1# 2# Generic algorithms support 3# 4config XOR_BLOCKS 5 tristate 6 7# 8# async_tx api: hardware offloaded memory transfer/transform support 9# 10source "crypto/async_tx/Kconfig" 11 12# 13# Cryptographic API Configuration 14# 15menuconfig CRYPTO 16 tristate "Cryptographic API" 17 help 18 This option provides the core Cryptographic API. 19 20if CRYPTO 21 22comment "Crypto core or helper" 23 24config CRYPTO_FIPS 25 bool "FIPS 200 compliance" 26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 27 depends on (MODULE_SIG || !MODULES) 28 help 29 This options enables the fips boot option which is 30 required if you want to system to operate in a FIPS 200 31 certification. You should say no unless you know what 32 this is. 33 34config CRYPTO_ALGAPI 35 tristate 36 select CRYPTO_ALGAPI2 37 help 38 This option provides the API for cryptographic algorithms. 39 40config CRYPTO_ALGAPI2 41 tristate 42 43config CRYPTO_AEAD 44 tristate 45 select CRYPTO_AEAD2 46 select CRYPTO_ALGAPI 47 48config CRYPTO_AEAD2 49 tristate 50 select CRYPTO_ALGAPI2 51 select CRYPTO_NULL2 52 select CRYPTO_RNG2 53 54config CRYPTO_BLKCIPHER 55 tristate 56 select CRYPTO_BLKCIPHER2 57 select CRYPTO_ALGAPI 58 59config CRYPTO_BLKCIPHER2 60 tristate 61 select CRYPTO_ALGAPI2 62 select CRYPTO_RNG2 63 select CRYPTO_WORKQUEUE 64 65config CRYPTO_HASH 66 tristate 67 select CRYPTO_HASH2 68 select CRYPTO_ALGAPI 69 70config CRYPTO_HASH2 71 tristate 72 select CRYPTO_ALGAPI2 73 74config CRYPTO_RNG 75 tristate 76 select CRYPTO_RNG2 77 select CRYPTO_ALGAPI 78 79config CRYPTO_RNG2 80 tristate 81 select CRYPTO_ALGAPI2 82 83config CRYPTO_RNG_DEFAULT 84 tristate 85 select CRYPTO_DRBG_MENU 86 87config CRYPTO_AKCIPHER2 88 tristate 89 select CRYPTO_ALGAPI2 90 91config CRYPTO_AKCIPHER 92 tristate 93 select CRYPTO_AKCIPHER2 94 select CRYPTO_ALGAPI 95 96config CRYPTO_KPP2 97 tristate 98 select CRYPTO_ALGAPI2 99 100config CRYPTO_KPP 101 tristate 102 select CRYPTO_ALGAPI 103 select CRYPTO_KPP2 104 105config CRYPTO_ACOMP2 106 tristate 107 select CRYPTO_ALGAPI2 108 109config CRYPTO_ACOMP 110 tristate 111 select CRYPTO_ALGAPI 112 select CRYPTO_ACOMP2 113 114config CRYPTO_RSA 115 tristate "RSA algorithm" 116 select CRYPTO_AKCIPHER 117 select CRYPTO_MANAGER 118 select MPILIB 119 select ASN1 120 help 121 Generic implementation of the RSA public key algorithm. 122 123config CRYPTO_DH 124 tristate "Diffie-Hellman algorithm" 125 select CRYPTO_KPP 126 select MPILIB 127 help 128 Generic implementation of the Diffie-Hellman algorithm. 129 130config CRYPTO_ECDH 131 tristate "ECDH algorithm" 132 select CRYTPO_KPP 133 help 134 Generic implementation of the ECDH algorithm 135 136config CRYPTO_MANAGER 137 tristate "Cryptographic algorithm manager" 138 select CRYPTO_MANAGER2 139 help 140 Create default cryptographic template instantiations such as 141 cbc(aes). 142 143config CRYPTO_MANAGER2 144 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 145 select CRYPTO_AEAD2 146 select CRYPTO_HASH2 147 select CRYPTO_BLKCIPHER2 148 select CRYPTO_AKCIPHER2 149 select CRYPTO_KPP2 150 select CRYPTO_ACOMP2 151 152config CRYPTO_USER 153 tristate "Userspace cryptographic algorithm configuration" 154 depends on NET 155 select CRYPTO_MANAGER 156 help 157 Userspace configuration for cryptographic instantiations such as 158 cbc(aes). 159 160config CRYPTO_MANAGER_DISABLE_TESTS 161 bool "Disable run-time self tests" 162 default y 163 depends on CRYPTO_MANAGER2 164 help 165 Disable run-time self tests that normally take place at 166 algorithm registration. 167 168config CRYPTO_GF128MUL 169 tristate "GF(2^128) multiplication functions" 170 help 171 Efficient table driven implementation of multiplications in the 172 field GF(2^128). This is needed by some cypher modes. This 173 option will be selected automatically if you select such a 174 cipher mode. Only select this option by hand if you expect to load 175 an external module that requires these functions. 176 177config CRYPTO_NULL 178 tristate "Null algorithms" 179 select CRYPTO_NULL2 180 help 181 These are 'Null' algorithms, used by IPsec, which do nothing. 182 183config CRYPTO_NULL2 184 tristate 185 select CRYPTO_ALGAPI2 186 select CRYPTO_BLKCIPHER2 187 select CRYPTO_HASH2 188 189config CRYPTO_PCRYPT 190 tristate "Parallel crypto engine" 191 depends on SMP 192 select PADATA 193 select CRYPTO_MANAGER 194 select CRYPTO_AEAD 195 help 196 This converts an arbitrary crypto algorithm into a parallel 197 algorithm that executes in kernel threads. 198 199config CRYPTO_WORKQUEUE 200 tristate 201 202config CRYPTO_CRYPTD 203 tristate "Software async crypto daemon" 204 select CRYPTO_BLKCIPHER 205 select CRYPTO_HASH 206 select CRYPTO_MANAGER 207 select CRYPTO_WORKQUEUE 208 help 209 This is a generic software asynchronous crypto daemon that 210 converts an arbitrary synchronous software crypto algorithm 211 into an asynchronous algorithm that executes in a kernel thread. 212 213config CRYPTO_MCRYPTD 214 tristate "Software async multi-buffer crypto daemon" 215 select CRYPTO_BLKCIPHER 216 select CRYPTO_HASH 217 select CRYPTO_MANAGER 218 select CRYPTO_WORKQUEUE 219 help 220 This is a generic software asynchronous crypto daemon that 221 provides the kernel thread to assist multi-buffer crypto 222 algorithms for submitting jobs and flushing jobs in multi-buffer 223 crypto algorithms. Multi-buffer crypto algorithms are executed 224 in the context of this kernel thread and drivers can post 225 their crypto request asynchronously to be processed by this daemon. 226 227config CRYPTO_AUTHENC 228 tristate "Authenc support" 229 select CRYPTO_AEAD 230 select CRYPTO_BLKCIPHER 231 select CRYPTO_MANAGER 232 select CRYPTO_HASH 233 select CRYPTO_NULL 234 help 235 Authenc: Combined mode wrapper for IPsec. 236 This is required for IPSec. 237 238config CRYPTO_TEST 239 tristate "Testing module" 240 depends on m 241 select CRYPTO_MANAGER 242 help 243 Quick & dirty crypto test module. 244 245config CRYPTO_ABLK_HELPER 246 tristate 247 select CRYPTO_CRYPTD 248 249config CRYPTO_SIMD 250 tristate 251 select CRYPTO_CRYPTD 252 253config CRYPTO_GLUE_HELPER_X86 254 tristate 255 depends on X86 256 select CRYPTO_BLKCIPHER 257 258config CRYPTO_ENGINE 259 tristate 260 261comment "Authenticated Encryption with Associated Data" 262 263config CRYPTO_CCM 264 tristate "CCM support" 265 select CRYPTO_CTR 266 select CRYPTO_AEAD 267 help 268 Support for Counter with CBC MAC. Required for IPsec. 269 270config CRYPTO_GCM 271 tristate "GCM/GMAC support" 272 select CRYPTO_CTR 273 select CRYPTO_AEAD 274 select CRYPTO_GHASH 275 select CRYPTO_NULL 276 help 277 Support for Galois/Counter Mode (GCM) and Galois Message 278 Authentication Code (GMAC). Required for IPSec. 