1# 2# Generic algorithms support 3# 4config XOR_BLOCKS 5 tristate 6 7# 8# async_tx api: hardware offloaded memory transfer/transform support 9# 10source "crypto/async_tx/Kconfig" 11 12# 13# Cryptographic API Configuration 14# 15menuconfig CRYPTO 16 tristate "Cryptographic API" 17 help 18 This option provides the core Cryptographic API. 19 20if CRYPTO 21 22comment "Crypto core or helper" 23 24config CRYPTO_FIPS 25 bool "FIPS 200 compliance" 26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 27 depends on MODULE_SIG 28 help 29 This options enables the fips boot option which is 30 required if you want to system to operate in a FIPS 200 31 certification. You should say no unless you know what 32 this is. 33 34config CRYPTO_ALGAPI 35 tristate 36 select CRYPTO_ALGAPI2 37 help 38 This option provides the API for cryptographic algorithms. 39 40config CRYPTO_ALGAPI2 41 tristate 42 43config CRYPTO_AEAD 44 tristate 45 select CRYPTO_AEAD2 46 select CRYPTO_ALGAPI 47 48config CRYPTO_AEAD2 49 tristate 50 select CRYPTO_ALGAPI2 51 52config CRYPTO_BLKCIPHER 53 tristate 54 select CRYPTO_BLKCIPHER2 55 select CRYPTO_ALGAPI 56 57config CRYPTO_BLKCIPHER2 58 tristate 59 select CRYPTO_ALGAPI2 60 select CRYPTO_RNG2 61 select CRYPTO_WORKQUEUE 62 63config CRYPTO_HASH 64 tristate 65 select CRYPTO_HASH2 66 select CRYPTO_ALGAPI 67 68config CRYPTO_HASH2 69 tristate 70 select CRYPTO_ALGAPI2 71 72config CRYPTO_RNG 73 tristate 74 select CRYPTO_RNG2 75 select CRYPTO_ALGAPI 76 77config CRYPTO_RNG2 78 tristate 79 select CRYPTO_ALGAPI2 80 81config CRYPTO_PCOMP 82 tristate 83 select CRYPTO_PCOMP2 84 select CRYPTO_ALGAPI 85 86config CRYPTO_PCOMP2 87 tristate 88 select CRYPTO_ALGAPI2 89 90config CRYPTO_MANAGER 91 tristate "Cryptographic algorithm manager" 92 select CRYPTO_MANAGER2 93 help 94 Create default cryptographic template instantiations such as 95 cbc(aes). 96 97config CRYPTO_MANAGER2 98 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 99 select CRYPTO_AEAD2 100 select CRYPTO_HASH2 101 select CRYPTO_BLKCIPHER2 102 select CRYPTO_PCOMP2 103 104config CRYPTO_USER 105 tristate "Userspace cryptographic algorithm configuration" 106 depends on NET 107 select CRYPTO_MANAGER 108 help 109 Userspace configuration for cryptographic instantiations such as 110 cbc(aes). 111 112config CRYPTO_MANAGER_DISABLE_TESTS 113 bool "Disable run-time self tests" 114 default y 115 depends on CRYPTO_MANAGER2 116 help 117 Disable run-time self tests that normally take place at 118 algorithm registration. 119 120config CRYPTO_GF128MUL 121 tristate "GF(2^128) multiplication functions" 122 help 123 Efficient table driven implementation of multiplications in the 124 field GF(2^128). This is needed by some cypher modes. This 125 option will be selected automatically if you select such a 126 cipher mode. Only select this option by hand if you expect to load 127 an external module that requires these functions. 128 129config CRYPTO_NULL 130 tristate "Null algorithms" 131 select CRYPTO_ALGAPI 132 select CRYPTO_BLKCIPHER 133 select CRYPTO_HASH 134 help 135 These are 'Null' algorithms, used by IPsec, which do nothing. 136 137config CRYPTO_PCRYPT 138 tristate "Parallel crypto engine" 139 depends on SMP 140 select PADATA 141 select CRYPTO_MANAGER 142 select CRYPTO_AEAD 143 help 144 This converts an arbitrary crypto algorithm into a parallel 145 algorithm that executes in kernel threads. 146 147config CRYPTO_WORKQUEUE 148 tristate 149 150config CRYPTO_CRYPTD 151 tristate "Software async crypto daemon" 152 select CRYPTO_BLKCIPHER 153 select CRYPTO_HASH 154 select CRYPTO_MANAGER 155 select CRYPTO_WORKQUEUE 156 help 157 This is a generic software asynchronous crypto daemon that 158 converts an arbitrary synchronous software crypto algorithm 159 into an asynchronous algorithm that executes in a kernel thread. 