key wrapping (NIST SP800-38F / RFC3394) without
373	  padding.
374
375comment "Hash modes"
376
377config CRYPTO_CMAC
378	tristate "CMAC support"
379	select CRYPTO_HASH
380	select CRYPTO_MANAGER
381	help
382	  Cipher-based Message Authentication Code (CMAC) specified by
383	  The National Institute of Standards and Technology (NIST).
384
385	  https://tools.ietf.org/html/rfc4493
386	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
387
388config CRYPTO_HMAC
389	tristate "HMAC support"
390	select CRYPTO_HASH
391	select CRYPTO_MANAGER
392	help
393	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
394	  This is required for IPSec.
395
396config CRYPTO_XCBC
397	tristate "XCBC support"
398	select CRYPTO_HASH
399	select CRYPTO_MANAGER
400	help
401	  XCBC: Keyed-Hashing with encryption algorithm
402		http://www.ietf.org/rfc/rfc3566.txt
403		http://csrc.nist.gov/encryption/modes/proposedmodes/
404		 xcbc-mac/xcbc-mac-spec.pdf
405
406config CRYPTO_VMAC
407	tristate "VMAC support"
408	select CRYPTO_HASH
409	select CRYPTO_MANAGER
410	help
411	  VMAC is a message authentication algorithm designed for
412	  very high speed on 64-bit architectures.
413
414	  See also:
415	  <http://fastcrypto.org/vmac>
416
417comment "Digest"
418
419config CRYPTO_CRC32C
420	tristate "CRC32c CRC algorithm"
421	select CRYPTO_HASH
422	select CRC32
423	help
424	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
425	  by iSCSI for header and data digests and by others.
426	  See Castagnoli93.  Module will be crc32c.
427
428config CRYPTO_CRC32C_INTEL
429	tristate "CRC32c INTEL hardware acceleration"
430	depends on X86
431	select CRYPTO_HASH
432	help
433	  In Intel processor with SSE4.2 supported, the processor will
434	  support CRC32C implementation using hardware accelerated CRC32
435	  instruction. This option will create 'crc32c-intel' module,
436	  which will enable any routine to use the CRC32 instruction to
437	  gain performance compared with software implementation.
438	  Module will be crc32c-intel.
439
440config CRYPT_CRC32C_VPMSUM
441	tristate "CRC32c CRC algorithm (powerpc64)"
442	depends on PPC64 && ALTIVEC
443	select CRYPTO_HASH
444	select CRC32
445	help
446	  CRC32c algorithm implemented using vector polynomial multiply-sum
447	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
448	  and newer processors for improved performance.
449
450
451config CRYPTO_CRC32C_SPARC64
452	tristate "CRC32c CRC algorithm (SPARC64)"
453	depends on SPARC64
454	select CRYPTO_HASH
455	select CRC32
456	help
457	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
458	  when available.
459
460config CRYPTO_CRC32
461	tristate "CRC32 CRC algorithm"
462	select CRYPTO_HASH
463	select CRC32
464	help
465	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
466	  Shash crypto api wrappers to crc32_le function.
467
468config CRYPTO_CRC32_PCLMUL
469	tristate "CRC32 PCLMULQDQ hardware acceleration"
470	depends on X86
471	select CRYPTO_HASH
472	select CRC32
473	help
474	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
475	  and PCLMULQDQ supported, the processor will support
476	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
477	  instruction. This option will create 'crc32-plcmul' module,
478	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
479	  and gain better performance as compared with the table implementation.
480
481config CRYPTO_CRCT10DIF
482	tristate "CRCT10DIF algorithm"
483	select CRYPTO_HASH
484	help
485	  CRC T10 Data Integrity Field computation is being cast as
486	  a crypto transform.  This allows for faster crc t10 diff
487	  transforms to be used if they are available.
488
489config CRYPTO_CRCT10DIF_PCLMUL
490	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
491	depends on X86 && 64BIT && CRC_T10DIF
492	select CRYPTO_HASH
493	help
494	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
495	  CRC T10 DIF PCLMULQDQ computation can be hardware
496	  accelerated PCLMULQDQ instruction. This option will create
497	  'crct10dif-plcmul' module, which is faster when computing the
498	  crct10dif checksum as compared with the generic table implementation.
499
500config CRYPTO_GHASH
501	tristate "GHASH digest algorithm"
502	select CRYPTO_GF128MUL
503	select CRYPTO_HASH
504	help
505	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
506
507config CRYPTO_POLY1305
508	tristate "Poly1305 authenticator algorithm"
509	select CRYPTO_HASH
510	help
511	  Poly1305 authenticator algorithm, RFC7539.
512
513	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
514	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
515	  in IETF protocols. This is the portable C implementation of Poly1305.
516
517config CRYPTO_POLY1305_X86_64
518	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
519	depends on X86 && 64BIT
520	select CRYPTO_POLY1305
521	help
522	  Poly1305 authenticator algorithm, RFC7539.
523
524	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
525	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
526	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
527	  instructions.
528
529config CRYPTO_MD4
530	tristate "MD4 digest algorithm"
531	select CRYPTO_HASH
532	help
533	  MD4 message digest algorithm (RFC1320).
534
535config CRYPTO_MD5
536	tristate "MD5 digest algorithm"
537	select CRYPTO_HASH
538	help
539	  MD5 message digest algorithm (RFC1321).
540
541config CRYPTO_MD5_OCTEON
542	tristate "MD5 digest algorithm (OCTEON)"
543	depends on CPU_CAVIUM_OCTEON
544	select CRYPTO_MD5
545	select CRYPTO_HASH
546	help
547	  MD5 message digest algorithm (RFC1321) implemented
548	  using OCTEON crypto instructions, when available.