279 280config CRYPTO_CHACHA20POLY1305 281 tristate "ChaCha20-Poly1305 AEAD support" 282 select CRYPTO_CHACHA20 283 select CRYPTO_POLY1305 284 select CRYPTO_AEAD 285 help 286 ChaCha20-Poly1305 AEAD support, RFC7539. 287 288 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 289 with the Poly1305 authenticator. It is defined in RFC7539 for use in 290 IETF protocols. 291 292config CRYPTO_SEQIV 293 tristate "Sequence Number IV Generator" 294 select CRYPTO_AEAD 295 select CRYPTO_BLKCIPHER 296 select CRYPTO_NULL 297 select CRYPTO_RNG_DEFAULT 298 help 299 This IV generator generates an IV based on a sequence number by 300 xoring it with a salt. This algorithm is mainly useful for CTR 301 302config CRYPTO_ECHAINIV 303 tristate "Encrypted Chain IV Generator" 304 select CRYPTO_AEAD 305 select CRYPTO_NULL 306 select CRYPTO_RNG_DEFAULT 307 default m 308 help 309 This IV generator generates an IV based on the encryption of 310 a sequence number xored with a salt. This is the default 311 algorithm for CBC. 312 313comment "Block modes" 314 315config CRYPTO_CBC 316 tristate "CBC support" 317 select CRYPTO_BLKCIPHER 318 select CRYPTO_MANAGER 319 help 320 CBC: Cipher Block Chaining mode 321 This block cipher algorithm is required for IPSec. 322 323config CRYPTO_CTR 324 tristate "CTR support" 325 select CRYPTO_BLKCIPHER 326 select CRYPTO_SEQIV 327 select CRYPTO_MANAGER 328 help 329 CTR: Counter mode 330 This block cipher algorithm is required for IPSec. 331 332config CRYPTO_CTS 333 tristate "CTS support" 334 select CRYPTO_BLKCIPHER 335 help 336 CTS: Cipher Text Stealing 337 This is the Cipher Text Stealing mode as described by 338 Section 8 of rfc2040 and referenced by rfc3962. 339 (rfc3962 includes errata information in its Appendix A) 340 This mode is required for Kerberos gss mechanism support 341 for AES encryption. 342 343config CRYPTO_ECB 344 tristate "ECB support" 345 select CRYPTO_BLKCIPHER 346 select CRYPTO_MANAGER 347 help 348 ECB: Electronic CodeBook mode 349 This is the simplest block cipher algorithm. It simply encrypts 350 the input block by block. 351 352config CRYPTO_LRW 353 tristate "LRW support" 354 select CRYPTO_BLKCIPHER 355 select CRYPTO_MANAGER 356 select CRYPTO_GF128MUL 357 help 358 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 359 narrow block cipher mode for dm-crypt. Use it with cipher 360 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 361 The first 128, 192 or 256 bits in the key are used for AES and the 362 rest is used to tie each cipher block to its logical position. 363 364config CRYPTO_PCBC 365 tristate "PCBC support" 366 select CRYPTO_BLKCIPHER 367 select CRYPTO_MANAGER 368 help 369 PCBC: Propagating Cipher Block Chaining mode 370 This block cipher algorithm is required for RxRPC. 371 372config CRYPTO_XTS 373 tristate "XTS support" 374 select CRYPTO_BLKCIPHER 375 select CRYPTO_MANAGER 376 select CRYPTO_GF128MUL 377 help 378 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 379 key size 256, 384 or 512 bits. This implementation currently 380 can't handle a sectorsize which is not a multiple of 16 bytes. 381 382config CRYPTO_KEYWRAP 383 tristate "Key wrapping support" 384 select CRYPTO_BLKCIPHER 385 help 386 Support for key wrapping (NIST SP800-38F / RFC3394) without 387 padding. 388 389comment "Hash modes" 390 391config CRYPTO_CMAC 392 tristate "CMAC support" 393 select CRYPTO_HASH 394 select CRYPTO_MANAGER 395 help 396 Cipher-based Message Authentication Code (CMAC) specified by 397 The National Institute of Standards and Technology (NIST). 398 399 https://tools.ietf.org/html/rfc4493 400 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 401 402config CRYPTO_HMAC 403 tristate "HMAC support" 404 select CRYPTO_HASH 405 select CRYPTO_MANAGER 406 help 407 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 408 This is required for IPSec. 409 410config CRYPTO_XCBC 411 tristate "XCBC support" 412 select CRYPTO_HASH 413 select CRYPTO_MANAGER 414 help 415 XCBC: Keyed-Hashing with encryption algorithm 416 http://www.ietf.org/rfc/rfc3566.txt 417 http://csrc.nist.gov/encryption/modes/proposedmodes/ 418 xcbc-mac/xcbc-mac-spec.pdf 419 420config CRYPTO_VMAC 421 tristate "VMAC support" 422 select CRYPTO_HASH 423 select CRYPTO_MANAGER 424 help 425 VMAC is a message authentication algorithm designed for 426 very high speed on 64-bit architectures. 427 428 See also: 429 <http://fastcrypto.org/vmac> 430 431comment "Digest" 432 433config CRYPTO_CRC32C 434 tristate "CRC32c CRC algorithm" 435 select CRYPTO_HASH 436 select CRC32 437 help 438 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 439 by iSCSI for header and data digests and by others. 440 See Castagnoli93. Module will be crc32c. 441 442config CRYPTO_CRC32C_INTEL 443 tristate "CRC32c INTEL hardware acceleration" 444 depends on X86 445 select CRYPTO_HASH 446 help 447 In Intel processor with SSE4.2 supported, the processor will 448 support CRC32C implementation using hardware accelerated CRC32 449 instruction. This option will create 'crc32c-intel' module, 450 which will enable any routine to use the CRC32 instruction to 451 gain performance compared with software implementation. 452 Module will be crc32c-intel. 453 454config CRYPTO_CRC32C_VPMSUM 455 tristate "CRC32c CRC algorithm (powerpc64)" 456 depends on PPC64 && ALTIVEC 457 select CRYPTO_HASH 458 select CRC32 459 help 460 CRC32c algorithm implemented using vector polynomial multiply-sum 461 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 462 and newer processors for improved performance. 463 464 465config CRYPTO_CRC32C_SPARC64 466 tristate "CRC32c CRC algorithm (SPARC64)" 467 depends on SPARC64 468 select CRYPTO_HASH 469 select CRC32 470 help 471 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 472 when available. 473 474config CRYPTO_CRC32 475 tristate "CRC32 CRC algorithm" 476 select CRYPTO_HASH 477 select CRC32 478 help 479 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 480 Shash crypto api wrappers to crc32_le function. 481 482config CRYPTO_CRC32_PCLMUL 483 tristate "CRC32 PCLMULQDQ hardware acceleration" 484 depends on X86 485 select CRYPTO_HASH 486 select CRC32 487 help 488 From Intel Westmere and AMD Bulldozer processor with SSE4.2 489 and PCLMULQDQ supported, the processor will support 490 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 491 instruction. This option will create 'crc32-plcmul' module, 492 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 493 and gain better performance as compared with the table implementation. 494 495config CRYPTO_CRCT10DIF 496 tristate "CRCT10DIF algorithm" 497 select CRYPTO_HASH 498 help 499 CRC T10 Data Integrity Field computation is being cast as 500 a crypto transform. This allows for faster crc t10 diff 501 transforms to be used if they are available. 