xref: /openbmc/linux/crypto/Kconfig (revision 4beec1d7)
1#
2# Generic algorithms support
3#
4config XOR_BLOCKS
5	tristate
6
7#
8# async_tx api: hardware offloaded memory transfer/transform support
9#
10source "crypto/async_tx/Kconfig"
11
12#
13# Cryptographic API Configuration
14#
15menuconfig CRYPTO
16	tristate "Cryptographic API"
17	help
18	  This option provides the core Cryptographic API.
19
20if CRYPTO
21
22comment "Crypto core or helper"
23
24config CRYPTO_FIPS
25	bool "FIPS 200 compliance"
26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27	depends on (MODULE_SIG || !MODULES)
28	help
29	  This options enables the fips boot option which is
30	  required if you want to system to operate in a FIPS 200
31	  certification.  You should say no unless you know what
32	  this is.
33
34config CRYPTO_ALGAPI
35	tristate
36	select CRYPTO_ALGAPI2
37	help
38	  This option provides the API for cryptographic algorithms.
39
40config CRYPTO_ALGAPI2
41	tristate
42
43config CRYPTO_AEAD
44	tristate
45	select CRYPTO_AEAD2
46	select CRYPTO_ALGAPI
47
48config CRYPTO_AEAD2
49	tristate
50	select CRYPTO_ALGAPI2
51	select CRYPTO_NULL2
52	select CRYPTO_RNG2
53
54config CRYPTO_BLKCIPHER
55	tristate
56	select CRYPTO_BLKCIPHER2
57	select CRYPTO_ALGAPI
58
59config CRYPTO_BLKCIPHER2
60	tristate
61	select CRYPTO_ALGAPI2
62	select CRYPTO_RNG2
63	select CRYPTO_WORKQUEUE
64
65config CRYPTO_HASH
66	tristate
67	select CRYPTO_HASH2
68	select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71	tristate
72	select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75	tristate
76	select CRYPTO_RNG2
77	select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80	tristate
81	select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84	tristate
85	select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88	tristate
89	select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92	tristate
93	select CRYPTO_AKCIPHER2
94	select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97	tristate
98	select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101	tristate
102	select CRYPTO_ALGAPI
103	select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106	tristate
107	select CRYPTO_ALGAPI2
108
109config CRYPTO_ACOMP
110	tristate
111	select CRYPTO_ALGAPI
112	select CRYPTO_ACOMP2
113
114config CRYPTO_RSA
115	tristate "RSA algorithm"
116	select CRYPTO_AKCIPHER
117	select CRYPTO_MANAGER
118	select MPILIB
119	select ASN1
120	help
121	  Generic implementation of the RSA public key algorithm.
122
123config CRYPTO_DH
124	tristate "Diffie-Hellman algorithm"
125	select CRYPTO_KPP
126	select MPILIB
127	help
128	  Generic implementation of the Diffie-Hellman algorithm.
129
130config CRYPTO_ECDH
131	tristate "ECDH algorithm"
132	select CRYTPO_KPP
133	help
134	  Generic implementation of the ECDH algorithm
135
136config CRYPTO_MANAGER
137	tristate "Cryptographic algorithm manager"
138	select CRYPTO_MANAGER2
139	help
140	  Create default cryptographic template instantiations such as
141	  cbc(aes).
142
143config CRYPTO_MANAGER2
144	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
145	select CRYPTO_AEAD2
146	select CRYPTO_HASH2
147	select CRYPTO_BLKCIPHER2
148	select CRYPTO_AKCIPHER2
149	select CRYPTO_KPP2
150	select CRYPTO_ACOMP2
151
152config CRYPTO_USER
153	tristate "Userspace cryptographic algorithm configuration"
154	depends on NET
155	select CRYPTO_MANAGER
156	help
157	  Userspace configuration for cryptographic instantiations such as
158	  cbc(aes).
159
160config CRYPTO_MANAGER_DISABLE_TESTS
161	bool "Disable run-time self tests"
162	default y
163	depends on CRYPTO_MANAGER2
164	help
165	  Disable run-time self tests that normally take place at
166	  algorithm registration.
167
168config CRYPTO_GF128MUL
169	tristate "GF(2^128) multiplication functions"
170	help
171	  Efficient table driven implementation of multiplications in the
172	  field GF(2^128).  This is needed by some cypher modes. This
173	  option will be selected automatically if you select such a
174	  cipher mode.  Only select this option by hand if you expect to load
175	  an external module that requires these functions.
176
177config CRYPTO_NULL
178	tristate "Null algorithms"
179	select CRYPTO_NULL2
180	help
181	  These are 'Null' algorithms, used by IPsec, which do nothing.
182
183config CRYPTO_NULL2
184	tristate
185	select CRYPTO_ALGAPI2
186	select CRYPTO_BLKCIPHER2
187	select CRYPTO_HASH2
188
189config CRYPTO_PCRYPT
190	tristate "Parallel crypto engine"
191	depends on SMP
192	select PADATA
193	select CRYPTO_MANAGER
194	select CRYPTO_AEAD
195	help
196	  This converts an arbitrary crypto algorithm into a parallel
197	  algorithm that executes in kernel threads.
198
199config CRYPTO_WORKQUEUE
200       tristate
201
202config CRYPTO_CRYPTD
203	tristate "Software async crypto daemon"
204	select CRYPTO_BLKCIPHER
205	select CRYPTO_HASH
206	select CRYPTO_MANAGER
207	select CRYPTO_WORKQUEUE
208	help
209	  This is a generic software asynchronous crypto daemon that
210	  converts an arbitrary synchronous software crypto algorithm
211	  into an asynchronous algorithm that executes in a kernel thread.
212
213config CRYPTO_MCRYPTD
214	tristate "Software async multi-buffer crypto daemon"
215	select CRYPTO_BLKCIPHER
216	select CRYPTO_HASH
217	select CRYPTO_MANAGER
218	select CRYPTO_WORKQUEUE
219	help
220	  This is a generic software asynchronous crypto daemon that
221	  provides the kernel thread to assist multi-buffer crypto
222	  algorithms for submitting jobs and flushing jobs in multi-buffer
223	  crypto algorithms.  Multi-buffer crypto algorithms are executed
224	  in the context of this kernel thread and drivers can post
225	  their crypto request asynchronously to be processed by this daemon.