549
550config CRYPTO_MD5_PPC
551	tristate "MD5 digest algorithm (PPC)"
552	depends on PPC
553	select CRYPTO_HASH
554	help
555	  MD5 message digest algorithm (RFC1321) implemented
556	  in PPC assembler.
557
558config CRYPTO_MD5_SPARC64
559	tristate "MD5 digest algorithm (SPARC64)"
560	depends on SPARC64
561	select CRYPTO_MD5
562	select CRYPTO_HASH
563	help
564	  MD5 message digest algorithm (RFC1321) implemented
565	  using sparc64 crypto instructions, when available.
566
567config CRYPTO_MICHAEL_MIC
568	tristate "Michael MIC keyed digest algorithm"
569	select CRYPTO_HASH
570	help
571	  Michael MIC is used for message integrity protection in TKIP
572	  (IEEE 802.11i). This algorithm is required for TKIP, but it
573	  should not be used for other purposes because of the weakness
574	  of the algorithm.
575
576config CRYPTO_RMD128
577	tristate "RIPEMD-128 digest algorithm"
578	select CRYPTO_HASH
579	help
580	  RIPEMD-128 (ISO/IEC 10118-3:2004).
581
582	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
583	  be used as a secure replacement for RIPEMD. For other use cases,
584	  RIPEMD-160 should be used.
585
586	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
587	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
588
589config CRYPTO_RMD160
590	tristate "RIPEMD-160 digest algorithm"
591	select CRYPTO_HASH
592	help
593	  RIPEMD-160 (ISO/IEC 10118-3:2004).
594
595	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
596	  to be used as a secure replacement for the 128-bit hash functions
597	  MD4, MD5 and it's predecessor RIPEMD
598	  (not to be confused with RIPEMD-128).
599
600	  It's speed is comparable to SHA1 and there are no known attacks
601	  against RIPEMD-160.
602
603	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
604	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
605
606config CRYPTO_RMD256
607	tristate "RIPEMD-256 digest algorithm"
608	select CRYPTO_HASH
609	help
610	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
611	  256 bit hash. It is intended for applications that require
612	  longer hash-results, without needing a larger security level
613	  (than RIPEMD-128).
614
615	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
616	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
617
618config CRYPTO_RMD320
619	tristate "RIPEMD-320 digest algorithm"
620	select CRYPTO_HASH
621	help
622	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
623	  320 bit hash. It is intended for applications that require
624	  longer hash-results, without needing a larger security level
625	  (than RIPEMD-160).
626
627	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
628	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
629
630config CRYPTO_SHA1
631	tristate "SHA1 digest algorithm"
632	select CRYPTO_HASH
633	help
634	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
635
636config CRYPTO_SHA1_SSSE3
637	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
638	depends on X86 && 64BIT
639	select CRYPTO_SHA1
640	select CRYPTO_HASH
641	help
642	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
643	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
644	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
645	  when available.
646
647config CRYPTO_SHA256_SSSE3
648	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
649	depends on X86 && 64BIT
650	select CRYPTO_SHA256
651	select CRYPTO_HASH
652	help
653	  SHA-256 secure hash standard (DFIPS 180-2) implemented
654	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
655	  Extensions version 1 (AVX1), or Advanced Vector Extensions
656	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
657	  Instructions) when available.
658
659config CRYPTO_SHA512_SSSE3
660	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
661	depends on X86 && 64BIT
662	select CRYPTO_SHA512
663	select CRYPTO_HASH
664	help
665	  SHA-512 secure hash standard (DFIPS 180-2) implemented
666	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
667	  Extensions version 1 (AVX1), or Advanced Vector Extensions
668	  version 2 (AVX2) instructions, when available.
669
670config CRYPTO_SHA1_OCTEON
671	tristate "SHA1 digest algorithm (OCTEON)"
672	depends on CPU_CAVIUM_OCTEON
673	select CRYPTO_SHA1
674	select CRYPTO_HASH
675	help
676	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
677	  using OCTEON crypto instructions, when available.
678
679config CRYPTO_SHA1_SPARC64
680	tristate "SHA1 digest algorithm (SPARC64)"
681	depends on SPARC64
682	select CRYPTO_SHA1
683	select CRYPTO_HASH
684	help
685	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
686	  using sparc64 crypto instructions, when available.
687
688config CRYPTO_SHA1_PPC
689	tristate "SHA1 digest algorithm (powerpc)"
690	depends on PPC
691	help
692	  This is the powerpc hardware accelerated implementation of the
693	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
694
695config CRYPTO_SHA1_PPC_SPE
696	tristate "SHA1 digest algorithm (PPC SPE)"
697	depends on PPC && SPE
698	help
699	  SHA-1 secure hash standard (DFIPS 180-4) implemented
700	  using powerpc SPE SIMD instruction set.
701
702config CRYPTO_SHA1_MB
703	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
704	depends on X86 && 64BIT
705	select CRYPTO_SHA1
706	select CRYPTO_HASH
707	select CRYPTO_MCRYPTD
708	help
709	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
710	  using multi-buffer technique.  This algorithm computes on
711	  multiple data lanes concurrently with SIMD instructions for
712	  better throughput.  It should not be enabled by default but
713	  used when there is significant amount of work to keep the keep
714	  the data lanes filled to get performance benefit.  If the data
715	  lanes remain unfilled, a flush operation will be initiated to
716	  process the crypto jobs, adding a slight latency.
717
718config CRYPTO_SHA256_MB
719	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
720	depends on X86 && 64BIT
721	select CRYPTO_SHA256
722	select CRYPTO_HASH
723	select CRYPTO_MCRYPTD
724	help
725	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
726	  using multi-buffer technique.  This algorithm computes on
727	  multiple data lanes concurrently with SIMD instructions for
728	  better throughput.  It should not be enabled by default but
729	  used when there is significant amount of work to keep the keep
730	  the data lanes filled to get performance benefit.  If the data
731	  lanes remain unfilled, a flush operation will be initiated to
732	  process the crypto jobs, adding a slight latency.