160 161config CRYPTO_MCRYPTD 162 tristate "Software async multi-buffer crypto daemon" 163 select CRYPTO_BLKCIPHER 164 select CRYPTO_HASH 165 select CRYPTO_MANAGER 166 select CRYPTO_WORKQUEUE 167 help 168 This is a generic software asynchronous crypto daemon that 169 provides the kernel thread to assist multi-buffer crypto 170 algorithms for submitting jobs and flushing jobs in multi-buffer 171 crypto algorithms. Multi-buffer crypto algorithms are executed 172 in the context of this kernel thread and drivers can post 173 their crypto request asynchronously to be processed by this daemon. 174 175config CRYPTO_AUTHENC 176 tristate "Authenc support" 177 select CRYPTO_AEAD 178 select CRYPTO_BLKCIPHER 179 select CRYPTO_MANAGER 180 select CRYPTO_HASH 181 help 182 Authenc: Combined mode wrapper for IPsec. 183 This is required for IPSec. 184 185config CRYPTO_TEST 186 tristate "Testing module" 187 depends on m 188 select CRYPTO_MANAGER 189 help 190 Quick & dirty crypto test module. 191 192config CRYPTO_ABLK_HELPER 193 tristate 194 select CRYPTO_CRYPTD 195 196config CRYPTO_GLUE_HELPER_X86 197 tristate 198 depends on X86 199 select CRYPTO_ALGAPI 200 201comment "Authenticated Encryption with Associated Data" 202 203config CRYPTO_CCM 204 tristate "CCM support" 205 select CRYPTO_CTR 206 select CRYPTO_AEAD 207 help 208 Support for Counter with CBC MAC. Required for IPsec. 209 210config CRYPTO_GCM 211 tristate "GCM/GMAC support" 212 select CRYPTO_CTR 213 select CRYPTO_AEAD 214 select CRYPTO_GHASH 215 select CRYPTO_NULL 216 help 217 Support for Galois/Counter Mode (GCM) and Galois Message 218 Authentication Code (GMAC). Required for IPSec. 219 220config CRYPTO_SEQIV 221 tristate "Sequence Number IV Generator" 222 select CRYPTO_AEAD 223 select CRYPTO_BLKCIPHER 224 select CRYPTO_RNG 225 help 226 This IV generator generates an IV based on a sequence number by 227 xoring it with a salt. This algorithm is mainly useful for CTR 228 229comment "Block modes" 230 231config CRYPTO_CBC 232 tristate "CBC support" 233 select CRYPTO_BLKCIPHER 234 select CRYPTO_MANAGER 235 help 236 CBC: Cipher Block Chaining mode 237 This block cipher algorithm is required for IPSec. 238 239config CRYPTO_CTR 240 tristate "CTR support" 241 select CRYPTO_BLKCIPHER 242 select CRYPTO_SEQIV 243 select CRYPTO_MANAGER 244 help 245 CTR: Counter mode 246 This block cipher algorithm is required for IPSec. 247 248config CRYPTO_CTS 249 tristate "CTS support" 250 select CRYPTO_BLKCIPHER 251 help 252 CTS: Cipher Text Stealing 253 This is the Cipher Text Stealing mode as described by 254 Section 8 of rfc2040 and referenced by rfc3962. 255 (rfc3962 includes errata information in its Appendix A) 256 This mode is required for Kerberos gss mechanism support 257 for AES encryption. 258 259config CRYPTO_ECB 260 tristate "ECB support" 261 select CRYPTO_BLKCIPHER 262 select CRYPTO_MANAGER 263 help 264 ECB: Electronic CodeBook mode 265 This is the simplest block cipher algorithm. It simply encrypts 266 the input block by block. 267 268config CRYPTO_LRW 269 tristate "LRW support" 270 select CRYPTO_BLKCIPHER 271 select CRYPTO_MANAGER 272 select CRYPTO_GF128MUL 273 help 274 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 275 narrow block cipher mode for dm-crypt. Use it with cipher 276 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 277 The first 128, 192 or 256 bits in the key are used for AES and the 278 rest is used to tie each cipher block to its logical position. 279 280config CRYPTO_PCBC 281 tristate "PCBC support" 282 select CRYPTO_BLKCIPHER 283 select CRYPTO_MANAGER 284 help 285 PCBC: Propagating Cipher Block Chaining mode 286 This block cipher algorithm is required for RxRPC. 