226
227config CRYPTO_AUTHENC
228	tristate "Authenc support"
229	select CRYPTO_AEAD
230	select CRYPTO_BLKCIPHER
231	select CRYPTO_MANAGER
232	select CRYPTO_HASH
233	select CRYPTO_NULL
234	help
235	  Authenc: Combined mode wrapper for IPsec.
236	  This is required for IPSec.
237
238config CRYPTO_TEST
239	tristate "Testing module"
240	depends on m
241	select CRYPTO_MANAGER
242	help
243	  Quick & dirty crypto test module.
244
245config CRYPTO_ABLK_HELPER
246	tristate
247	select CRYPTO_CRYPTD
248
249config CRYPTO_SIMD
250	tristate
251	select CRYPTO_CRYPTD
252
253config CRYPTO_GLUE_HELPER_X86
254	tristate
255	depends on X86
256	select CRYPTO_BLKCIPHER
257
258config CRYPTO_ENGINE
259	tristate
260
261comment "Authenticated Encryption with Associated Data"
262
263config CRYPTO_CCM
264	tristate "CCM support"
265	select CRYPTO_CTR
266	select CRYPTO_AEAD
267	help
268	  Support for Counter with CBC MAC. Required for IPsec.
269
270config CRYPTO_GCM
271	tristate "GCM/GMAC support"
272	select CRYPTO_CTR
273	select CRYPTO_AEAD
274	select CRYPTO_GHASH
275	select CRYPTO_NULL
276	help
277	  Support for Galois/Counter Mode (GCM) and Galois Message
278	  Authentication Code (GMAC). Required for IPSec.
279
280config CRYPTO_CHACHA20POLY1305
281	tristate "ChaCha20-Poly1305 AEAD support"
282	select CRYPTO_CHACHA20
283	select CRYPTO_POLY1305
284	select CRYPTO_AEAD
285	help
286	  ChaCha20-Poly1305 AEAD support, RFC7539.
287
288	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
289	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
290	  IETF protocols.
291
292config CRYPTO_SEQIV
293	tristate "Sequence Number IV Generator"
294	select CRYPTO_AEAD
295	select CRYPTO_BLKCIPHER
296	select CRYPTO_NULL
297	select CRYPTO_RNG_DEFAULT
298	help
299	  This IV generator generates an IV based on a sequence number by
300	  xoring it with a salt.  This algorithm is mainly useful for CTR
301
302config CRYPTO_ECHAINIV
303	tristate "Encrypted Chain IV Generator"
304	select CRYPTO_AEAD
305	select CRYPTO_NULL
306	select CRYPTO_RNG_DEFAULT
307	default m
308	help
309	  This IV generator generates an IV based on the encryption of
310	  a sequence number xored with a salt.  This is the default
311	  algorithm for CBC.
312
313comment "Block modes"
314
315config CRYPTO_CBC
316	tristate "CBC support"
317	select CRYPTO_BLKCIPHER
318	select CRYPTO_MANAGER
319	help
320	  CBC: Cipher Block Chaining mode
321	  This block cipher algorithm is required for IPSec.
322
323config CRYPTO_CTR
324	tristate "CTR support"
325	select CRYPTO_BLKCIPHER
326	select CRYPTO_SEQIV
327	select CRYPTO_MANAGER
328	help
329	  CTR: Counter mode
330	  This block cipher algorithm is required for IPSec.
331
332config CRYPTO_CTS
333	tristate "CTS support"
334	select CRYPTO_BLKCIPHER
335	help
336	  CTS: Cipher Text Stealing
337	  This is the Cipher Text Stealing mode as described by
338	  Section 8 of rfc2040 and referenced by rfc3962.
339	  (rfc3962 includes errata information in its Appendix A)
340	  This mode is required for Kerberos gss mechanism support
341	  for AES encryption.
342
343config CRYPTO_ECB
344	tristate "ECB support"
345	select CRYPTO_BLKCIPHER
346	select CRYPTO_MANAGER
347	help
348	  ECB: Electronic CodeBook mode
349	  This is the simplest block cipher algorithm.  It simply encrypts
350	  the input block by block.
351
352config CRYPTO_LRW
353	tristate "LRW support"
354	select CRYPTO_BLKCIPHER
355	select CRYPTO_MANAGER
356	select CRYPTO_GF128MUL
357	help
358	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
359	  narrow block cipher mode for dm-crypt.  Use it with cipher
360	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
361	  The first 128, 192 or 256 bits in the key are used for AES and the
362	  rest is used to tie each cipher block to its logical position.
363
364config CRYPTO_PCBC
365	tristate "PCBC support"
366	select CRYPTO_BLKCIPHER
367	select CRYPTO_MANAGER
368	help
369	  PCBC: Propagating Cipher Block Chaining mode
370	  This block cipher algorithm is required for RxRPC.
371
372config CRYPTO_XTS
373	tristate "XTS support"
374	select CRYPTO_BLKCIPHER
375	select CRYPTO_MANAGER
376	select CRYPTO_GF128MUL
377	help
378	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
379	  key size 256, 384 or 512 bits. This implementation currently
380	  can't handle a sectorsize which is not a multiple of 16 bytes.
381
382config CRYPTO_KEYWRAP
383	tristate "Key wrapping support"
384	select CRYPTO_BLKCIPHER
385	help
386	  Support for key wrapping (NIST SP800-38F / RFC3394) without
387	  padding.
388
389comment "Hash modes"
390
391config CRYPTO_CMAC
392	tristate "CMAC support"
393	select CRYPTO_HASH
394	select CRYPTO_MANAGER
395	help
396	  Cipher-based Message Authentication Code (CMAC) specified by
397	  The National Institute of Standards and Technology (NIST).
398
399	  https://tools.ietf.org/html/rfc4493
400	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
401
402config CRYPTO_HMAC
403	tristate "HMAC support"
404	select CRYPTO_HASH
405	select CRYPTO_MANAGER
406	help
407	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
408	  This is required for IPSec.
409
410config CRYPTO_XCBC
411	tristate "XCBC support"
412	select CRYPTO_HASH
413	select CRYPTO_MANAGER
414	help
415	  XCBC: Keyed-Hashing with encryption algorithm
416		http://www.ietf.org/rfc/rfc3566.txt
417		http://csrc.nist.gov/encryption/modes/proposedmodes/
418		 xcbc-mac/xcbc-mac-spec.pdf
419
420config CRYPTO_VMAC
421	tristate "VMAC support"
422	select CRYPTO_HASH
423	select CRYPTO_MANAGER
424	help
425	  VMAC is a message authentication algorithm designed for
426	  very high speed on 64-bit architectures.
427
428	  See also:
429	  <http://fastcrypto.org/vmac>
430
431comment "Digest"
432
433config CRYPTO_CRC32C
434	tristate "CRC32c CRC algorithm"
435	select CRYPTO_HASH
436	select CRC32
437	help
438	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
439	  by iSCSI for header and data digests and by others.
440	  See Castagnoli93.  Module will be crc32c.
441
442config CRYPTO_CRC32C_INTEL
443	tristate "CRC32c INTEL hardware acceleration"
444	depends on X86
445	select CRYPTO_HASH
446	help
447	  In Intel processor with SSE4.2 supported, the processor will
448	  support CRC32C implementation using hardware accelerated CRC32
449	  instruction. This option will create 'crc32c-intel' module,
450	  which will enable any routine to use the CRC32 instruction to
451	  gain performance compared with software implementation.
452	  Module will be crc32c-intel.
453
454config CRYPTO_CRC32C_VPMSUM
455	tristate "CRC32c CRC algorithm (powerpc64)"
456	depends on PPC64 && ALTIVEC
457	select CRYPTO_HASH
458	select CRC32
459	help
460	  CRC32c algorithm implemented using vector polynomial multiply-sum
461	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
462	  and newer processors for improved performance.
463
464
465config CRYPTO_CRC32C_SPARC64
466	tristate "CRC32c CRC algorithm (SPARC64)"
467	depends on SPARC64
468	select CRYPTO_HASH
469	select CRC32
470	help
471	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
472	  when available.