502 503config CRYPTO_CRCT10DIF_PCLMUL 504 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 505 depends on X86 && 64BIT && CRC_T10DIF 506 select CRYPTO_HASH 507 help 508 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 509 CRC T10 DIF PCLMULQDQ computation can be hardware 510 accelerated PCLMULQDQ instruction. This option will create 511 'crct10dif-plcmul' module, which is faster when computing the 512 crct10dif checksum as compared with the generic table implementation. 513 514config CRYPTO_GHASH 515 tristate "GHASH digest algorithm" 516 select CRYPTO_GF128MUL 517 select CRYPTO_HASH 518 help 519 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 520 521config CRYPTO_POLY1305 522 tristate "Poly1305 authenticator algorithm" 523 select CRYPTO_HASH 524 help 525 Poly1305 authenticator algorithm, RFC7539. 526 527 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 528 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 529 in IETF protocols. This is the portable C implementation of Poly1305. 530 531config CRYPTO_POLY1305_X86_64 532 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 533 depends on X86 && 64BIT 534 select CRYPTO_POLY1305 535 help 536 Poly1305 authenticator algorithm, RFC7539. 537 538 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 539 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 540 in IETF protocols. This is the x86_64 assembler implementation using SIMD 541 instructions. 542 543config CRYPTO_MD4 544 tristate "MD4 digest algorithm" 545 select CRYPTO_HASH 546 help 547 MD4 message digest algorithm (RFC1320). 548 549config CRYPTO_MD5 550 tristate "MD5 digest algorithm" 551 select CRYPTO_HASH 552 help 553 MD5 message digest algorithm (RFC1321). 554 555config CRYPTO_MD5_OCTEON 556 tristate "MD5 digest algorithm (OCTEON)" 557 depends on CPU_CAVIUM_OCTEON 558 select CRYPTO_MD5 559 select CRYPTO_HASH 560 help 561 MD5 message digest algorithm (RFC1321) implemented 562 using OCTEON crypto instructions, when available. 563 564config CRYPTO_MD5_PPC 565 tristate "MD5 digest algorithm (PPC)" 566 depends on PPC 567 select CRYPTO_HASH 568 help 569 MD5 message digest algorithm (RFC1321) implemented 570 in PPC assembler. 571 572config CRYPTO_MD5_SPARC64 573 tristate "MD5 digest algorithm (SPARC64)" 574 depends on SPARC64 575 select CRYPTO_MD5 576 select CRYPTO_HASH 577 help 578 MD5 message digest algorithm (RFC1321) implemented 579 using sparc64 crypto instructions, when available. 580 581config CRYPTO_MICHAEL_MIC 582 tristate "Michael MIC keyed digest algorithm" 583 select CRYPTO_HASH 584 help 585 Michael MIC is used for message integrity protection in TKIP 586 (IEEE 802.11i). This algorithm is required for TKIP, but it 587 should not be used for other purposes because of the weakness 588 of the algorithm. 589 590config CRYPTO_RMD128 591 tristate "RIPEMD-128 digest algorithm" 592 select CRYPTO_HASH 593 help 594 RIPEMD-128 (ISO/IEC 10118-3:2004). 595 596 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 597 be used as a secure replacement for RIPEMD. For other use cases, 598 RIPEMD-160 should be used. 599 600 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 601 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 602 603config CRYPTO_RMD160 604 tristate "RIPEMD-160 digest algorithm" 605 select CRYPTO_HASH 606 help 607 RIPEMD-160 (ISO/IEC 10118-3:2004). 608 609 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 610 to be used as a secure replacement for the 128-bit hash functions 611 MD4, MD5 and it's predecessor RIPEMD 612 (not to be confused with RIPEMD-128). 613 614 It's speed is comparable to SHA1 and there are no known attacks 615 against RIPEMD-160. 616 617 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 618 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 619 620config CRYPTO_RMD256 621 tristate "RIPEMD-256 digest algorithm" 622 select CRYPTO_HASH 623 help 624 RIPEMD-256 is an optional extension of RIPEMD-128 with a 625 256 bit hash. It is intended for applications that require 626 longer hash-results, without needing a larger security level 627 (than RIPEMD-128). 628 629 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 630 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 631 632config CRYPTO_RMD320 633 tristate "RIPEMD-320 digest algorithm" 634 select CRYPTO_HASH 635 help 636 RIPEMD-320 is an optional extension of RIPEMD-160 with a 637 320 bit hash. It is intended for applications that require 638 longer hash-results, without needing a larger security level 639 (than RIPEMD-160). 640 641 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 642 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 643 644config CRYPTO_SHA1 645 tristate "SHA1 digest algorithm" 646 select CRYPTO_HASH 647 help 648 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 649 650config CRYPTO_SHA1_SSSE3 651 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 652 depends on X86 && 64BIT 653 select CRYPTO_SHA1 654 select CRYPTO_HASH 655 help 656 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 657 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 658 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 659 when available. 660 661config CRYPTO_SHA256_SSSE3 662 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 663 depends on X86 && 64BIT 664 select CRYPTO_SHA256 665 select CRYPTO_HASH 666 help 667 SHA-256 secure hash standard (DFIPS 180-2) implemented 668 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 669 Extensions version 1 (AVX1), or Advanced Vector Extensions 670 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 671 Instructions) when available. 672 673config CRYPTO_SHA512_SSSE3 674 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 675 depends on X86 && 64BIT 676 select CRYPTO_SHA512 677 select CRYPTO_HASH 678 help 679 SHA-512 secure hash standard (DFIPS 180-2) implemented 680 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 681 Extensions version 1 (AVX1), or Advanced Vector Extensions 682 version 2 (AVX2) instructions, when available. 683 684config CRYPTO_SHA1_OCTEON 685 tristate "SHA1 digest algorithm (OCTEON)" 686 depends on CPU_CAVIUM_OCTEON 687 select CRYPTO_SHA1 688 select CRYPTO_HASH 689 help 690 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 691 using OCTEON crypto instructions, when available. 692 693config CRYPTO_SHA1_SPARC64 694 tristate "SHA1 digest algorithm (SPARC64)" 695 depends on SPARC64 696 select CRYPTO_SHA1 697 select CRYPTO_HASH 698 help 699 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 700 using sparc64 crypto instructions, when available. 