733
734config CRYPTO_SHA512_MB
735        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
736        depends on X86 && 64BIT
737        select CRYPTO_SHA512
738        select CRYPTO_HASH
739        select CRYPTO_MCRYPTD
740        help
741          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
742          using multi-buffer technique.  This algorithm computes on
743          multiple data lanes concurrently with SIMD instructions for
744          better throughput.  It should not be enabled by default but
745          used when there is significant amount of work to keep the keep
746          the data lanes filled to get performance benefit.  If the data
747          lanes remain unfilled, a flush operation will be initiated to
748          process the crypto jobs, adding a slight latency.
749
750config CRYPTO_SHA256
751	tristate "SHA224 and SHA256 digest algorithm"
752	select CRYPTO_HASH
753	help
754	  SHA256 secure hash standard (DFIPS 180-2).
755
756	  This version of SHA implements a 256 bit hash with 128 bits of
757	  security against collision attacks.
758
759	  This code also includes SHA-224, a 224 bit hash with 112 bits
760	  of security against collision attacks.
761
762config CRYPTO_SHA256_PPC_SPE
763	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
764	depends on PPC && SPE
765	select CRYPTO_SHA256
766	select CRYPTO_HASH
767	help
768	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
769	  implemented using powerpc SPE SIMD instruction set.
770
771config CRYPTO_SHA256_OCTEON
772	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
773	depends on CPU_CAVIUM_OCTEON
774	select CRYPTO_SHA256
775	select CRYPTO_HASH
776	help
777	  SHA-256 secure hash standard (DFIPS 180-2) implemented
778	  using OCTEON crypto instructions, when available.
779
780config CRYPTO_SHA256_SPARC64
781	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
782	depends on SPARC64
783	select CRYPTO_SHA256
784	select CRYPTO_HASH
785	help
786	  SHA-256 secure hash standard (DFIPS 180-2) implemented
787	  using sparc64 crypto instructions, when available.
788
789config CRYPTO_SHA512
790	tristate "SHA384 and SHA512 digest algorithms"
791	select CRYPTO_HASH
792	help
793	  SHA512 secure hash standard (DFIPS 180-2).
794
795	  This version of SHA implements a 512 bit hash with 256 bits of
796	  security against collision attacks.
797
798	  This code also includes SHA-384, a 384 bit hash with 192 bits
799	  of security against collision attacks.
800
801config CRYPTO_SHA512_OCTEON
802	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
803	depends on CPU_CAVIUM_OCTEON
804	select CRYPTO_SHA512
805	select CRYPTO_HASH
806	help
807	  SHA-512 secure hash standard (DFIPS 180-2) implemented
808	  using OCTEON crypto instructions, when available.
809
810config CRYPTO_SHA512_SPARC64
811	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
812	depends on SPARC64
813	select CRYPTO_SHA512
814	select CRYPTO_HASH
815	help
816	  SHA-512 secure hash standard (DFIPS 180-2) implemented
817	  using sparc64 crypto instructions, when available.
818
819config CRYPTO_SHA3
820	tristate "SHA3 digest algorithm"
821	select CRYPTO_HASH
822	help
823	  SHA-3 secure hash standard (DFIPS 202). It's based on
824	  cryptographic sponge function family called Keccak.
825
826	  References:
827	  http://keccak.noekeon.org/
828
829config CRYPTO_TGR192
830	tristate "Tiger digest algorithms"
831	select CRYPTO_HASH
832	help
833	  Tiger hash algorithm 192, 160 and 128-bit hashes
834
835	  Tiger is a hash function optimized for 64-bit processors while
836	  still having decent performance on 32-bit processors.
837	  Tiger was developed by Ross Anderson and Eli Biham.
838
839	  See also:
840	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
841
842config CRYPTO_WP512
843	tristate "Whirlpool digest algorithms"
844	select CRYPTO_HASH
845	help
846	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
847
848	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
849	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
850
851	  See also:
852	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
853
854config CRYPTO_GHASH_CLMUL_NI_INTEL
855	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
856	depends on X86 && 64BIT
857	select CRYPTO_CRYPTD
858	help
859	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
860	  The implementation is accelerated by CLMUL-NI of Intel.
861
862comment "Ciphers"
863
864config CRYPTO_AES
865	tristate "AES cipher algorithms"
866	select CRYPTO_ALGAPI
867	help
868	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
869	  algorithm.
870
871	  Rijndael appears to be consistently a very good performer in
872	  both hardware and software across a wide range of computing
873	  environments regardless of its use in feedback or non-feedback
874	  modes. Its key setup time is excellent, and its key agility is
875	  good. Rijndael's very low memory requirements make it very well
876	  suited for restricted-space environments, in which it also
877	  demonstrates excellent performance. Rijndael's operations are
878	  among the easiest to defend against power and timing attacks.
879
880	  The AES specifies three key sizes: 128, 192 and 256 bits
881
882	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
883
884config CRYPTO_AES_586
885	tristate "AES cipher algorithms (i586)"
886	depends on (X86 || UML_X86) && !64BIT
887	select CRYPTO_ALGAPI
888	select CRYPTO_AES
889	help
890	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
891	  algorithm.
892
893	  Rijndael appears to be consistently a very good performer in
894	  both hardware and software across a wide range of computing
895	  environments regardless of its use in feedback or non-feedback
896	  modes. Its key setup time is excellent, and its key agility is
897	  good. Rijndael's very low memory requirements make it very well
898	  suited for restricted-space environments, in which it also
899	  demonstrates excellent performance. Rijndael's operations are
900	  among the easiest to defend against power and timing attacks.