473
474config CRYPTO_CRC32
475	tristate "CRC32 CRC algorithm"
476	select CRYPTO_HASH
477	select CRC32
478	help
479	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
480	  Shash crypto api wrappers to crc32_le function.
481
482config CRYPTO_CRC32_PCLMUL
483	tristate "CRC32 PCLMULQDQ hardware acceleration"
484	depends on X86
485	select CRYPTO_HASH
486	select CRC32
487	help
488	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
489	  and PCLMULQDQ supported, the processor will support
490	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
491	  instruction. This option will create 'crc32-plcmul' module,
492	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
493	  and gain better performance as compared with the table implementation.
494
495config CRYPTO_CRCT10DIF
496	tristate "CRCT10DIF algorithm"
497	select CRYPTO_HASH
498	help
499	  CRC T10 Data Integrity Field computation is being cast as
500	  a crypto transform.  This allows for faster crc t10 diff
501	  transforms to be used if they are available.
502
503config CRYPTO_CRCT10DIF_PCLMUL
504	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
505	depends on X86 && 64BIT && CRC_T10DIF
506	select CRYPTO_HASH
507	help
508	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
509	  CRC T10 DIF PCLMULQDQ computation can be hardware
510	  accelerated PCLMULQDQ instruction. This option will create
511	  'crct10dif-plcmul' module, which is faster when computing the
512	  crct10dif checksum as compared with the generic table implementation.
513
514config CRYPTO_GHASH
515	tristate "GHASH digest algorithm"
516	select CRYPTO_GF128MUL
517	select CRYPTO_HASH
518	help
519	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
520
521config CRYPTO_POLY1305
522	tristate "Poly1305 authenticator algorithm"
523	select CRYPTO_HASH
524	help
525	  Poly1305 authenticator algorithm, RFC7539.
526
527	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
528	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
529	  in IETF protocols. This is the portable C implementation of Poly1305.
530
531config CRYPTO_POLY1305_X86_64
532	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
533	depends on X86 && 64BIT
534	select CRYPTO_POLY1305
535	help
536	  Poly1305 authenticator algorithm, RFC7539.
537
538	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
539	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
540	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
541	  instructions.
542
543config CRYPTO_MD4
544	tristate "MD4 digest algorithm"
545	select CRYPTO_HASH
546	help
547	  MD4 message digest algorithm (RFC1320).
548
549config CRYPTO_MD5
550	tristate "MD5 digest algorithm"
551	select CRYPTO_HASH
552	help
553	  MD5 message digest algorithm (RFC1321).
554
555config CRYPTO_MD5_OCTEON
556	tristate "MD5 digest algorithm (OCTEON)"
557	depends on CPU_CAVIUM_OCTEON
558	select CRYPTO_MD5
559	select CRYPTO_HASH
560	help
561	  MD5 message digest algorithm (RFC1321) implemented
562	  using OCTEON crypto instructions, when available.
563
564config CRYPTO_MD5_PPC
565	tristate "MD5 digest algorithm (PPC)"
566	depends on PPC
567	select CRYPTO_HASH
568	help
569	  MD5 message digest algorithm (RFC1321) implemented
570	  in PPC assembler.
571
572config CRYPTO_MD5_SPARC64
573	tristate "MD5 digest algorithm (SPARC64)"
574	depends on SPARC64
575	select CRYPTO_MD5
576	select CRYPTO_HASH
577	help
578	  MD5 message digest algorithm (RFC1321) implemented
579	  using sparc64 crypto instructions, when available.
580
581config CRYPTO_MICHAEL_MIC
582	tristate "Michael MIC keyed digest algorithm"
583	select CRYPTO_HASH
584	help
585	  Michael MIC is used for message integrity protection in TKIP
586	  (IEEE 802.11i). This algorithm is required for TKIP, but it
587	  should not be used for other purposes because of the weakness
588	  of the algorithm.
589
590config CRYPTO_RMD128
591	tristate "RIPEMD-128 digest algorithm"
592	select CRYPTO_HASH
593	help
594	  RIPEMD-128 (ISO/IEC 10118-3:2004).
595
596	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
597	  be used as a secure replacement for RIPEMD. For other use cases,
598	  RIPEMD-160 should be used.
599
600	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
601	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
602
603config CRYPTO_RMD160
604	tristate "RIPEMD-160 digest algorithm"
605	select CRYPTO_HASH
606	help
607	  RIPEMD-160 (ISO/IEC 10118-3:2004).
608
609	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
610	  to be used as a secure replacement for the 128-bit hash functions
611	  MD4, MD5 and it's predecessor RIPEMD
612	  (not to be confused with RIPEMD-128).
613
614	  It's speed is comparable to SHA1 and there are no known attacks
615	  against RIPEMD-160.
616
617	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
618	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
619
620config CRYPTO_RMD256
621	tristate "RIPEMD-256 digest algorithm"
622	select CRYPTO_HASH
623	help
624	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
625	  256 bit hash. It is intended for applications that require
626	  longer hash-results, without needing a larger security level
627	  (than RIPEMD-128).
628
629	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
630	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
631
632config CRYPTO_RMD320
633	tristate "RIPEMD-320 digest algorithm"
634	select CRYPTO_HASH
635	help
636	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
637	  320 bit hash. It is intended for applications that require
638	  longer hash-results, without needing a larger security level
639	  (than RIPEMD-160).
640
641	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
642	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
643
644config CRYPTO_SHA1
645	tristate "SHA1 digest algorithm"
646	select CRYPTO_HASH
647	help
648	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
649
650config CRYPTO_SHA1_SSSE3
651	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
652	depends on X86 && 64BIT
653	select CRYPTO_SHA1
654	select CRYPTO_HASH
655	help
656	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
657	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
658	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
659	  when available.
660
661config CRYPTO_SHA256_SSSE3
662	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
663	depends on X86 && 64BIT
664	select CRYPTO_SHA256
665	select CRYPTO_HASH
666	help
667	  SHA-256 secure hash standard (DFIPS 180-2) implemented
668	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
669	  Extensions version 1 (AVX1), or Advanced Vector Extensions
670	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
671	  Instructions) when available.
672
673config CRYPTO_SHA512_SSSE3
674	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
675	depends on X86 && 64BIT
676	select CRYPTO_SHA512
677	select CRYPTO_HASH
678	help
679	  SHA-512 secure hash standard (DFIPS 180-2) implemented
680	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
681	  Extensions version 1 (AVX1), or Advanced Vector Extensions
682	  version 2 (AVX2) instructions, when available.
683
684config CRYPTO_SHA1_OCTEON
685	tristate "SHA1 digest algorithm (OCTEON)"
686	depends on CPU_CAVIUM_OCTEON
687	select CRYPTO_SHA1
688	select CRYPTO_HASH
689	help
690	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
691	  using OCTEON crypto instructions, when available.
692
693config CRYPTO_SHA1_SPARC64
694	tristate "SHA1 digest algorithm (SPARC64)"
695	depends on SPARC64
696	select CRYPTO_SHA1
697	select CRYPTO_HASH
698	help
699	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
700	  using sparc64 crypto instructions, when available.