701 702config CRYPTO_SHA1_PPC 703 tristate "SHA1 digest algorithm (powerpc)" 704 depends on PPC 705 help 706 This is the powerpc hardware accelerated implementation of the 707 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 708 709config CRYPTO_SHA1_PPC_SPE 710 tristate "SHA1 digest algorithm (PPC SPE)" 711 depends on PPC && SPE 712 help 713 SHA-1 secure hash standard (DFIPS 180-4) implemented 714 using powerpc SPE SIMD instruction set. 715 716config CRYPTO_SHA1_MB 717 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 718 depends on X86 && 64BIT 719 select CRYPTO_SHA1 720 select CRYPTO_HASH 721 select CRYPTO_MCRYPTD 722 help 723 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 724 using multi-buffer technique. This algorithm computes on 725 multiple data lanes concurrently with SIMD instructions for 726 better throughput. It should not be enabled by default but 727 used when there is significant amount of work to keep the keep 728 the data lanes filled to get performance benefit. If the data 729 lanes remain unfilled, a flush operation will be initiated to 730 process the crypto jobs, adding a slight latency. 731 732config CRYPTO_SHA256_MB 733 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" 734 depends on X86 && 64BIT 735 select CRYPTO_SHA256 736 select CRYPTO_HASH 737 select CRYPTO_MCRYPTD 738 help 739 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 740 using multi-buffer technique. This algorithm computes on 741 multiple data lanes concurrently with SIMD instructions for 742 better throughput. It should not be enabled by default but 743 used when there is significant amount of work to keep the keep 744 the data lanes filled to get performance benefit. If the data 745 lanes remain unfilled, a flush operation will be initiated to 746 process the crypto jobs, adding a slight latency. 747 748config CRYPTO_SHA512_MB 749 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" 750 depends on X86 && 64BIT 751 select CRYPTO_SHA512 752 select CRYPTO_HASH 753 select CRYPTO_MCRYPTD 754 help 755 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 756 using multi-buffer technique. This algorithm computes on 757 multiple data lanes concurrently with SIMD instructions for 758 better throughput. It should not be enabled by default but 759 used when there is significant amount of work to keep the keep 760 the data lanes filled to get performance benefit. If the data 761 lanes remain unfilled, a flush operation will be initiated to 762 process the crypto jobs, adding a slight latency. 763 764config CRYPTO_SHA256 765 tristate "SHA224 and SHA256 digest algorithm" 766 select CRYPTO_HASH 767 help 768 SHA256 secure hash standard (DFIPS 180-2). 769 770 This version of SHA implements a 256 bit hash with 128 bits of 771 security against collision attacks. 772 773 This code also includes SHA-224, a 224 bit hash with 112 bits 774 of security against collision attacks. 775 776config CRYPTO_SHA256_PPC_SPE 777 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 778 depends on PPC && SPE 779 select CRYPTO_SHA256 780 select CRYPTO_HASH 781 help 782 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 783 implemented using powerpc SPE SIMD instruction set. 784 785config CRYPTO_SHA256_OCTEON 786 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 787 depends on CPU_CAVIUM_OCTEON 788 select CRYPTO_SHA256 789 select CRYPTO_HASH 790 help 791 SHA-256 secure hash standard (DFIPS 180-2) implemented 792 using OCTEON crypto instructions, when available. 793 794config CRYPTO_SHA256_SPARC64 795 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 796 depends on SPARC64 797 select CRYPTO_SHA256 798 select CRYPTO_HASH 799 help 800 SHA-256 secure hash standard (DFIPS 180-2) implemented 801 using sparc64 crypto instructions, when available. 802 803config CRYPTO_SHA512 804 tristate "SHA384 and SHA512 digest algorithms" 805 select CRYPTO_HASH 806 help 807 SHA512 secure hash standard (DFIPS 180-2). 808 809 This version of SHA implements a 512 bit hash with 256 bits of 810 security against collision attacks. 811 812 This code also includes SHA-384, a 384 bit hash with 192 bits 813 of security against collision attacks. 814 815config CRYPTO_SHA512_OCTEON 816 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 817 depends on CPU_CAVIUM_OCTEON 818 select CRYPTO_SHA512 819 select CRYPTO_HASH 820 help 821 SHA-512 secure hash standard (DFIPS 180-2) implemented 822 using OCTEON crypto instructions, when available. 823 824config CRYPTO_SHA512_SPARC64 825 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 826 depends on SPARC64 827 select CRYPTO_SHA512 828 select CRYPTO_HASH 829 help 830 SHA-512 secure hash standard (DFIPS 180-2) implemented 831 using sparc64 crypto instructions, when available. 832 833config CRYPTO_SHA3 834 tristate "SHA3 digest algorithm" 835 select CRYPTO_HASH 836 help 837 SHA-3 secure hash standard (DFIPS 202). It's based on 838 cryptographic sponge function family called Keccak. 839 840 References: 841 http://keccak.noekeon.org/ 842 843config CRYPTO_TGR192 844 tristate "Tiger digest algorithms" 845 select CRYPTO_HASH 846 help 847 Tiger hash algorithm 192, 160 and 128-bit hashes 848 849 Tiger is a hash function optimized for 64-bit processors while 850 still having decent performance on 32-bit processors. 851 Tiger was developed by Ross Anderson and Eli Biham. 852 853 See also: 854 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 855 856config CRYPTO_WP512 857 tristate "Whirlpool digest algorithms" 858 select CRYPTO_HASH 859 help 860 Whirlpool hash algorithm 512, 384 and 256-bit hashes 861 862 Whirlpool-512 is part of the NESSIE cryptographic primitives. 863 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 864 865 See also: 866 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 867 868config CRYPTO_GHASH_CLMUL_NI_INTEL 869 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 870 depends on X86 && 64BIT 871 select CRYPTO_CRYPTD 872 help 873 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 874 The implementation is accelerated by CLMUL-NI of Intel. 875 876comment "Ciphers" 877 878config CRYPTO_AES 879 tristate "AES cipher algorithms" 880 select CRYPTO_ALGAPI 881 help 882 AES cipher algorithms (FIPS-197). AES uses the Rijndael 883 algorithm. 884 885 Rijndael appears to be consistently a very good performer in 886 both hardware and software across a wide range of computing 887 environments regardless of its use in feedback or non-feedback 888 modes. Its key setup time is excellent, and its key agility is 889 good. Rijndael's very low memory requirements make it very well 890 suited for restricted-space environments, in which it also 891 demonstrates excellent performance. Rijndael's operations are 892 among the easiest to defend against power and timing attacks. 893 894 The AES specifies three key sizes: 128, 192 and 256 bits 895 896 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 897 898config CRYPTO_AES_586 899 tristate "AES cipher algorithms (i586)" 900 depends on (X86 || UML_X86) && !64BIT 901 select CRYPTO_ALGAPI 902 select CRYPTO_AES 903 help 904 AES cipher algorithms (FIPS-197). AES uses the Rijndael 905 algorithm. 