901
902	  The AES specifies three key sizes: 128, 192 and 256 bits
903
904	  See <http://csrc.nist.gov/encryption/aes/> for more information.
905
906config CRYPTO_AES_X86_64
907	tristate "AES cipher algorithms (x86_64)"
908	depends on (X86 || UML_X86) && 64BIT
909	select CRYPTO_ALGAPI
910	select CRYPTO_AES
911	help
912	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
913	  algorithm.
914
915	  Rijndael appears to be consistently a very good performer in
916	  both hardware and software across a wide range of computing
917	  environments regardless of its use in feedback or non-feedback
918	  modes. Its key setup time is excellent, and its key agility is
919	  good. Rijndael's very low memory requirements make it very well
920	  suited for restricted-space environments, in which it also
921	  demonstrates excellent performance. Rijndael's operations are
922	  among the easiest to defend against power and timing attacks.
923
924	  The AES specifies three key sizes: 128, 192 and 256 bits
925
926	  See <http://csrc.nist.gov/encryption/aes/> for more information.
927
928config CRYPTO_AES_NI_INTEL
929	tristate "AES cipher algorithms (AES-NI)"
930	depends on X86
931	select CRYPTO_AES_X86_64 if 64BIT
932	select CRYPTO_AES_586 if !64BIT
933	select CRYPTO_CRYPTD
934	select CRYPTO_ABLK_HELPER
935	select CRYPTO_ALGAPI
936	select CRYPTO_GLUE_HELPER_X86 if 64BIT
937	select CRYPTO_LRW
938	select CRYPTO_XTS
939	help
940	  Use Intel AES-NI instructions for AES algorithm.
941
942	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
943	  algorithm.
944
945	  Rijndael appears to be consistently a very good performer in
946	  both hardware and software across a wide range of computing
947	  environments regardless of its use in feedback or non-feedback
948	  modes. Its key setup time is excellent, and its key agility is
949	  good. Rijndael's very low memory requirements make it very well
950	  suited for restricted-space environments, in which it also
951	  demonstrates excellent performance. Rijndael's operations are
952	  among the easiest to defend against power and timing attacks.
953
954	  The AES specifies three key sizes: 128, 192 and 256 bits
955
956	  See <http://csrc.nist.gov/encryption/aes/> for more information.
957
958	  In addition to AES cipher algorithm support, the acceleration
959	  for some popular block cipher mode is supported too, including
960	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
961	  acceleration for CTR.
962
963config CRYPTO_AES_SPARC64
964	tristate "AES cipher algorithms (SPARC64)"
965	depends on SPARC64
966	select CRYPTO_CRYPTD
967	select CRYPTO_ALGAPI
968	help
969	  Use SPARC64 crypto opcodes for AES algorithm.
970
971	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
972	  algorithm.
973
974	  Rijndael appears to be consistently a very good performer in
975	  both hardware and software across a wide range of computing
976	  environments regardless of its use in feedback or non-feedback
977	  modes. Its key setup time is excellent, and its key agility is
978	  good. Rijndael's very low memory requirements make it very well
979	  suited for restricted-space environments, in which it also
980	  demonstrates excellent performance. Rijndael's operations are
981	  among the easiest to defend against power and timing attacks.
982
983	  The AES specifies three key sizes: 128, 192 and 256 bits
984
985	  See <http://csrc.nist.gov/encryption/aes/> for more information.
986
987	  In addition to AES cipher algorithm support, the acceleration
988	  for some popular block cipher mode is supported too, including
989	  ECB and CBC.
990
991config CRYPTO_AES_PPC_SPE
992	tristate "AES cipher algorithms (PPC SPE)"
993	depends on PPC && SPE
994	help
995	  AES cipher algorithms (FIPS-197). Additionally the acceleration
996	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
997	  This module should only be used for low power (router) devices
998	  without hardware AES acceleration (e.g. caam crypto). It reduces the
999	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1000	  timining attacks. Nevertheless it might be not as secure as other
1001	  architecture specific assembler implementations that work on 1KB
1002	  tables or 256 bytes S-boxes.
1003
1004config CRYPTO_ANUBIS
1005	tristate "Anubis cipher algorithm"
1006	select CRYPTO_ALGAPI
1007	help
1008	  Anubis cipher algorithm.
1009
1010	  Anubis is a variable key length cipher which can use keys from
1011	  128 bits to 320 bits in length.  It was evaluated as a entrant
1012	  in the NESSIE competition.
1013
1014	  See also:
1015	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1016	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1017
1018config CRYPTO_ARC4
1019	tristate "ARC4 cipher algorithm"
1020	select CRYPTO_BLKCIPHER
1021	help
1022	  ARC4 cipher algorithm.
1023
1024	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1025	  bits in length.  This algorithm is required for driver-based
1026	  WEP, but it should not be for other purposes because of the
1027	  weakness of the algorithm.
1028
1029config CRYPTO_BLOWFISH
1030	tristate "Blowfish cipher algorithm"
1031	select CRYPTO_ALGAPI
1032	select CRYPTO_BLOWFISH_COMMON
1033	help
1034	  Blowfish cipher algorithm, by Bruce Schneier.
1035
1036	  This is a variable key length cipher which can use keys from 32
1037	  bits to 448 bits in length.  It's fast, simple and specifically
1038	  designed for use on "large microprocessors".
1039
1040	  See also:
1041	  <http://www.schneier.com/blowfish.html>
1042
1043config CRYPTO_BLOWFISH_COMMON
1044	tristate
1045	help
1046	  Common parts of the Blowfish cipher algorithm shared by the
1047	  generic c and the assembler implementations.