701
702config CRYPTO_SHA1_PPC
703	tristate "SHA1 digest algorithm (powerpc)"
704	depends on PPC
705	help
706	  This is the powerpc hardware accelerated implementation of the
707	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
708
709config CRYPTO_SHA1_PPC_SPE
710	tristate "SHA1 digest algorithm (PPC SPE)"
711	depends on PPC && SPE
712	help
713	  SHA-1 secure hash standard (DFIPS 180-4) implemented
714	  using powerpc SPE SIMD instruction set.
715
716config CRYPTO_SHA1_MB
717	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
718	depends on X86 && 64BIT
719	select CRYPTO_SHA1
720	select CRYPTO_HASH
721	select CRYPTO_MCRYPTD
722	help
723	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
724	  using multi-buffer technique.  This algorithm computes on
725	  multiple data lanes concurrently with SIMD instructions for
726	  better throughput.  It should not be enabled by default but
727	  used when there is significant amount of work to keep the keep
728	  the data lanes filled to get performance benefit.  If the data
729	  lanes remain unfilled, a flush operation will be initiated to
730	  process the crypto jobs, adding a slight latency.
731
732config CRYPTO_SHA256_MB
733	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
734	depends on X86 && 64BIT
735	select CRYPTO_SHA256
736	select CRYPTO_HASH
737	select CRYPTO_MCRYPTD
738	help
739	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
740	  using multi-buffer technique.  This algorithm computes on
741	  multiple data lanes concurrently with SIMD instructions for
742	  better throughput.  It should not be enabled by default but
743	  used when there is significant amount of work to keep the keep
744	  the data lanes filled to get performance benefit.  If the data
745	  lanes remain unfilled, a flush operation will be initiated to
746	  process the crypto jobs, adding a slight latency.
747
748config CRYPTO_SHA512_MB
749        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
750        depends on X86 && 64BIT
751        select CRYPTO_SHA512
752        select CRYPTO_HASH
753        select CRYPTO_MCRYPTD
754        help
755          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
756          using multi-buffer technique.  This algorithm computes on
757          multiple data lanes concurrently with SIMD instructions for
758          better throughput.  It should not be enabled by default but
759          used when there is significant amount of work to keep the keep
760          the data lanes filled to get performance benefit.  If the data
761          lanes remain unfilled, a flush operation will be initiated to
762          process the crypto jobs, adding a slight latency.
763
764config CRYPTO_SHA256
765	tristate "SHA224 and SHA256 digest algorithm"
766	select CRYPTO_HASH
767	help
768	  SHA256 secure hash standard (DFIPS 180-2).
769
770	  This version of SHA implements a 256 bit hash with 128 bits of
771	  security against collision attacks.
772
773	  This code also includes SHA-224, a 224 bit hash with 112 bits
774	  of security against collision attacks.
775
776config CRYPTO_SHA256_PPC_SPE
777	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
778	depends on PPC && SPE
779	select CRYPTO_SHA256
780	select CRYPTO_HASH
781	help
782	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
783	  implemented using powerpc SPE SIMD instruction set.
784
785config CRYPTO_SHA256_OCTEON
786	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
787	depends on CPU_CAVIUM_OCTEON
788	select CRYPTO_SHA256
789	select CRYPTO_HASH
790	help
791	  SHA-256 secure hash standard (DFIPS 180-2) implemented
792	  using OCTEON crypto instructions, when available.
793
794config CRYPTO_SHA256_SPARC64
795	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
796	depends on SPARC64
797	select CRYPTO_SHA256
798	select CRYPTO_HASH
799	help
800	  SHA-256 secure hash standard (DFIPS 180-2) implemented
801	  using sparc64 crypto instructions, when available.
802
803config CRYPTO_SHA512
804	tristate "SHA384 and SHA512 digest algorithms"
805	select CRYPTO_HASH
806	help
807	  SHA512 secure hash standard (DFIPS 180-2).
808
809	  This version of SHA implements a 512 bit hash with 256 bits of
810	  security against collision attacks.
811
812	  This code also includes SHA-384, a 384 bit hash with 192 bits
813	  of security against collision attacks.
814
815config CRYPTO_SHA512_OCTEON
816	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
817	depends on CPU_CAVIUM_OCTEON
818	select CRYPTO_SHA512
819	select CRYPTO_HASH
820	help
821	  SHA-512 secure hash standard (DFIPS 180-2) implemented
822	  using OCTEON crypto instructions, when available.
823
824config CRYPTO_SHA512_SPARC64
825	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
826	depends on SPARC64
827	select CRYPTO_SHA512
828	select CRYPTO_HASH
829	help
830	  SHA-512 secure hash standard (DFIPS 180-2) implemented
831	  using sparc64 crypto instructions, when available.
832
833config CRYPTO_SHA3
834	tristate "SHA3 digest algorithm"
835	select CRYPTO_HASH
836	help
837	  SHA-3 secure hash standard (DFIPS 202). It's based on
838	  cryptographic sponge function family called Keccak.
839
840	  References:
841	  http://keccak.noekeon.org/
842
843config CRYPTO_TGR192
844	tristate "Tiger digest algorithms"
845	select CRYPTO_HASH
846	help
847	  Tiger hash algorithm 192, 160 and 128-bit hashes
848
849	  Tiger is a hash function optimized for 64-bit processors while
850	  still having decent performance on 32-bit processors.
851	  Tiger was developed by Ross Anderson and Eli Biham.
852
853	  See also:
854	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
855
856config CRYPTO_WP512
857	tristate "Whirlpool digest algorithms"
858	select CRYPTO_HASH
859	help
860	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
861
862	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
863	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
864
865	  See also:
866	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
867
868config CRYPTO_GHASH_CLMUL_NI_INTEL
869	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
870	depends on X86 && 64BIT
871	select CRYPTO_CRYPTD
872	help
873	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
874	  The implementation is accelerated by CLMUL-NI of Intel.
875
876comment "Ciphers"
877
878config CRYPTO_AES
879	tristate "AES cipher algorithms"
880	select CRYPTO_ALGAPI
881	help
882	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
883	  algorithm.
884
885	  Rijndael appears to be consistently a very good performer in
886	  both hardware and software across a wide range of computing
887	  environments regardless of its use in feedback or non-feedback
888	  modes. Its key setup time is excellent, and its key agility is
889	  good. Rijndael's very low memory requirements make it very well
890	  suited for restricted-space environments, in which it also
891	  demonstrates excellent performance. Rijndael's operations are
892	  among the easiest to defend against power and timing attacks.
893
894	  The AES specifies three key sizes: 128, 192 and 256 bits
895
896	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
897
898config CRYPTO_AES_586
899	tristate "AES cipher algorithms (i586)"
900	depends on (X86 || UML_X86) && !64BIT
901	select CRYPTO_ALGAPI
902	select CRYPTO_AES
903	help
904	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
905	  algorithm.
906
907	  Rijndael appears to be consistently a very good performer in
908	  both hardware and software across a wide range of computing
909	  environments regardless of its use in feedback or non-feedback
910	  modes. Its key setup time is excellent, and its key agility is
911	  good. Rijndael's very low memory requirements make it very well
912	  suited for restricted-space environments, in which it also
913	  demonstrates excellent performance. Rijndael's operations are
914	  among the easiest to defend against power and timing attacks.