287 288config CRYPTO_XTS 289 tristate "XTS support" 290 select CRYPTO_BLKCIPHER 291 select CRYPTO_MANAGER 292 select CRYPTO_GF128MUL 293 help 294 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 295 key size 256, 384 or 512 bits. This implementation currently 296 can't handle a sectorsize which is not a multiple of 16 bytes. 297 298comment "Hash modes" 299 300config CRYPTO_CMAC 301 tristate "CMAC support" 302 select CRYPTO_HASH 303 select CRYPTO_MANAGER 304 help 305 Cipher-based Message Authentication Code (CMAC) specified by 306 The National Institute of Standards and Technology (NIST). 307 308 https://tools.ietf.org/html/rfc4493 309 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 310 311config CRYPTO_HMAC 312 tristate "HMAC support" 313 select CRYPTO_HASH 314 select CRYPTO_MANAGER 315 help 316 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 317 This is required for IPSec. 318 319config CRYPTO_XCBC 320 tristate "XCBC support" 321 select CRYPTO_HASH 322 select CRYPTO_MANAGER 323 help 324 XCBC: Keyed-Hashing with encryption algorithm 325 http://www.ietf.org/rfc/rfc3566.txt 326 http://csrc.nist.gov/encryption/modes/proposedmodes/ 327 xcbc-mac/xcbc-mac-spec.pdf 328 329config CRYPTO_VMAC 330 tristate "VMAC support" 331 select CRYPTO_HASH 332 select CRYPTO_MANAGER 333 help 334 VMAC is a message authentication algorithm designed for 335 very high speed on 64-bit architectures. 336 337 See also: 338 <http://fastcrypto.org/vmac> 339 340comment "Digest" 341 342config CRYPTO_CRC32C 343 tristate "CRC32c CRC algorithm" 344 select CRYPTO_HASH 345 select CRC32 346 help 347 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 348 by iSCSI for header and data digests and by others. 349 See Castagnoli93. Module will be crc32c. 350 351config CRYPTO_CRC32C_INTEL 352 tristate "CRC32c INTEL hardware acceleration" 353 depends on X86 354 select CRYPTO_HASH 355 help 356 In Intel processor with SSE4.2 supported, the processor will 357 support CRC32C implementation using hardware accelerated CRC32 358 instruction. This option will create 'crc32c-intel' module, 359 which will enable any routine to use the CRC32 instruction to 360 gain performance compared with software implementation. 361 Module will be crc32c-intel. 362 363config CRYPTO_CRC32C_SPARC64 364 tristate "CRC32c CRC algorithm (SPARC64)" 365 depends on SPARC64 366 select CRYPTO_HASH 367 select CRC32 368 help 369 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 370 when available. 371 372config CRYPTO_CRC32 373 tristate "CRC32 CRC algorithm" 374 select CRYPTO_HASH 375 select CRC32 376 help 377 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 378 Shash crypto api wrappers to crc32_le function. 379 380config CRYPTO_CRC32_PCLMUL 381 tristate "CRC32 PCLMULQDQ hardware acceleration" 382 depends on X86 383 select CRYPTO_HASH 384 select CRC32 385 help 386 From Intel Westmere and AMD Bulldozer processor with SSE4.2 387 and PCLMULQDQ supported, the processor will support 388 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 389 instruction. This option will create 'crc32-plcmul' module, 390 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 391 and gain better performance as compared with the table implementation. 392 393config CRYPTO_CRCT10DIF 394 tristate "CRCT10DIF algorithm" 395 select CRYPTO_HASH 396 help 397 CRC T10 Data Integrity Field computation is being cast as 398 a crypto transform. This allows for faster crc t10 diff 399 transforms to be used if they are available. 