1048
1049	  See also:
1050	  <http://www.schneier.com/blowfish.html>
1051
1052config CRYPTO_BLOWFISH_X86_64
1053	tristate "Blowfish cipher algorithm (x86_64)"
1054	depends on X86 && 64BIT
1055	select CRYPTO_ALGAPI
1056	select CRYPTO_BLOWFISH_COMMON
1057	help
1058	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1059
1060	  This is a variable key length cipher which can use keys from 32
1061	  bits to 448 bits in length.  It's fast, simple and specifically
1062	  designed for use on "large microprocessors".
1063
1064	  See also:
1065	  <http://www.schneier.com/blowfish.html>
1066
1067config CRYPTO_CAMELLIA
1068	tristate "Camellia cipher algorithms"
1069	depends on CRYPTO
1070	select CRYPTO_ALGAPI
1071	help
1072	  Camellia cipher algorithms module.
1073
1074	  Camellia is a symmetric key block cipher developed jointly
1075	  at NTT and Mitsubishi Electric Corporation.
1076
1077	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1078
1079	  See also:
1080	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1081
1082config CRYPTO_CAMELLIA_X86_64
1083	tristate "Camellia cipher algorithm (x86_64)"
1084	depends on X86 && 64BIT
1085	depends on CRYPTO
1086	select CRYPTO_ALGAPI
1087	select CRYPTO_GLUE_HELPER_X86
1088	select CRYPTO_LRW
1089	select CRYPTO_XTS
1090	help
1091	  Camellia cipher algorithm module (x86_64).
1092
1093	  Camellia is a symmetric key block cipher developed jointly
1094	  at NTT and Mitsubishi Electric Corporation.
1095
1096	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1097
1098	  See also:
1099	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1100
1101config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1102	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1103	depends on X86 && 64BIT
1104	depends on CRYPTO
1105	select CRYPTO_ALGAPI
1106	select CRYPTO_CRYPTD
1107	select CRYPTO_ABLK_HELPER
1108	select CRYPTO_GLUE_HELPER_X86
1109	select CRYPTO_CAMELLIA_X86_64
1110	select CRYPTO_LRW
1111	select CRYPTO_XTS
1112	help
1113	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1114
1115	  Camellia is a symmetric key block cipher developed jointly
1116	  at NTT and Mitsubishi Electric Corporation.
1117
1118	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1119
1120	  See also:
1121	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1122
1123config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1124	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1125	depends on X86 && 64BIT
1126	depends on CRYPTO
1127	select CRYPTO_ALGAPI
1128	select CRYPTO_CRYPTD
1129	select CRYPTO_ABLK_HELPER
1130	select CRYPTO_GLUE_HELPER_X86
1131	select CRYPTO_CAMELLIA_X86_64
1132	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1133	select CRYPTO_LRW
1134	select CRYPTO_XTS
1135	help
1136	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1137
1138	  Camellia is a symmetric key block cipher developed jointly
1139	  at NTT and Mitsubishi Electric Corporation.
1140
1141	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1142
1143	  See also:
1144	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1145
1146config CRYPTO_CAMELLIA_SPARC64
1147	tristate "Camellia cipher algorithm (SPARC64)"
1148	depends on SPARC64
1149	depends on CRYPTO
1150	select CRYPTO_ALGAPI
1151	help
1152	  Camellia cipher algorithm module (SPARC64).
1153
1154	  Camellia is a symmetric key block cipher developed jointly
1155	  at NTT and Mitsubishi Electric Corporation.
1156
1157	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1158
1159	  See also:
1160	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1161
1162config CRYPTO_CAST_COMMON
1163	tristate
1164	help
1165	  Common parts of the CAST cipher algorithms shared by the
1166	  generic c and the assembler implementations.
1167
1168config CRYPTO_CAST5
1169	tristate "CAST5 (CAST-128) cipher algorithm"
1170	select CRYPTO_ALGAPI
1171	select CRYPTO_CAST_COMMON
1172	help
1173	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1174	  described in RFC2144.
1175
1176config CRYPTO_CAST5_AVX_X86_64
1177	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1178	depends on X86 && 64BIT
1179	select CRYPTO_ALGAPI
1180	select CRYPTO_CRYPTD
1181	select CRYPTO_ABLK_HELPER
1182	select CRYPTO_CAST_COMMON
1183	select CRYPTO_CAST5
1184	help
1185	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1186	  described in RFC2144.
1187
1188	  This module provides the Cast5 cipher algorithm that processes
1189	  sixteen blocks parallel using the AVX instruction set.
1190
1191config CRYPTO_CAST6
1192	tristate "CAST6 (CAST-256) cipher algorithm"
1193	select CRYPTO_ALGAPI
1194	select CRYPTO_CAST_COMMON
1195	help
1196	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1197	  described in RFC2612.
1198
1199config CRYPTO_CAST6_AVX_X86_64
1200	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1201	depends on X86 && 64BIT
1202	select CRYPTO_ALGAPI
1203	select CRYPTO_CRYPTD
1204	select CRYPTO_ABLK_HELPER
1205	select CRYPTO_GLUE_HELPER_X86
1206	select CRYPTO_CAST_COMMON
1207	select CRYPTO_CAST6
1208	select CRYPTO_LRW
1209	select CRYPTO_XTS
1210	help
1211	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1212	  described in RFC2612.
1213
1214	  This module provides the Cast6 cipher algorithm that processes
1215	  eight blocks parallel using the AVX instruction set.
1216
1217config CRYPTO_DES
1218	tristate "DES and Triple DES EDE cipher algorithms"
1219	select CRYPTO_ALGAPI
1220	help
1221	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1222
1223config CRYPTO_DES_SPARC64
1224	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1225	depends on SPARC64
1226	select CRYPTO_ALGAPI
1227	select CRYPTO_DES
1228	help
1229	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1230	  optimized using SPARC64 crypto opcodes.