915
916	  The AES specifies three key sizes: 128, 192 and 256 bits
917
918	  See <http://csrc.nist.gov/encryption/aes/> for more information.
919
920config CRYPTO_AES_X86_64
921	tristate "AES cipher algorithms (x86_64)"
922	depends on (X86 || UML_X86) && 64BIT
923	select CRYPTO_ALGAPI
924	select CRYPTO_AES
925	help
926	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
927	  algorithm.
928
929	  Rijndael appears to be consistently a very good performer in
930	  both hardware and software across a wide range of computing
931	  environments regardless of its use in feedback or non-feedback
932	  modes. Its key setup time is excellent, and its key agility is
933	  good. Rijndael's very low memory requirements make it very well
934	  suited for restricted-space environments, in which it also
935	  demonstrates excellent performance. Rijndael's operations are
936	  among the easiest to defend against power and timing attacks.
937
938	  The AES specifies three key sizes: 128, 192 and 256 bits
939
940	  See <http://csrc.nist.gov/encryption/aes/> for more information.
941
942config CRYPTO_AES_NI_INTEL
943	tristate "AES cipher algorithms (AES-NI)"
944	depends on X86
945	select CRYPTO_AEAD
946	select CRYPTO_AES_X86_64 if 64BIT
947	select CRYPTO_AES_586 if !64BIT
948	select CRYPTO_ALGAPI
949	select CRYPTO_BLKCIPHER
950	select CRYPTO_GLUE_HELPER_X86 if 64BIT
951	select CRYPTO_SIMD
952	help
953	  Use Intel AES-NI instructions for AES algorithm.
954
955	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
956	  algorithm.
957
958	  Rijndael appears to be consistently a very good performer in
959	  both hardware and software across a wide range of computing
960	  environments regardless of its use in feedback or non-feedback
961	  modes. Its key setup time is excellent, and its key agility is
962	  good. Rijndael's very low memory requirements make it very well
963	  suited for restricted-space environments, in which it also
964	  demonstrates excellent performance. Rijndael's operations are
965	  among the easiest to defend against power and timing attacks.
966
967	  The AES specifies three key sizes: 128, 192 and 256 bits
968
969	  See <http://csrc.nist.gov/encryption/aes/> for more information.
970
971	  In addition to AES cipher algorithm support, the acceleration
972	  for some popular block cipher mode is supported too, including
973	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
974	  acceleration for CTR.
975
976config CRYPTO_AES_SPARC64
977	tristate "AES cipher algorithms (SPARC64)"
978	depends on SPARC64
979	select CRYPTO_CRYPTD
980	select CRYPTO_ALGAPI
981	help
982	  Use SPARC64 crypto opcodes for AES algorithm.
983
984	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
985	  algorithm.
986
987	  Rijndael appears to be consistently a very good performer in
988	  both hardware and software across a wide range of computing
989	  environments regardless of its use in feedback or non-feedback
990	  modes. Its key setup time is excellent, and its key agility is
991	  good. Rijndael's very low memory requirements make it very well
992	  suited for restricted-space environments, in which it also
993	  demonstrates excellent performance. Rijndael's operations are
994	  among the easiest to defend against power and timing attacks.
995
996	  The AES specifies three key sizes: 128, 192 and 256 bits
997
998	  See <http://csrc.nist.gov/encryption/aes/> for more information.
999
1000	  In addition to AES cipher algorithm support, the acceleration
1001	  for some popular block cipher mode is supported too, including
1002	  ECB and CBC.
1003
1004config CRYPTO_AES_PPC_SPE
1005	tristate "AES cipher algorithms (PPC SPE)"
1006	depends on PPC && SPE
1007	help
1008	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1009	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1010	  This module should only be used for low power (router) devices
1011	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1012	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1013	  timining attacks. Nevertheless it might be not as secure as other
1014	  architecture specific assembler implementations that work on 1KB
1015	  tables or 256 bytes S-boxes.
1016
1017config CRYPTO_ANUBIS
1018	tristate "Anubis cipher algorithm"
1019	select CRYPTO_ALGAPI
1020	help
1021	  Anubis cipher algorithm.
1022
1023	  Anubis is a variable key length cipher which can use keys from
1024	  128 bits to 320 bits in length.  It was evaluated as a entrant
1025	  in the NESSIE competition.
1026
1027	  See also:
1028	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1029	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1030
1031config CRYPTO_ARC4
1032	tristate "ARC4 cipher algorithm"
1033	select CRYPTO_BLKCIPHER
1034	help
1035	  ARC4 cipher algorithm.
1036
1037	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1038	  bits in length.  This algorithm is required for driver-based
1039	  WEP, but it should not be for other purposes because of the
1040	  weakness of the algorithm.
1041
1042config CRYPTO_BLOWFISH
1043	tristate "Blowfish cipher algorithm"
1044	select CRYPTO_ALGAPI
1045	select CRYPTO_BLOWFISH_COMMON
1046	help
1047	  Blowfish cipher algorithm, by Bruce Schneier.
1048
1049	  This is a variable key length cipher which can use keys from 32
1050	  bits to 448 bits in length.  It's fast, simple and specifically
1051	  designed for use on "large microprocessors".
1052
1053	  See also:
1054	  <http://www.schneier.com/blowfish.html>
1055
1056config CRYPTO_BLOWFISH_COMMON
1057	tristate
1058	help
1059	  Common parts of the Blowfish cipher algorithm shared by the
1060	  generic c and the assembler implementations.
1061
1062	  See also:
1063	  <http://www.schneier.com/blowfish.html>
1064
1065config CRYPTO_BLOWFISH_X86_64
1066	tristate "Blowfish cipher algorithm (x86_64)"
1067	depends on X86 && 64BIT
1068	select CRYPTO_ALGAPI
1069	select CRYPTO_BLOWFISH_COMMON
1070	help
1071	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1072
1073	  This is a variable key length cipher which can use keys from 32
1074	  bits to 448 bits in length.  It's fast, simple and specifically
1075	  designed for use on "large microprocessors".
1076
1077	  See also:
1078	  <http://www.schneier.com/blowfish.html>
1079
1080config CRYPTO_CAMELLIA
1081	tristate "Camellia cipher algorithms"
1082	depends on CRYPTO
1083	select CRYPTO_ALGAPI
1084	help
1085	  Camellia cipher algorithms module.
1086
1087	  Camellia is a symmetric key block cipher developed jointly
1088	  at NTT and Mitsubishi Electric Corporation.
1089
1090	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1091
1092	  See also:
1093	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1094
1095config CRYPTO_CAMELLIA_X86_64
1096	tristate "Camellia cipher algorithm (x86_64)"
1097	depends on X86 && 64BIT
1098	depends on CRYPTO
1099	select CRYPTO_ALGAPI
1100	select CRYPTO_GLUE_HELPER_X86
1101	select CRYPTO_LRW
1102	select CRYPTO_XTS
1103	help
1104	  Camellia cipher algorithm module (x86_64).
1105
1106	  Camellia is a symmetric key block cipher developed jointly
1107	  at NTT and Mitsubishi Electric Corporation.