906 907 Rijndael appears to be consistently a very good performer in 908 both hardware and software across a wide range of computing 909 environments regardless of its use in feedback or non-feedback 910 modes. Its key setup time is excellent, and its key agility is 911 good. Rijndael's very low memory requirements make it very well 912 suited for restricted-space environments, in which it also 913 demonstrates excellent performance. Rijndael's operations are 914 among the easiest to defend against power and timing attacks. 915 916 The AES specifies three key sizes: 128, 192 and 256 bits 917 918 See <http://csrc.nist.gov/encryption/aes/> for more information. 919 920config CRYPTO_AES_X86_64 921 tristate "AES cipher algorithms (x86_64)" 922 depends on (X86 || UML_X86) && 64BIT 923 select CRYPTO_ALGAPI 924 select CRYPTO_AES 925 help 926 AES cipher algorithms (FIPS-197). AES uses the Rijndael 927 algorithm. 928 929 Rijndael appears to be consistently a very good performer in 930 both hardware and software across a wide range of computing 931 environments regardless of its use in feedback or non-feedback 932 modes. Its key setup time is excellent, and its key agility is 933 good. Rijndael's very low memory requirements make it very well 934 suited for restricted-space environments, in which it also 935 demonstrates excellent performance. Rijndael's operations are 936 among the easiest to defend against power and timing attacks. 937 938 The AES specifies three key sizes: 128, 192 and 256 bits 939 940 See <http://csrc.nist.gov/encryption/aes/> for more information. 941 942config CRYPTO_AES_NI_INTEL 943 tristate "AES cipher algorithms (AES-NI)" 944 depends on X86 945 select CRYPTO_AEAD 946 select CRYPTO_AES_X86_64 if 64BIT 947 select CRYPTO_AES_586 if !64BIT 948 select CRYPTO_ALGAPI 949 select CRYPTO_BLKCIPHER 950 select CRYPTO_GLUE_HELPER_X86 if 64BIT 951 select CRYPTO_SIMD 952 help 953 Use Intel AES-NI instructions for AES algorithm. 954 955 AES cipher algorithms (FIPS-197). AES uses the Rijndael 956 algorithm. 957 958 Rijndael appears to be consistently a very good performer in 959 both hardware and software across a wide range of computing 960 environments regardless of its use in feedback or non-feedback 961 modes. Its key setup time is excellent, and its key agility is 962 good. Rijndael's very low memory requirements make it very well 963 suited for restricted-space environments, in which it also 964 demonstrates excellent performance. Rijndael's operations are 965 among the easiest to defend against power and timing attacks. 966 967 The AES specifies three key sizes: 128, 192 and 256 bits 968 969 See <http://csrc.nist.gov/encryption/aes/> for more information. 970 971 In addition to AES cipher algorithm support, the acceleration 972 for some popular block cipher mode is supported too, including 973 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 974 acceleration for CTR. 975 976config CRYPTO_AES_SPARC64 977 tristate "AES cipher algorithms (SPARC64)" 978 depends on SPARC64 979 select CRYPTO_CRYPTD 980 select CRYPTO_ALGAPI 981 help 982 Use SPARC64 crypto opcodes for AES algorithm. 983 984 AES cipher algorithms (FIPS-197). AES uses the Rijndael 985 algorithm. 986 987 Rijndael appears to be consistently a very good performer in 988 both hardware and software across a wide range of computing 989 environments regardless of its use in feedback or non-feedback 990 modes. Its key setup time is excellent, and its key agility is 991 good. Rijndael's very low memory requirements make it very well 992 suited for restricted-space environments, in which it also 993 demonstrates excellent performance. Rijndael's operations are 994 among the easiest to defend against power and timing attacks. 995 996 The AES specifies three key sizes: 128, 192 and 256 bits 997 998 See <http://csrc.nist.gov/encryption/aes/> for more information. 999 1000 In addition to AES cipher algorithm support, the acceleration 1001 for some popular block cipher mode is supported too, including 1002 ECB and CBC. 1003 1004config CRYPTO_AES_PPC_SPE 1005 tristate "AES cipher algorithms (PPC SPE)" 1006 depends on PPC && SPE 1007 help 1008 AES cipher algorithms (FIPS-197). Additionally the acceleration 1009 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1010 This module should only be used for low power (router) devices 1011 without hardware AES acceleration (e.g. caam crypto). It reduces the 1012 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1013 timining attacks. Nevertheless it might be not as secure as other 1014 architecture specific assembler implementations that work on 1KB 1015 tables or 256 bytes S-boxes. 1016 1017config CRYPTO_ANUBIS 1018 tristate "Anubis cipher algorithm" 1019 select CRYPTO_ALGAPI 1020 help 1021 Anubis cipher algorithm. 1022 1023 Anubis is a variable key length cipher which can use keys from 1024 128 bits to 320 bits in length. It was evaluated as a entrant 1025 in the NESSIE competition. 1026 1027 See also: 1028 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1029 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1030 1031config CRYPTO_ARC4 1032 tristate "ARC4 cipher algorithm" 1033 select CRYPTO_BLKCIPHER 1034 help 1035 ARC4 cipher algorithm. 1036 1037 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1038 bits in length. This algorithm is required for driver-based 1039 WEP, but it should not be for other purposes because of the 1040 weakness of the algorithm. 1041 1042config CRYPTO_BLOWFISH 1043 tristate "Blowfish cipher algorithm" 1044 select CRYPTO_ALGAPI 1045 select CRYPTO_BLOWFISH_COMMON 1046 help 1047 Blowfish cipher algorithm, by Bruce Schneier. 1048 1049 This is a variable key length cipher which can use keys from 32 1050 bits to 448 bits in length. It's fast, simple and specifically 1051 designed for use on "large microprocessors". 1052 1053 See also: 1054 <http://www.schneier.com/blowfish.html> 1055 1056config CRYPTO_BLOWFISH_COMMON 1057 tristate 1058 help 1059 Common parts of the Blowfish cipher algorithm shared by the 1060 generic c and the assembler implementations. 1061 1062 See also: 1063 <http://www.schneier.com/blowfish.html> 1064 1065config CRYPTO_BLOWFISH_X86_64 1066 tristate "Blowfish cipher algorithm (x86_64)" 1067 depends on X86 && 64BIT 1068 select CRYPTO_ALGAPI 1069 select CRYPTO_BLOWFISH_COMMON 1070 help 1071 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1072 1073 This is a variable key length cipher which can use keys from 32 1074 bits to 448 bits in length. It's fast, simple and specifically 1075 designed for use on "large microprocessors". 