1231
1232config CRYPTO_DES3_EDE_X86_64
1233	tristate "Triple DES EDE cipher algorithm (x86-64)"
1234	depends on X86 && 64BIT
1235	select CRYPTO_ALGAPI
1236	select CRYPTO_DES
1237	help
1238	  Triple DES EDE (FIPS 46-3) algorithm.
1239
1240	  This module provides implementation of the Triple DES EDE cipher
1241	  algorithm that is optimized for x86-64 processors. Two versions of
1242	  algorithm are provided; regular processing one input block and
1243	  one that processes three blocks parallel.
1244
1245config CRYPTO_FCRYPT
1246	tristate "FCrypt cipher algorithm"
1247	select CRYPTO_ALGAPI
1248	select CRYPTO_BLKCIPHER
1249	help
1250	  FCrypt algorithm used by RxRPC.
1251
1252config CRYPTO_KHAZAD
1253	tristate "Khazad cipher algorithm"
1254	select CRYPTO_ALGAPI
1255	help
1256	  Khazad cipher algorithm.
1257
1258	  Khazad was a finalist in the initial NESSIE competition.  It is
1259	  an algorithm optimized for 64-bit processors with good performance
1260	  on 32-bit processors.  Khazad uses an 128 bit key size.
1261
1262	  See also:
1263	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1264
1265config CRYPTO_SALSA20
1266	tristate "Salsa20 stream cipher algorithm"
1267	select CRYPTO_BLKCIPHER
1268	help
1269	  Salsa20 stream cipher algorithm.
1270
1271	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1272	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1273
1274	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1275	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1276
1277config CRYPTO_SALSA20_586
1278	tristate "Salsa20 stream cipher algorithm (i586)"
1279	depends on (X86 || UML_X86) && !64BIT
1280	select CRYPTO_BLKCIPHER
1281	help
1282	  Salsa20 stream cipher algorithm.
1283
1284	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1285	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1286
1287	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1288	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1289
1290config CRYPTO_SALSA20_X86_64
1291	tristate "Salsa20 stream cipher algorithm (x86_64)"
1292	depends on (X86 || UML_X86) && 64BIT
1293	select CRYPTO_BLKCIPHER
1294	help
1295	  Salsa20 stream cipher algorithm.
1296
1297	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1298	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1299
1300	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1301	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1302
1303config CRYPTO_CHACHA20
1304	tristate "ChaCha20 cipher algorithm"
1305	select CRYPTO_BLKCIPHER
1306	help
1307	  ChaCha20 cipher algorithm, RFC7539.
1308
1309	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1310	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1311	  This is the portable C implementation of ChaCha20.
1312
1313	  See also:
1314	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1315
1316config CRYPTO_CHACHA20_X86_64
1317	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1318	depends on X86 && 64BIT
1319	select CRYPTO_BLKCIPHER
1320	select CRYPTO_CHACHA20
1321	help
1322	  ChaCha20 cipher algorithm, RFC7539.
1323
1324	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1325	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1326	  This is the x86_64 assembler implementation using SIMD instructions.
1327
1328	  See also:
1329	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1330
1331config CRYPTO_SEED
1332	tristate "SEED cipher algorithm"
1333	select CRYPTO_ALGAPI
1334	help
1335	  SEED cipher algorithm (RFC4269).
1336
1337	  SEED is a 128-bit symmetric key block cipher that has been
1338	  developed by KISA (Korea Information Security Agency) as a
1339	  national standard encryption algorithm of the Republic of Korea.
1340	  It is a 16 round block cipher with the key size of 128 bit.
1341
1342	  See also:
1343	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1344
1345config CRYPTO_SERPENT
1346	tristate "Serpent cipher algorithm"
1347	select CRYPTO_ALGAPI
1348	help
1349	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1350
1351	  Keys are allowed to be from 0 to 256 bits in length, in steps
1352	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1353	  variant of Serpent for compatibility with old kerneli.org code.
1354
1355	  See also:
1356	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1357
1358config CRYPTO_SERPENT_SSE2_X86_64
1359	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1360	depends on X86 && 64BIT
1361	select CRYPTO_ALGAPI
1362	select CRYPTO_CRYPTD
1363	select CRYPTO_ABLK_HELPER
1364	select CRYPTO_GLUE_HELPER_X86
1365	select CRYPTO_SERPENT
1366	select CRYPTO_LRW
1367	select CRYPTO_XTS
1368	help
1369	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1370
1371	  Keys are allowed to be from 0 to 256 bits in length, in steps
1372	  of 8 bits.
1373
1374	  This module provides Serpent cipher algorithm that processes eight
1375	  blocks parallel using SSE2 instruction set.
1376
1377	  See also:
1378	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1379
1380config CRYPTO_SERPENT_SSE2_586
1381	tristate "Serpent cipher algorithm (i586/SSE2)"
1382	depends on X86 && !64BIT
1383	select CRYPTO_ALGAPI
1384	select CRYPTO_CRYPTD
1385	select CRYPTO_ABLK_HELPER
1386	select CRYPTO_GLUE_HELPER_X86
1387	select CRYPTO_SERPENT
1388	select CRYPTO_LRW
1389	select CRYPTO_XTS
1390	help
1391	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1392
1393	  Keys are allowed to be from 0 to 256 bits in length, in steps
1394	  of 8 bits.
1395
1396	  This module provides Serpent cipher algorithm that processes four
1397	  blocks parallel using SSE2 instruction set.