1108
1109	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1110
1111	  See also:
1112	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1113
1114config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1115	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1116	depends on X86 && 64BIT
1117	depends on CRYPTO
1118	select CRYPTO_ALGAPI
1119	select CRYPTO_CRYPTD
1120	select CRYPTO_ABLK_HELPER
1121	select CRYPTO_GLUE_HELPER_X86
1122	select CRYPTO_CAMELLIA_X86_64
1123	select CRYPTO_LRW
1124	select CRYPTO_XTS
1125	help
1126	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1127
1128	  Camellia is a symmetric key block cipher developed jointly
1129	  at NTT and Mitsubishi Electric Corporation.
1130
1131	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1132
1133	  See also:
1134	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1135
1136config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1137	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1138	depends on X86 && 64BIT
1139	depends on CRYPTO
1140	select CRYPTO_ALGAPI
1141	select CRYPTO_CRYPTD
1142	select CRYPTO_ABLK_HELPER
1143	select CRYPTO_GLUE_HELPER_X86
1144	select CRYPTO_CAMELLIA_X86_64
1145	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1146	select CRYPTO_LRW
1147	select CRYPTO_XTS
1148	help
1149	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1150
1151	  Camellia is a symmetric key block cipher developed jointly
1152	  at NTT and Mitsubishi Electric Corporation.
1153
1154	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1155
1156	  See also:
1157	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1158
1159config CRYPTO_CAMELLIA_SPARC64
1160	tristate "Camellia cipher algorithm (SPARC64)"
1161	depends on SPARC64
1162	depends on CRYPTO
1163	select CRYPTO_ALGAPI
1164	help
1165	  Camellia cipher algorithm module (SPARC64).
1166
1167	  Camellia is a symmetric key block cipher developed jointly
1168	  at NTT and Mitsubishi Electric Corporation.
1169
1170	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1171
1172	  See also:
1173	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1174
1175config CRYPTO_CAST_COMMON
1176	tristate
1177	help
1178	  Common parts of the CAST cipher algorithms shared by the
1179	  generic c and the assembler implementations.
1180
1181config CRYPTO_CAST5
1182	tristate "CAST5 (CAST-128) cipher algorithm"
1183	select CRYPTO_ALGAPI
1184	select CRYPTO_CAST_COMMON
1185	help
1186	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1187	  described in RFC2144.
1188
1189config CRYPTO_CAST5_AVX_X86_64
1190	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1191	depends on X86 && 64BIT
1192	select CRYPTO_ALGAPI
1193	select CRYPTO_CRYPTD
1194	select CRYPTO_ABLK_HELPER
1195	select CRYPTO_CAST_COMMON
1196	select CRYPTO_CAST5
1197	help
1198	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1199	  described in RFC2144.
1200
1201	  This module provides the Cast5 cipher algorithm that processes
1202	  sixteen blocks parallel using the AVX instruction set.
1203
1204config CRYPTO_CAST6
1205	tristate "CAST6 (CAST-256) cipher algorithm"
1206	select CRYPTO_ALGAPI
1207	select CRYPTO_CAST_COMMON
1208	help
1209	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1210	  described in RFC2612.
1211
1212config CRYPTO_CAST6_AVX_X86_64
1213	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1214	depends on X86 && 64BIT
1215	select CRYPTO_ALGAPI
1216	select CRYPTO_CRYPTD
1217	select CRYPTO_ABLK_HELPER
1218	select CRYPTO_GLUE_HELPER_X86
1219	select CRYPTO_CAST_COMMON
1220	select CRYPTO_CAST6
1221	select CRYPTO_LRW
1222	select CRYPTO_XTS
1223	help
1224	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1225	  described in RFC2612.
1226
1227	  This module provides the Cast6 cipher algorithm that processes
1228	  eight blocks parallel using the AVX instruction set.
1229
1230config CRYPTO_DES
1231	tristate "DES and Triple DES EDE cipher algorithms"
1232	select CRYPTO_ALGAPI
1233	help
1234	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1235
1236config CRYPTO_DES_SPARC64
1237	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1238	depends on SPARC64
1239	select CRYPTO_ALGAPI
1240	select CRYPTO_DES
1241	help
1242	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1243	  optimized using SPARC64 crypto opcodes.
1244
1245config CRYPTO_DES3_EDE_X86_64
1246	tristate "Triple DES EDE cipher algorithm (x86-64)"
1247	depends on X86 && 64BIT
1248	select CRYPTO_ALGAPI
1249	select CRYPTO_DES
1250	help
1251	  Triple DES EDE (FIPS 46-3) algorithm.
1252
1253	  This module provides implementation of the Triple DES EDE cipher
1254	  algorithm that is optimized for x86-64 processors. Two versions of
1255	  algorithm are provided; regular processing one input block and
1256	  one that processes three blocks parallel.
1257
1258config CRYPTO_FCRYPT
1259	tristate "FCrypt cipher algorithm"
1260	select CRYPTO_ALGAPI
1261	select CRYPTO_BLKCIPHER
1262	help
1263	  FCrypt algorithm used by RxRPC.
1264
1265config CRYPTO_KHAZAD
1266	tristate "Khazad cipher algorithm"
1267	select CRYPTO_ALGAPI
1268	help
1269	  Khazad cipher algorithm.
1270
1271	  Khazad was a finalist in the initial NESSIE competition.  It is
1272	  an algorithm optimized for 64-bit processors with good performance
1273	  on 32-bit processors.  Khazad uses an 128 bit key size.
1274
1275	  See also:
1276	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1277
1278config CRYPTO_SALSA20
1279	tristate "Salsa20 stream cipher algorithm"
1280	select CRYPTO_BLKCIPHER
1281	help
1282	  Salsa20 stream cipher algorithm.
1283
1284	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1285	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1286
1287	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1288	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1289
1290config CRYPTO_SALSA20_586
1291	tristate "Salsa20 stream cipher algorithm (i586)"
1292	depends on (X86 || UML_X86) && !64BIT
1293	select CRYPTO_BLKCIPHER
1294	help
1295	  Salsa20 stream cipher algorithm.
1296
1297	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1298	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1299
1300	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1301	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1302
1303config CRYPTO_SALSA20_X86_64
1304	tristate "Salsa20 stream cipher algorithm (x86_64)"
1305	depends on (X86 || UML_X86) && 64BIT
1306	select CRYPTO_BLKCIPHER
1307	help
1308	  Salsa20 stream cipher algorithm.
1309
1310	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1311	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1312
1313	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1314	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1315
1316config CRYPTO_CHACHA20
1317	tristate "ChaCha20 cipher algorithm"
1318	select CRYPTO_BLKCIPHER
1319	help
1320	  ChaCha20 cipher algorithm, RFC7539.
1321
1322	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1323	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1324	  This is the portable C implementation of ChaCha20.
1325
1326	  See also:
1327	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1328
1329config CRYPTO_CHACHA20_X86_64
1330	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1331	depends on X86 && 64BIT
1332	select CRYPTO_BLKCIPHER
1333	select CRYPTO_CHACHA20
1334	help
1335	  ChaCha20 cipher algorithm, RFC7539.
1336
1337	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1338	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1339	  This is the x86_64 assembler implementation using SIMD instructions.