1076 1077 See also: 1078 <http://www.schneier.com/blowfish.html> 1079 1080config CRYPTO_CAMELLIA 1081 tristate "Camellia cipher algorithms" 1082 depends on CRYPTO 1083 select CRYPTO_ALGAPI 1084 help 1085 Camellia cipher algorithms module. 1086 1087 Camellia is a symmetric key block cipher developed jointly 1088 at NTT and Mitsubishi Electric Corporation. 1089 1090 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1091 1092 See also: 1093 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1094 1095config CRYPTO_CAMELLIA_X86_64 1096 tristate "Camellia cipher algorithm (x86_64)" 1097 depends on X86 && 64BIT 1098 depends on CRYPTO 1099 select CRYPTO_ALGAPI 1100 select CRYPTO_GLUE_HELPER_X86 1101 select CRYPTO_LRW 1102 select CRYPTO_XTS 1103 help 1104 Camellia cipher algorithm module (x86_64). 1105 1106 Camellia is a symmetric key block cipher developed jointly 1107 at NTT and Mitsubishi Electric Corporation. 1108 1109 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1110 1111 See also: 1112 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1113 1114config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1115 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1116 depends on X86 && 64BIT 1117 depends on CRYPTO 1118 select CRYPTO_ALGAPI 1119 select CRYPTO_CRYPTD 1120 select CRYPTO_ABLK_HELPER 1121 select CRYPTO_GLUE_HELPER_X86 1122 select CRYPTO_CAMELLIA_X86_64 1123 select CRYPTO_LRW 1124 select CRYPTO_XTS 1125 help 1126 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1127 1128 Camellia is a symmetric key block cipher developed jointly 1129 at NTT and Mitsubishi Electric Corporation. 1130 1131 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1132 1133 See also: 1134 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1135 1136config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1137 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1138 depends on X86 && 64BIT 1139 depends on CRYPTO 1140 select CRYPTO_ALGAPI 1141 select CRYPTO_CRYPTD 1142 select CRYPTO_ABLK_HELPER 1143 select CRYPTO_GLUE_HELPER_X86 1144 select CRYPTO_CAMELLIA_X86_64 1145 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1146 select CRYPTO_LRW 1147 select CRYPTO_XTS 1148 help 1149 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1150 1151 Camellia is a symmetric key block cipher developed jointly 1152 at NTT and Mitsubishi Electric Corporation. 1153 1154 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1155 1156 See also: 1157 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1158 1159config CRYPTO_CAMELLIA_SPARC64 1160 tristate "Camellia cipher algorithm (SPARC64)" 1161 depends on SPARC64 1162 depends on CRYPTO 1163 select CRYPTO_ALGAPI 1164 help 1165 Camellia cipher algorithm module (SPARC64). 1166 1167 Camellia is a symmetric key block cipher developed jointly 1168 at NTT and Mitsubishi Electric Corporation. 1169 1170 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1171 1172 See also: 1173 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1174 1175config CRYPTO_CAST_COMMON 1176 tristate 1177 help 1178 Common parts of the CAST cipher algorithms shared by the 1179 generic c and the assembler implementations. 1180 1181config CRYPTO_CAST5 1182 tristate "CAST5 (CAST-128) cipher algorithm" 1183 select CRYPTO_ALGAPI 1184 select CRYPTO_CAST_COMMON 1185 help 1186 The CAST5 encryption algorithm (synonymous with CAST-128) is 1187 described in RFC2144. 1188 1189config CRYPTO_CAST5_AVX_X86_64 1190 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1191 depends on X86 && 64BIT 1192 select CRYPTO_ALGAPI 1193 select CRYPTO_CRYPTD 1194 select CRYPTO_ABLK_HELPER 1195 select CRYPTO_CAST_COMMON 1196 select CRYPTO_CAST5 1197 help 1198 The CAST5 encryption algorithm (synonymous with CAST-128) is 1199 described in RFC2144. 1200 1201 This module provides the Cast5 cipher algorithm that processes 1202 sixteen blocks parallel using the AVX instruction set. 1203 1204config CRYPTO_CAST6 1205 tristate "CAST6 (CAST-256) cipher algorithm" 1206 select CRYPTO_ALGAPI 1207 select CRYPTO_CAST_COMMON 1208 help 1209 The CAST6 encryption algorithm (synonymous with CAST-256) is 1210 described in RFC2612. 1211 1212config CRYPTO_CAST6_AVX_X86_64 1213 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1214 depends on X86 && 64BIT 1215 select CRYPTO_ALGAPI 1216 select CRYPTO_CRYPTD 1217 select CRYPTO_ABLK_HELPER 1218 select CRYPTO_GLUE_HELPER_X86 1219 select CRYPTO_CAST_COMMON 1220 select CRYPTO_CAST6 1221 select CRYPTO_LRW 1222 select CRYPTO_XTS 1223 help 1224 The CAST6 encryption algorithm (synonymous with CAST-256) is 1225 described in RFC2612. 1226 1227 This module provides the Cast6 cipher algorithm that processes 1228 eight blocks parallel using the AVX instruction set. 1229 1230config CRYPTO_DES 1231 tristate "DES and Triple DES EDE cipher algorithms" 1232 select CRYPTO_ALGAPI 1233 help 1234 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1235 1236config CRYPTO_DES_SPARC64 1237 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1238 depends on SPARC64 1239 select CRYPTO_ALGAPI 1240 select CRYPTO_DES 1241 help 1242 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1243 optimized using SPARC64 crypto opcodes. 1244 1245config CRYPTO_DES3_EDE_X86_64 1246 tristate "Triple DES EDE cipher algorithm (x86-64)" 1247 depends on X86 && 64BIT 1248 select CRYPTO_ALGAPI 1249 select CRYPTO_DES 1250 help 1251 Triple DES EDE (FIPS 46-3) algorithm. 1252 1253 This module provides implementation of the Triple DES EDE cipher 1254 algorithm that is optimized for x86-64 processors. Two versions of 1255 algorithm are provided; regular processing one input block and 1256 one that processes three blocks parallel. 1257 1258config CRYPTO_FCRYPT 1259 tristate "FCrypt cipher algorithm" 1260 select CRYPTO_ALGAPI 1261 select CRYPTO_BLKCIPHER 1262 help 1263 FCrypt algorithm used by RxRPC. 1264 1265config CRYPTO_KHAZAD 1266 tristate "Khazad cipher algorithm" 1267 select CRYPTO_ALGAPI 1268 help 1269 Khazad cipher algorithm. 1270 1271 Khazad was a finalist in the initial NESSIE competition. It is 1272 an algorithm optimized for 64-bit processors with good performance 1273 on 32-bit processors. Khazad uses an 128 bit key size. 1274 1275 See also: 1276 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1277 1278config CRYPTO_SALSA20 1279 tristate "Salsa20 stream cipher algorithm" 1280 select CRYPTO_BLKCIPHER 1281 help 1282 Salsa20 stream cipher algorithm. 1283 1284 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1285 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1286 1287 The Salsa20 stream cipher algorithm is designed by Daniel J. 1288 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1289 1290config CRYPTO_SALSA20_586 1291 tristate "Salsa20 stream cipher algorithm (i586)" 1292 depends on (X86 || UML_X86) && !64BIT 1293 select CRYPTO_BLKCIPHER 1294 help 1295 Salsa20 stream cipher algorithm. 