1398
1399	  See also:
1400	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1401
1402config CRYPTO_SERPENT_AVX_X86_64
1403	tristate "Serpent cipher algorithm (x86_64/AVX)"
1404	depends on X86 && 64BIT
1405	select CRYPTO_ALGAPI
1406	select CRYPTO_CRYPTD
1407	select CRYPTO_ABLK_HELPER
1408	select CRYPTO_GLUE_HELPER_X86
1409	select CRYPTO_SERPENT
1410	select CRYPTO_LRW
1411	select CRYPTO_XTS
1412	help
1413	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1414
1415	  Keys are allowed to be from 0 to 256 bits in length, in steps
1416	  of 8 bits.
1417
1418	  This module provides the Serpent cipher algorithm that processes
1419	  eight blocks parallel using the AVX instruction set.
1420
1421	  See also:
1422	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1423
1424config CRYPTO_SERPENT_AVX2_X86_64
1425	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1426	depends on X86 && 64BIT
1427	select CRYPTO_ALGAPI
1428	select CRYPTO_CRYPTD
1429	select CRYPTO_ABLK_HELPER
1430	select CRYPTO_GLUE_HELPER_X86
1431	select CRYPTO_SERPENT
1432	select CRYPTO_SERPENT_AVX_X86_64
1433	select CRYPTO_LRW
1434	select CRYPTO_XTS
1435	help
1436	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1437
1438	  Keys are allowed to be from 0 to 256 bits in length, in steps
1439	  of 8 bits.
1440
1441	  This module provides Serpent cipher algorithm that processes 16
1442	  blocks parallel using AVX2 instruction set.
1443
1444	  See also:
1445	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1446
1447config CRYPTO_TEA
1448	tristate "TEA, XTEA and XETA cipher algorithms"
1449	select CRYPTO_ALGAPI
1450	help
1451	  TEA cipher algorithm.
1452
1453	  Tiny Encryption Algorithm is a simple cipher that uses
1454	  many rounds for security.  It is very fast and uses
1455	  little memory.
1456
1457	  Xtendend Tiny Encryption Algorithm is a modification to
1458	  the TEA algorithm to address a potential key weakness
1459	  in the TEA algorithm.
1460
1461	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1462	  of the XTEA algorithm for compatibility purposes.
1463
1464config CRYPTO_TWOFISH
1465	tristate "Twofish cipher algorithm"
1466	select CRYPTO_ALGAPI
1467	select CRYPTO_TWOFISH_COMMON
1468	help
1469	  Twofish cipher algorithm.
1470
1471	  Twofish was submitted as an AES (Advanced Encryption Standard)
1472	  candidate cipher by researchers at CounterPane Systems.  It is a
1473	  16 round block cipher supporting key sizes of 128, 192, and 256
1474	  bits.
1475
1476	  See also:
1477	  <http://www.schneier.com/twofish.html>
1478
1479config CRYPTO_TWOFISH_COMMON
1480	tristate
1481	help
1482	  Common parts of the Twofish cipher algorithm shared by the
1483	  generic c and the assembler implementations.
1484
1485config CRYPTO_TWOFISH_586
1486	tristate "Twofish cipher algorithms (i586)"
1487	depends on (X86 || UML_X86) && !64BIT
1488	select CRYPTO_ALGAPI
1489	select CRYPTO_TWOFISH_COMMON
1490	help
1491	  Twofish cipher algorithm.
1492
1493	  Twofish was submitted as an AES (Advanced Encryption Standard)
1494	  candidate cipher by researchers at CounterPane Systems.  It is a
1495	  16 round block cipher supporting key sizes of 128, 192, and 256
1496	  bits.
1497
1498	  See also:
1499	  <http://www.schneier.com/twofish.html>
1500
1501config CRYPTO_TWOFISH_X86_64
1502	tristate "Twofish cipher algorithm (x86_64)"
1503	depends on (X86 || UML_X86) && 64BIT
1504	select CRYPTO_ALGAPI
1505	select CRYPTO_TWOFISH_COMMON
1506	help
1507	  Twofish cipher algorithm (x86_64).
1508
1509	  Twofish was submitted as an AES (Advanced Encryption Standard)
1510	  candidate cipher by researchers at CounterPane Systems.  It is a
1511	  16 round block cipher supporting key sizes of 128, 192, and 256
1512	  bits.
1513
1514	  See also:
1515	  <http://www.schneier.com/twofish.html>
1516
1517config CRYPTO_TWOFISH_X86_64_3WAY
1518	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1519	depends on X86 && 64BIT
1520	select CRYPTO_ALGAPI
1521	select CRYPTO_TWOFISH_COMMON
1522	select CRYPTO_TWOFISH_X86_64
1523	select CRYPTO_GLUE_HELPER_X86
1524	select CRYPTO_LRW
1525	select CRYPTO_XTS
1526	help
1527	  Twofish cipher algorithm (x86_64, 3-way parallel).
1528
1529	  Twofish was submitted as an AES (Advanced Encryption Standard)
1530	  candidate cipher by researchers at CounterPane Systems.  It is a
1531	  16 round block cipher supporting key sizes of 128, 192, and 256
1532	  bits.
1533
1534	  This module provides Twofish cipher algorithm that processes three
1535	  blocks parallel, utilizing resources of out-of-order CPUs better.
1536
1537	  See also:
1538	  <http://www.schneier.com/twofish.html>
1539
1540config CRYPTO_TWOFISH_AVX_X86_64
1541	tristate "Twofish cipher algorithm (x86_64/AVX)"
1542	depends on X86 && 64BIT
1543	select CRYPTO_ALGAPI
1544	select CRYPTO_CRYPTD
1545	select CRYPTO_ABLK_HELPER
1546	select CRYPTO_GLUE_HELPER_X86
1547	select CRYPTO_TWOFISH_COMMON
1548	select CRYPTO_TWOFISH_X86_64
1549	select CRYPTO_TWOFISH_X86_64_3WAY
1550	select CRYPTO_LRW
1551	select CRYPTO_XTS
1552	help
1553	  Twofish cipher algorithm (x86_64/AVX).
1554
1555	  Twofish was submitted as an AES (Advanced Encryption Standard)
1556	  candidate cipher by researchers at CounterPane Systems.  It is a
1557	  16 round block cipher supporting key sizes of 128, 192, and 256
1558	  bits.