400 401config CRYPTO_CRCT10DIF_PCLMUL 402 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 403 depends on X86 && 64BIT && CRC_T10DIF 404 select CRYPTO_HASH 405 help 406 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 407 CRC T10 DIF PCLMULQDQ computation can be hardware 408 accelerated PCLMULQDQ instruction. This option will create 409 'crct10dif-plcmul' module, which is faster when computing the 410 crct10dif checksum as compared with the generic table implementation. 411 412config CRYPTO_GHASH 413 tristate "GHASH digest algorithm" 414 select CRYPTO_GF128MUL 415 help 416 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 417 418config CRYPTO_MD4 419 tristate "MD4 digest algorithm" 420 select CRYPTO_HASH 421 help 422 MD4 message digest algorithm (RFC1320). 423 424config CRYPTO_MD5 425 tristate "MD5 digest algorithm" 426 select CRYPTO_HASH 427 help 428 MD5 message digest algorithm (RFC1321). 429 430config CRYPTO_MD5_SPARC64 431 tristate "MD5 digest algorithm (SPARC64)" 432 depends on SPARC64 433 select CRYPTO_MD5 434 select CRYPTO_HASH 435 help 436 MD5 message digest algorithm (RFC1321) implemented 437 using sparc64 crypto instructions, when available. 438 439config CRYPTO_MICHAEL_MIC 440 tristate "Michael MIC keyed digest algorithm" 441 select CRYPTO_HASH 442 help 443 Michael MIC is used for message integrity protection in TKIP 444 (IEEE 802.11i). This algorithm is required for TKIP, but it 445 should not be used for other purposes because of the weakness 446 of the algorithm. 447 448config CRYPTO_RMD128 449 tristate "RIPEMD-128 digest algorithm" 450 select CRYPTO_HASH 451 help 452 RIPEMD-128 (ISO/IEC 10118-3:2004). 453 454 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 455 be used as a secure replacement for RIPEMD. For other use cases, 456 RIPEMD-160 should be used. 457 458 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 459 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 460 461config CRYPTO_RMD160 462 tristate "RIPEMD-160 digest algorithm" 463 select CRYPTO_HASH 464 help 465 RIPEMD-160 (ISO/IEC 10118-3:2004). 466 467 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 468 to be used as a secure replacement for the 128-bit hash functions 469 MD4, MD5 and it's predecessor RIPEMD 470 (not to be confused with RIPEMD-128). 471 472 It's speed is comparable to SHA1 and there are no known attacks 473 against RIPEMD-160. 474 475 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 476 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 477 478config CRYPTO_RMD256 479 tristate "RIPEMD-256 digest algorithm" 480 select CRYPTO_HASH 481 help 482 RIPEMD-256 is an optional extension of RIPEMD-128 with a 483 256 bit hash. It is intended for applications that require 484 longer hash-results, without needing a larger security level 485 (than RIPEMD-128). 486 487 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 488 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 489 490config CRYPTO_RMD320 491 tristate "RIPEMD-320 digest algorithm" 492 select CRYPTO_HASH 493 help 494 RIPEMD-320 is an optional extension of RIPEMD-160 with a 495 320 bit hash. It is intended for applications that require 496 longer hash-results, without needing a larger security level 497 (than RIPEMD-160). 498 499 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 500 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 501 502config CRYPTO_SHA1 503 tristate "SHA1 digest algorithm" 504 select CRYPTO_HASH 505 help 506 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 507 508config CRYPTO_SHA1_SSSE3 509 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)" 510 depends on X86 && 64BIT 511 select CRYPTO_SHA1 512 select CRYPTO_HASH 513 help 514 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 515 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 516 Extensions (AVX/AVX2), when available. 