1296 1297 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1298 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1299 1300 The Salsa20 stream cipher algorithm is designed by Daniel J. 1301 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1302 1303config CRYPTO_SALSA20_X86_64 1304 tristate "Salsa20 stream cipher algorithm (x86_64)" 1305 depends on (X86 || UML_X86) && 64BIT 1306 select CRYPTO_BLKCIPHER 1307 help 1308 Salsa20 stream cipher algorithm. 1309 1310 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1311 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1312 1313 The Salsa20 stream cipher algorithm is designed by Daniel J. 1314 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1315 1316config CRYPTO_CHACHA20 1317 tristate "ChaCha20 cipher algorithm" 1318 select CRYPTO_BLKCIPHER 1319 help 1320 ChaCha20 cipher algorithm, RFC7539. 1321 1322 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1323 Bernstein and further specified in RFC7539 for use in IETF protocols. 1324 This is the portable C implementation of ChaCha20. 1325 1326 See also: 1327 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1328 1329config CRYPTO_CHACHA20_X86_64 1330 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1331 depends on X86 && 64BIT 1332 select CRYPTO_BLKCIPHER 1333 select CRYPTO_CHACHA20 1334 help 1335 ChaCha20 cipher algorithm, RFC7539. 1336 1337 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1338 Bernstein and further specified in RFC7539 for use in IETF protocols. 1339 This is the x86_64 assembler implementation using SIMD instructions. 1340 1341 See also: 1342 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1343 1344config CRYPTO_SEED 1345 tristate "SEED cipher algorithm" 1346 select CRYPTO_ALGAPI 1347 help 1348 SEED cipher algorithm (RFC4269). 1349 1350 SEED is a 128-bit symmetric key block cipher that has been 1351 developed by KISA (Korea Information Security Agency) as a 1352 national standard encryption algorithm of the Republic of Korea. 1353 It is a 16 round block cipher with the key size of 128 bit. 1354 1355 See also: 1356 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1357 1358config CRYPTO_SERPENT 1359 tristate "Serpent cipher algorithm" 1360 select CRYPTO_ALGAPI 1361 help 1362 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1363 1364 Keys are allowed to be from 0 to 256 bits in length, in steps 1365 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1366 variant of Serpent for compatibility with old kerneli.org code. 1367 1368 See also: 1369 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1370 1371config CRYPTO_SERPENT_SSE2_X86_64 1372 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1373 depends on X86 && 64BIT 1374 select CRYPTO_ALGAPI 1375 select CRYPTO_CRYPTD 1376 select CRYPTO_ABLK_HELPER 1377 select CRYPTO_GLUE_HELPER_X86 1378 select CRYPTO_SERPENT 1379 select CRYPTO_LRW 1380 select CRYPTO_XTS 1381 help 1382 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1383 1384 Keys are allowed to be from 0 to 256 bits in length, in steps 1385 of 8 bits. 1386 1387 This module provides Serpent cipher algorithm that processes eight 1388 blocks parallel using SSE2 instruction set. 1389 1390 See also: 1391 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1392 1393config CRYPTO_SERPENT_SSE2_586 1394 tristate "Serpent cipher algorithm (i586/SSE2)" 1395 depends on X86 && !64BIT 1396 select CRYPTO_ALGAPI 1397 select CRYPTO_CRYPTD 1398 select CRYPTO_ABLK_HELPER 1399 select CRYPTO_GLUE_HELPER_X86 1400 select CRYPTO_SERPENT 1401 select CRYPTO_LRW 1402 select CRYPTO_XTS 1403 help 1404 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1405 1406 Keys are allowed to be from 0 to 256 bits in length, in steps 1407 of 8 bits. 1408 1409 This module provides Serpent cipher algorithm that processes four 1410 blocks parallel using SSE2 instruction set. 1411 1412 See also: 1413 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1414 1415config CRYPTO_SERPENT_AVX_X86_64 1416 tristate "Serpent cipher algorithm (x86_64/AVX)" 1417 depends on X86 && 64BIT 1418 select CRYPTO_ALGAPI 1419 select CRYPTO_CRYPTD 1420 select CRYPTO_ABLK_HELPER 1421 select CRYPTO_GLUE_HELPER_X86 1422 select CRYPTO_SERPENT 1423 select CRYPTO_LRW 1424 select CRYPTO_XTS 1425 help 1426 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1427 1428 Keys are allowed to be from 0 to 256 bits in length, in steps 1429 of 8 bits. 1430 1431 This module provides the Serpent cipher algorithm that processes 1432 eight blocks parallel using the AVX instruction set. 1433 1434 See also: 1435 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1436 1437config CRYPTO_SERPENT_AVX2_X86_64 1438 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1439 depends on X86 && 64BIT 1440 select CRYPTO_ALGAPI 1441 select CRYPTO_CRYPTD 1442 select CRYPTO_ABLK_HELPER 1443 select CRYPTO_GLUE_HELPER_X86 1444 select CRYPTO_SERPENT 1445 select CRYPTO_SERPENT_AVX_X86_64 1446 select CRYPTO_LRW 1447 select CRYPTO_XTS 1448 help 1449 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1450 1451 Keys are allowed to be from 0 to 256 bits in length, in steps 1452 of 8 bits. 1453 1454 This module provides Serpent cipher algorithm that processes 16 1455 blocks parallel using AVX2 instruction set. 1456 1457 See also: 1458 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1459 1460config CRYPTO_TEA 1461 tristate "TEA, XTEA and XETA cipher algorithms" 1462 select CRYPTO_ALGAPI 1463 help 1464 TEA cipher algorithm. 1465 1466 Tiny Encryption Algorithm is a simple cipher that uses 1467 many rounds for security. It is very fast and uses 1468 little memory. 1469 1470 Xtendend Tiny Encryption Algorithm is a modification to 1471 the TEA algorithm to address a potential key weakness 1472 in the TEA algorithm. 1473 1474 Xtendend Encryption Tiny Algorithm is a mis-implementation 1475 of the XTEA algorithm for compatibility purposes. 1476 1477config CRYPTO_TWOFISH 1478 tristate "Twofish cipher algorithm" 1479 select CRYPTO_ALGAPI 1480 select CRYPTO_TWOFISH_COMMON 1481 help 1482 Twofish cipher algorithm. 1483 1484 Twofish was submitted as an AES (Advanced Encryption Standard) 1485 candidate cipher by researchers at CounterPane Systems. It is a 1486 16 round block cipher supporting key sizes of 128, 192, and 256 1487 bits. 1488 1489 See also: 1490 <http://www.schneier.com/twofish.html> 1491 1492config CRYPTO_TWOFISH_COMMON 1493 tristate 1494 help 1495 Common parts of the Twofish cipher algorithm shared by the 1496 generic c and the assembler implementations. 1497 1498config CRYPTO_TWOFISH_586 1499 tristate "Twofish cipher algorithms (i586)" 1500 depends on (X86 || UML_X86) && !64BIT 1501 select CRYPTO_ALGAPI 1502 select CRYPTO_TWOFISH_COMMON 1503 help 1504 Twofish cipher algorithm. 