1340
1341	  See also:
1342	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1343
1344config CRYPTO_SEED
1345	tristate "SEED cipher algorithm"
1346	select CRYPTO_ALGAPI
1347	help
1348	  SEED cipher algorithm (RFC4269).
1349
1350	  SEED is a 128-bit symmetric key block cipher that has been
1351	  developed by KISA (Korea Information Security Agency) as a
1352	  national standard encryption algorithm of the Republic of Korea.
1353	  It is a 16 round block cipher with the key size of 128 bit.
1354
1355	  See also:
1356	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1357
1358config CRYPTO_SERPENT
1359	tristate "Serpent cipher algorithm"
1360	select CRYPTO_ALGAPI
1361	help
1362	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1363
1364	  Keys are allowed to be from 0 to 256 bits in length, in steps
1365	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1366	  variant of Serpent for compatibility with old kerneli.org code.
1367
1368	  See also:
1369	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1370
1371config CRYPTO_SERPENT_SSE2_X86_64
1372	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1373	depends on X86 && 64BIT
1374	select CRYPTO_ALGAPI
1375	select CRYPTO_CRYPTD
1376	select CRYPTO_ABLK_HELPER
1377	select CRYPTO_GLUE_HELPER_X86
1378	select CRYPTO_SERPENT
1379	select CRYPTO_LRW
1380	select CRYPTO_XTS
1381	help
1382	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1383
1384	  Keys are allowed to be from 0 to 256 bits in length, in steps
1385	  of 8 bits.
1386
1387	  This module provides Serpent cipher algorithm that processes eight
1388	  blocks parallel using SSE2 instruction set.
1389
1390	  See also:
1391	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1392
1393config CRYPTO_SERPENT_SSE2_586
1394	tristate "Serpent cipher algorithm (i586/SSE2)"
1395	depends on X86 && !64BIT
1396	select CRYPTO_ALGAPI
1397	select CRYPTO_CRYPTD
1398	select CRYPTO_ABLK_HELPER
1399	select CRYPTO_GLUE_HELPER_X86
1400	select CRYPTO_SERPENT
1401	select CRYPTO_LRW
1402	select CRYPTO_XTS
1403	help
1404	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1405
1406	  Keys are allowed to be from 0 to 256 bits in length, in steps
1407	  of 8 bits.
1408
1409	  This module provides Serpent cipher algorithm that processes four
1410	  blocks parallel using SSE2 instruction set.
1411
1412	  See also:
1413	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1414
1415config CRYPTO_SERPENT_AVX_X86_64
1416	tristate "Serpent cipher algorithm (x86_64/AVX)"
1417	depends on X86 && 64BIT
1418	select CRYPTO_ALGAPI
1419	select CRYPTO_CRYPTD
1420	select CRYPTO_ABLK_HELPER
1421	select CRYPTO_GLUE_HELPER_X86
1422	select CRYPTO_SERPENT
1423	select CRYPTO_LRW
1424	select CRYPTO_XTS
1425	help
1426	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1427
1428	  Keys are allowed to be from 0 to 256 bits in length, in steps
1429	  of 8 bits.
1430
1431	  This module provides the Serpent cipher algorithm that processes
1432	  eight blocks parallel using the AVX instruction set.
1433
1434	  See also:
1435	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1436
1437config CRYPTO_SERPENT_AVX2_X86_64
1438	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1439	depends on X86 && 64BIT
1440	select CRYPTO_ALGAPI
1441	select CRYPTO_CRYPTD
1442	select CRYPTO_ABLK_HELPER
1443	select CRYPTO_GLUE_HELPER_X86
1444	select CRYPTO_SERPENT
1445	select CRYPTO_SERPENT_AVX_X86_64
1446	select CRYPTO_LRW
1447	select CRYPTO_XTS
1448	help
1449	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1450
1451	  Keys are allowed to be from 0 to 256 bits in length, in steps
1452	  of 8 bits.
1453
1454	  This module provides Serpent cipher algorithm that processes 16
1455	  blocks parallel using AVX2 instruction set.
1456
1457	  See also:
1458	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1459
1460config CRYPTO_TEA
1461	tristate "TEA, XTEA and XETA cipher algorithms"
1462	select CRYPTO_ALGAPI
1463	help
1464	  TEA cipher algorithm.
1465
1466	  Tiny Encryption Algorithm is a simple cipher that uses
1467	  many rounds for security.  It is very fast and uses
1468	  little memory.
1469
1470	  Xtendend Tiny Encryption Algorithm is a modification to
1471	  the TEA algorithm to address a potential key weakness
1472	  in the TEA algorithm.
1473
1474	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1475	  of the XTEA algorithm for compatibility purposes.
1476
1477config CRYPTO_TWOFISH
1478	tristate "Twofish cipher algorithm"
1479	select CRYPTO_ALGAPI
1480	select CRYPTO_TWOFISH_COMMON
1481	help
1482	  Twofish cipher algorithm.
1483
1484	  Twofish was submitted as an AES (Advanced Encryption Standard)
1485	  candidate cipher by researchers at CounterPane Systems.  It is a
1486	  16 round block cipher supporting key sizes of 128, 192, and 256
1487	  bits.
1488
1489	  See also:
1490	  <http://www.schneier.com/twofish.html>
1491
1492config CRYPTO_TWOFISH_COMMON
1493	tristate
1494	help
1495	  Common parts of the Twofish cipher algorithm shared by the
1496	  generic c and the assembler implementations.
1497
1498config CRYPTO_TWOFISH_586
1499	tristate "Twofish cipher algorithms (i586)"
1500	depends on (X86 || UML_X86) && !64BIT
1501	select CRYPTO_ALGAPI
1502	select CRYPTO_TWOFISH_COMMON
1503	help
1504	  Twofish cipher algorithm.
1505
1506	  Twofish was submitted as an AES (Advanced Encryption Standard)
1507	  candidate cipher by researchers at CounterPane Systems.  It is a
1508	  16 round block cipher supporting key sizes of 128, 192, and 256
1509	  bits.
1510
1511	  See also:
1512	  <http://www.schneier.com/twofish.html>
1513
1514config CRYPTO_TWOFISH_X86_64
1515	tristate "Twofish cipher algorithm (x86_64)"
1516	depends on (X86 || UML_X86) && 64BIT
1517	select CRYPTO_ALGAPI
1518	select CRYPTO_TWOFISH_COMMON
1519	help
1520	  Twofish cipher algorithm (x86_64).
1521
1522	  Twofish was submitted as an AES (Advanced Encryption Standard)
1523	  candidate cipher by researchers at CounterPane Systems.  It is a
1524	  16 round block cipher supporting key sizes of 128, 192, and 256
1525	  bits.