1559
1560	  This module provides the Twofish cipher algorithm that processes
1561	  eight blocks parallel using the AVX Instruction Set.
1562
1563	  See also:
1564	  <http://www.schneier.com/twofish.html>
1565
1566comment "Compression"
1567
1568config CRYPTO_DEFLATE
1569	tristate "Deflate compression algorithm"
1570	select CRYPTO_ALGAPI
1571	select ZLIB_INFLATE
1572	select ZLIB_DEFLATE
1573	help
1574	  This is the Deflate algorithm (RFC1951), specified for use in
1575	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1576
1577	  You will most probably want this if using IPSec.
1578
1579config CRYPTO_LZO
1580	tristate "LZO compression algorithm"
1581	select CRYPTO_ALGAPI
1582	select LZO_COMPRESS
1583	select LZO_DECOMPRESS
1584	help
1585	  This is the LZO algorithm.
1586
1587config CRYPTO_842
1588	tristate "842 compression algorithm"
1589	select CRYPTO_ALGAPI
1590	select 842_COMPRESS
1591	select 842_DECOMPRESS
1592	help
1593	  This is the 842 algorithm.
1594
1595config CRYPTO_LZ4
1596	tristate "LZ4 compression algorithm"
1597	select CRYPTO_ALGAPI
1598	select LZ4_COMPRESS
1599	select LZ4_DECOMPRESS
1600	help
1601	  This is the LZ4 algorithm.
1602
1603config CRYPTO_LZ4HC
1604	tristate "LZ4HC compression algorithm"
1605	select CRYPTO_ALGAPI
1606	select LZ4HC_COMPRESS
1607	select LZ4_DECOMPRESS
1608	help
1609	  This is the LZ4 high compression mode algorithm.
1610
1611comment "Random Number Generation"
1612
1613config CRYPTO_ANSI_CPRNG
1614	tristate "Pseudo Random Number Generation for Cryptographic modules"
1615	select CRYPTO_AES
1616	select CRYPTO_RNG
1617	help
1618	  This option enables the generic pseudo random number generator
1619	  for cryptographic modules.  Uses the Algorithm specified in
1620	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1621	  CRYPTO_FIPS is selected
1622
1623menuconfig CRYPTO_DRBG_MENU
1624	tristate "NIST SP800-90A DRBG"
1625	help
1626	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1627	  more of the DRBG types must be selected.
1628
1629if CRYPTO_DRBG_MENU
1630
1631config CRYPTO_DRBG_HMAC
1632	bool
1633	default y
1634	select CRYPTO_HMAC
1635	select CRYPTO_SHA256
1636
1637config CRYPTO_DRBG_HASH
1638	bool "Enable Hash DRBG"
1639	select CRYPTO_SHA256
1640	help
1641	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1642
1643config CRYPTO_DRBG_CTR
1644	bool "Enable CTR DRBG"
1645	select CRYPTO_AES
1646	depends on CRYPTO_CTR
1647	help
1648	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1649
1650config CRYPTO_DRBG
1651	tristate
1652	default CRYPTO_DRBG_MENU
1653	select CRYPTO_RNG
1654	select CRYPTO_JITTERENTROPY
1655
1656endif	# if CRYPTO_DRBG_MENU
1657
1658config CRYPTO_JITTERENTROPY
1659	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1660	select CRYPTO_RNG
1661	help
1662	  The Jitterentropy RNG is a noise that is intended
1663	  to provide seed to another RNG. The RNG does not
1664	  perform any cryptographic whitening of the generated
1665	  random numbers. This Jitterentropy RNG registers with
1666	  the kernel crypto API and can be used by any caller.
1667
1668config CRYPTO_USER_API
1669	tristate
1670
1671config CRYPTO_USER_API_HASH
1672	tristate "User-space interface for hash algorithms"
1673	depends on NET
1674	select CRYPTO_HASH
1675	select CRYPTO_USER_API
1676	help
1677	  This option enables the user-spaces interface for hash
1678	  algorithms.
1679
1680config CRYPTO_USER_API_SKCIPHER
1681	tristate "User-space interface for symmetric key cipher algorithms"
1682	depends on NET
1683	select CRYPTO_BLKCIPHER
1684	select CRYPTO_USER_API
1685	help
1686	  This option enables the user-spaces interface for symmetric
1687	  key cipher algorithms.
1688
1689config CRYPTO_USER_API_RNG
1690	tristate "User-space interface for random number generator algorithms"
1691	depends on NET
1692	select CRYPTO_RNG
1693	select CRYPTO_USER_API
1694	help
1695	  This option enables the user-spaces interface for random
1696	  number generator algorithms.
1697
1698config CRYPTO_USER_API_AEAD
1699	tristate "User-space interface for AEAD cipher algorithms"
1700	depends on NET
1701	select CRYPTO_AEAD
1702	select CRYPTO_USER_API
1703	help
1704	  This option enables the user-spaces interface for AEAD
1705	  cipher algorithms.
1706
1707config CRYPTO_HASH_INFO
1708	bool
1709
1710source "drivers/crypto/Kconfig"
1711source crypto/asymmetric_keys/Kconfig
1712source certs/Kconfig
1713
1714endif	# if CRYPTO
1715