1505 1506 Twofish was submitted as an AES (Advanced Encryption Standard) 1507 candidate cipher by researchers at CounterPane Systems. It is a 1508 16 round block cipher supporting key sizes of 128, 192, and 256 1509 bits. 1510 1511 See also: 1512 <http://www.schneier.com/twofish.html> 1513 1514config CRYPTO_TWOFISH_X86_64 1515 tristate "Twofish cipher algorithm (x86_64)" 1516 depends on (X86 || UML_X86) && 64BIT 1517 select CRYPTO_ALGAPI 1518 select CRYPTO_TWOFISH_COMMON 1519 help 1520 Twofish cipher algorithm (x86_64). 1521 1522 Twofish was submitted as an AES (Advanced Encryption Standard) 1523 candidate cipher by researchers at CounterPane Systems. It is a 1524 16 round block cipher supporting key sizes of 128, 192, and 256 1525 bits. 1526 1527 See also: 1528 <http://www.schneier.com/twofish.html> 1529 1530config CRYPTO_TWOFISH_X86_64_3WAY 1531 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1532 depends on X86 && 64BIT 1533 select CRYPTO_ALGAPI 1534 select CRYPTO_TWOFISH_COMMON 1535 select CRYPTO_TWOFISH_X86_64 1536 select CRYPTO_GLUE_HELPER_X86 1537 select CRYPTO_LRW 1538 select CRYPTO_XTS 1539 help 1540 Twofish cipher algorithm (x86_64, 3-way parallel). 1541 1542 Twofish was submitted as an AES (Advanced Encryption Standard) 1543 candidate cipher by researchers at CounterPane Systems. It is a 1544 16 round block cipher supporting key sizes of 128, 192, and 256 1545 bits. 1546 1547 This module provides Twofish cipher algorithm that processes three 1548 blocks parallel, utilizing resources of out-of-order CPUs better. 1549 1550 See also: 1551 <http://www.schneier.com/twofish.html> 1552 1553config CRYPTO_TWOFISH_AVX_X86_64 1554 tristate "Twofish cipher algorithm (x86_64/AVX)" 1555 depends on X86 && 64BIT 1556 select CRYPTO_ALGAPI 1557 select CRYPTO_CRYPTD 1558 select CRYPTO_ABLK_HELPER 1559 select CRYPTO_GLUE_HELPER_X86 1560 select CRYPTO_TWOFISH_COMMON 1561 select CRYPTO_TWOFISH_X86_64 1562 select CRYPTO_TWOFISH_X86_64_3WAY 1563 select CRYPTO_LRW 1564 select CRYPTO_XTS 1565 help 1566 Twofish cipher algorithm (x86_64/AVX). 1567 1568 Twofish was submitted as an AES (Advanced Encryption Standard) 1569 candidate cipher by researchers at CounterPane Systems. It is a 1570 16 round block cipher supporting key sizes of 128, 192, and 256 1571 bits. 1572 1573 This module provides the Twofish cipher algorithm that processes 1574 eight blocks parallel using the AVX Instruction Set. 1575 1576 See also: 1577 <http://www.schneier.com/twofish.html> 1578 1579comment "Compression" 1580 1581config CRYPTO_DEFLATE 1582 tristate "Deflate compression algorithm" 1583 select CRYPTO_ALGAPI 1584 select CRYPTO_ACOMP2 1585 select ZLIB_INFLATE 1586 select ZLIB_DEFLATE 1587 help 1588 This is the Deflate algorithm (RFC1951), specified for use in 1589 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1590 1591 You will most probably want this if using IPSec. 1592 1593config CRYPTO_LZO 1594 tristate "LZO compression algorithm" 1595 select CRYPTO_ALGAPI 1596 select CRYPTO_ACOMP2 1597 select LZO_COMPRESS 1598 select LZO_DECOMPRESS 1599 help 1600 This is the LZO algorithm. 1601 1602config CRYPTO_842 1603 tristate "842 compression algorithm" 1604 select CRYPTO_ALGAPI 1605 select CRYPTO_ACOMP2 1606 select 842_COMPRESS 1607 select 842_DECOMPRESS 1608 help 1609 This is the 842 algorithm. 1610 1611config CRYPTO_LZ4 1612 tristate "LZ4 compression algorithm" 1613 select CRYPTO_ALGAPI 1614 select CRYPTO_ACOMP2 1615 select LZ4_COMPRESS 1616 select LZ4_DECOMPRESS 1617 help 1618 This is the LZ4 algorithm. 1619 1620config CRYPTO_LZ4HC 1621 tristate "LZ4HC compression algorithm" 1622 select CRYPTO_ALGAPI 1623 select CRYPTO_ACOMP2 1624 select LZ4HC_COMPRESS 1625 select LZ4_DECOMPRESS 1626 help 1627 This is the LZ4 high compression mode algorithm. 1628 1629comment "Random Number Generation" 1630 1631config CRYPTO_ANSI_CPRNG 1632 tristate "Pseudo Random Number Generation for Cryptographic modules" 1633 select CRYPTO_AES 1634 select CRYPTO_RNG 1635 help 1636 This option enables the generic pseudo random number generator 1637 for cryptographic modules. Uses the Algorithm specified in 1638 ANSI X9.31 A.2.4. Note that this option must be enabled if 1639 CRYPTO_FIPS is selected 1640 1641menuconfig CRYPTO_DRBG_MENU 1642 tristate "NIST SP800-90A DRBG" 1643 help 1644 NIST SP800-90A compliant DRBG. In the following submenu, one or 1645 more of the DRBG types must be selected. 1646 1647if CRYPTO_DRBG_MENU 1648 1649config CRYPTO_DRBG_HMAC 1650 bool 1651 default y 1652 select CRYPTO_HMAC 1653 select CRYPTO_SHA256 1654 1655config CRYPTO_DRBG_HASH 1656 bool "Enable Hash DRBG" 1657 select CRYPTO_SHA256 1658 help 1659 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1660 1661config CRYPTO_DRBG_CTR 1662 bool "Enable CTR DRBG" 1663 select CRYPTO_AES 1664 depends on CRYPTO_CTR 1665 help 1666 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1667 1668config CRYPTO_DRBG 1669 tristate 1670 default CRYPTO_DRBG_MENU 1671 select CRYPTO_RNG 1672 select CRYPTO_JITTERENTROPY 1673 1674endif # if CRYPTO_DRBG_MENU 1675 1676config CRYPTO_JITTERENTROPY 1677 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1678 select CRYPTO_RNG 1679 help 1680 The Jitterentropy RNG is a noise that is intended 1681 to provide seed to another RNG. The RNG does not 1682 perform any cryptographic whitening of the generated 1683 random numbers. This Jitterentropy RNG registers with 1684 the kernel crypto API and can be used by any caller. 1685 1686config CRYPTO_USER_API 1687 tristate 1688 1689config CRYPTO_USER_API_HASH 1690 tristate "User-space interface for hash algorithms" 1691 depends on NET 1692 select CRYPTO_HASH 1693 select CRYPTO_USER_API 1694 help 1695 This option enables the user-spaces interface for hash 1696 algorithms. 1697 1698config CRYPTO_USER_API_SKCIPHER 1699 tristate "User-space interface for symmetric key cipher algorithms" 1700 depends on NET 1701 select CRYPTO_BLKCIPHER 1702 select CRYPTO_USER_API 1703 help 1704 This option enables the user-spaces interface for symmetric 1705 key cipher algorithms. 1706 1707config CRYPTO_USER_API_RNG 1708 tristate "User-space interface for random number generator algorithms" 1709 depends on NET 1710 select CRYPTO_RNG 1711 select CRYPTO_USER_API 1712 help 1713 This option enables the user-spaces interface for random 1714 number generator algorithms. 1715 1716config CRYPTO_USER_API_AEAD 1717 tristate "User-space interface for AEAD cipher algorithms" 1718 depends on NET 1719 select CRYPTO_AEAD 1720 select CRYPTO_USER_API 1721 help 1722 This option enables the user-spaces interface for AEAD 1723 cipher algorithms. 1724 1725config CRYPTO_HASH_INFO 1726 bool 1727 1728source "drivers/crypto/Kconfig" 1729source crypto/asymmetric_keys/Kconfig 1730source certs/Kconfig 1731 1732endif # if CRYPTO 1733