517 518config CRYPTO_SHA256_SSSE3 519 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)" 520 depends on X86 && 64BIT 521 select CRYPTO_SHA256 522 select CRYPTO_HASH 523 help 524 SHA-256 secure hash standard (DFIPS 180-2) implemented 525 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 526 Extensions version 1 (AVX1), or Advanced Vector Extensions 527 version 2 (AVX2) instructions, when available. 528 529config CRYPTO_SHA512_SSSE3 530 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 531 depends on X86 && 64BIT 532 select CRYPTO_SHA512 533 select CRYPTO_HASH 534 help 535 SHA-512 secure hash standard (DFIPS 180-2) implemented 536 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 537 Extensions version 1 (AVX1), or Advanced Vector Extensions 538 version 2 (AVX2) instructions, when available. 539 540config CRYPTO_SHA1_SPARC64 541 tristate "SHA1 digest algorithm (SPARC64)" 542 depends on SPARC64 543 select CRYPTO_SHA1 544 select CRYPTO_HASH 545 help 546 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 547 using sparc64 crypto instructions, when available. 548 549config CRYPTO_SHA1_ARM 550 tristate "SHA1 digest algorithm (ARM-asm)" 551 depends on ARM 552 select CRYPTO_SHA1 553 select CRYPTO_HASH 554 help 555 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 556 using optimized ARM assembler. 557 558config CRYPTO_SHA1_ARM_NEON 559 tristate "SHA1 digest algorithm (ARM NEON)" 560 depends on ARM && KERNEL_MODE_NEON 561 select CRYPTO_SHA1_ARM 562 select CRYPTO_SHA1 563 select CRYPTO_HASH 564 help 565 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 566 using optimized ARM NEON assembly, when NEON instructions are 567 available. 568 569config CRYPTO_SHA1_PPC 570 tristate "SHA1 digest algorithm (powerpc)" 571 depends on PPC 572 help 573 This is the powerpc hardware accelerated implementation of the 574 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 575 576config CRYPTO_SHA1_MB 577 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 578 depends on X86 && 64BIT 579 select CRYPTO_SHA1 580 select CRYPTO_HASH 581 select CRYPTO_MCRYPTD 582 help 583 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 584 using multi-buffer technique. This algorithm computes on 585 multiple data lanes concurrently with SIMD instructions for 586 better throughput. It should not be enabled by default but 587 used when there is significant amount of work to keep the keep 588 the data lanes filled to get performance benefit. If the data 589 lanes remain unfilled, a flush operation will be initiated to 590 process the crypto jobs, adding a slight latency. 591 592config CRYPTO_SHA256 593 tristate "SHA224 and SHA256 digest algorithm" 594 select CRYPTO_HASH 595 help 596 SHA256 secure hash standard (DFIPS 180-2). 597 598 This version of SHA implements a 256 bit hash with 128 bits of 599 security against collision attacks. 600 601 This code also includes SHA-224, a 224 bit hash with 112 bits 602 of security against collision attacks. 603 604config CRYPTO_SHA256_SPARC64 605 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 606 depends on SPARC64 607 select CRYPTO_SHA256 608 select CRYPTO_HASH 609 help 610 SHA-256 secure hash standard (DFIPS 180-2) implemented 611 using sparc64 crypto instructions, when available. 612 613config CRYPTO_SHA512 614 tristate "SHA384 and SHA512 digest algorithms" 615 select CRYPTO_HASH 616 help 617 SHA512 secure hash standard (DFIPS 180-2). 618 619 This version of SHA implements a 512 bit hash with 256 bits of 620 security against collision attacks. 621 622 This code also includes SHA-384, a 384 bit hash with 192 bits 623 of security against collision attacks. 