1526
1527	  See also:
1528	  <http://www.schneier.com/twofish.html>
1529
1530config CRYPTO_TWOFISH_X86_64_3WAY
1531	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1532	depends on X86 && 64BIT
1533	select CRYPTO_ALGAPI
1534	select CRYPTO_TWOFISH_COMMON
1535	select CRYPTO_TWOFISH_X86_64
1536	select CRYPTO_GLUE_HELPER_X86
1537	select CRYPTO_LRW
1538	select CRYPTO_XTS
1539	help
1540	  Twofish cipher algorithm (x86_64, 3-way parallel).
1541
1542	  Twofish was submitted as an AES (Advanced Encryption Standard)
1543	  candidate cipher by researchers at CounterPane Systems.  It is a
1544	  16 round block cipher supporting key sizes of 128, 192, and 256
1545	  bits.
1546
1547	  This module provides Twofish cipher algorithm that processes three
1548	  blocks parallel, utilizing resources of out-of-order CPUs better.
1549
1550	  See also:
1551	  <http://www.schneier.com/twofish.html>
1552
1553config CRYPTO_TWOFISH_AVX_X86_64
1554	tristate "Twofish cipher algorithm (x86_64/AVX)"
1555	depends on X86 && 64BIT
1556	select CRYPTO_ALGAPI
1557	select CRYPTO_CRYPTD
1558	select CRYPTO_ABLK_HELPER
1559	select CRYPTO_GLUE_HELPER_X86
1560	select CRYPTO_TWOFISH_COMMON
1561	select CRYPTO_TWOFISH_X86_64
1562	select CRYPTO_TWOFISH_X86_64_3WAY
1563	select CRYPTO_LRW
1564	select CRYPTO_XTS
1565	help
1566	  Twofish cipher algorithm (x86_64/AVX).
1567
1568	  Twofish was submitted as an AES (Advanced Encryption Standard)
1569	  candidate cipher by researchers at CounterPane Systems.  It is a
1570	  16 round block cipher supporting key sizes of 128, 192, and 256
1571	  bits.
1572
1573	  This module provides the Twofish cipher algorithm that processes
1574	  eight blocks parallel using the AVX Instruction Set.
1575
1576	  See also:
1577	  <http://www.schneier.com/twofish.html>
1578
1579comment "Compression"
1580
1581config CRYPTO_DEFLATE
1582	tristate "Deflate compression algorithm"
1583	select CRYPTO_ALGAPI
1584	select CRYPTO_ACOMP2
1585	select ZLIB_INFLATE
1586	select ZLIB_DEFLATE
1587	help
1588	  This is the Deflate algorithm (RFC1951), specified for use in
1589	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1590
1591	  You will most probably want this if using IPSec.
1592
1593config CRYPTO_LZO
1594	tristate "LZO compression algorithm"
1595	select CRYPTO_ALGAPI
1596	select CRYPTO_ACOMP2
1597	select LZO_COMPRESS
1598	select LZO_DECOMPRESS
1599	help
1600	  This is the LZO algorithm.
1601
1602config CRYPTO_842
1603	tristate "842 compression algorithm"
1604	select CRYPTO_ALGAPI
1605	select CRYPTO_ACOMP2
1606	select 842_COMPRESS
1607	select 842_DECOMPRESS
1608	help
1609	  This is the 842 algorithm.
1610
1611config CRYPTO_LZ4
1612	tristate "LZ4 compression algorithm"
1613	select CRYPTO_ALGAPI
1614	select CRYPTO_ACOMP2
1615	select LZ4_COMPRESS
1616	select LZ4_DECOMPRESS
1617	help
1618	  This is the LZ4 algorithm.
1619
1620config CRYPTO_LZ4HC
1621	tristate "LZ4HC compression algorithm"
1622	select CRYPTO_ALGAPI
1623	select CRYPTO_ACOMP2
1624	select LZ4HC_COMPRESS
1625	select LZ4_DECOMPRESS
1626	help
1627	  This is the LZ4 high compression mode algorithm.
1628
1629comment "Random Number Generation"
1630
1631config CRYPTO_ANSI_CPRNG
1632	tristate "Pseudo Random Number Generation for Cryptographic modules"
1633	select CRYPTO_AES
1634	select CRYPTO_RNG
1635	help
1636	  This option enables the generic pseudo random number generator
1637	  for cryptographic modules.  Uses the Algorithm specified in
1638	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1639	  CRYPTO_FIPS is selected
1640
1641menuconfig CRYPTO_DRBG_MENU
1642	tristate "NIST SP800-90A DRBG"
1643	help
1644	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1645	  more of the DRBG types must be selected.
1646
1647if CRYPTO_DRBG_MENU
1648
1649config CRYPTO_DRBG_HMAC
1650	bool
1651	default y
1652	select CRYPTO_HMAC
1653	select CRYPTO_SHA256
1654
1655config CRYPTO_DRBG_HASH
1656	bool "Enable Hash DRBG"
1657	select CRYPTO_SHA256
1658	help
1659	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1660
1661config CRYPTO_DRBG_CTR
1662	bool "Enable CTR DRBG"
1663	select CRYPTO_AES
1664	depends on CRYPTO_CTR
1665	help
1666	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1667
1668config CRYPTO_DRBG
1669	tristate
1670	default CRYPTO_DRBG_MENU
1671	select CRYPTO_RNG
1672	select CRYPTO_JITTERENTROPY
1673
1674endif	# if CRYPTO_DRBG_MENU
1675
1676config CRYPTO_JITTERENTROPY
1677	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1678	select CRYPTO_RNG
1679	help
1680	  The Jitterentropy RNG is a noise that is intended
1681	  to provide seed to another RNG. The RNG does not
1682	  perform any cryptographic whitening of the generated
1683	  random numbers. This Jitterentropy RNG registers with
1684	  the kernel crypto API and can be used by any caller.
1685
1686config CRYPTO_USER_API
1687	tristate
1688
1689config CRYPTO_USER_API_HASH
1690	tristate "User-space interface for hash algorithms"
1691	depends on NET
1692	select CRYPTO_HASH
1693	select CRYPTO_USER_API
1694	help
1695	  This option enables the user-spaces interface for hash
1696	  algorithms.
1697
1698config CRYPTO_USER_API_SKCIPHER
1699	tristate "User-space interface for symmetric key cipher algorithms"
1700	depends on NET
1701	select CRYPTO_BLKCIPHER
1702	select CRYPTO_USER_API
1703	help
1704	  This option enables the user-spaces interface for symmetric
1705	  key cipher algorithms.
1706
1707config CRYPTO_USER_API_RNG
1708	tristate "User-space interface for random number generator algorithms"
1709	depends on NET
1710	select CRYPTO_RNG
1711	select CRYPTO_USER_API
1712	help
1713	  This option enables the user-spaces interface for random
1714	  number generator algorithms.
1715
1716config CRYPTO_USER_API_AEAD
1717	tristate "User-space interface for AEAD cipher algorithms"
1718	depends on NET
1719	select CRYPTO_AEAD
1720	select CRYPTO_USER_API
1721	help
1722	  This option enables the user-spaces interface for AEAD
1723	  cipher algorithms.
1724
1725config CRYPTO_HASH_INFO
1726	bool
1727
1728source "drivers/crypto/Kconfig"
1729source crypto/asymmetric_keys/Kconfig
1730source certs/Kconfig
1731
1732endif	# if CRYPTO
1733