624 625config CRYPTO_SHA512_SPARC64 626 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 627 depends on SPARC64 628 select CRYPTO_SHA512 629 select CRYPTO_HASH 630 help 631 SHA-512 secure hash standard (DFIPS 180-2) implemented 632 using sparc64 crypto instructions, when available. 633 634config CRYPTO_SHA512_ARM_NEON 635 tristate "SHA384 and SHA512 digest algorithm (ARM NEON)" 636 depends on ARM && KERNEL_MODE_NEON 637 select CRYPTO_SHA512 638 select CRYPTO_HASH 639 help 640 SHA-512 secure hash standard (DFIPS 180-2) implemented 641 using ARM NEON instructions, when available. 642 643 This version of SHA implements a 512 bit hash with 256 bits of 644 security against collision attacks. 645 646 This code also includes SHA-384, a 384 bit hash with 192 bits 647 of security against collision attacks. 648 649config CRYPTO_TGR192 650 tristate "Tiger digest algorithms" 651 select CRYPTO_HASH 652 help 653 Tiger hash algorithm 192, 160 and 128-bit hashes 654 655 Tiger is a hash function optimized for 64-bit processors while 656 still having decent performance on 32-bit processors. 657 Tiger was developed by Ross Anderson and Eli Biham. 658 659 See also: 660 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 661 662config CRYPTO_WP512 663 tristate "Whirlpool digest algorithms" 664 select CRYPTO_HASH 665 help 666 Whirlpool hash algorithm 512, 384 and 256-bit hashes 667 668 Whirlpool-512 is part of the NESSIE cryptographic primitives. 669 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 670 671 See also: 672 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 673 674config CRYPTO_GHASH_CLMUL_NI_INTEL 675 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 676 depends on X86 && 64BIT 677 select CRYPTO_CRYPTD 678 help 679 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 680 The implementation is accelerated by CLMUL-NI of Intel. 681 682comment "Ciphers" 683 684config CRYPTO_AES 685 tristate "AES cipher algorithms" 686 select CRYPTO_ALGAPI 687 help 688 AES cipher algorithms (FIPS-197). AES uses the Rijndael 689 algorithm. 690 691 Rijndael appears to be consistently a very good performer in 692 both hardware and software across a wide range of computing 693 environments regardless of its use in feedback or non-feedback 694 modes. Its key setup time is excellent, and its key agility is 695 good. Rijndael's very low memory requirements make it very well 696 suited for restricted-space environments, in which it also 697 demonstrates excellent performance. Rijndael's operations are 698 among the easiest to defend against power and timing attacks. 699 700 The AES specifies three key sizes: 128, 192 and 256 bits 701 702 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 703 704config CRYPTO_AES_586 705 tristate "AES cipher algorithms (i586)" 706 depends on (X86 || UML_X86) && !64BIT 707 select CRYPTO_ALGAPI 708 select CRYPTO_AES 709 help 710 AES cipher algorithms (FIPS-197). AES uses the Rijndael 711 algorithm. 712 713 Rijndael appears to be consistently a very good performer in 714 both hardware and software across a wide range of computing 715 environments regardless of its use in feedback or non-feedback 716 modes. Its key setup time is excellent, and its key agility is 717 good. Rijndael's very low memory requirements make it very well 718 suited for restricted-space environments, in which it also 719 demonstrates excellent performance. Rijndael's operations are 720 among the easiest to defend against power and timing attacks. 721 722 The AES specifies three key sizes: 128, 192 and 256 bits 723 724 See <http://csrc.nist.gov/encryption/aes/> for more information. 725 726config CRYPTO_AES_X86_64 727 tristate "AES cipher algorithms (x86_64)" 728 depends on (X86 || UML_X86) && 64BIT 729 select CRYPTO_ALGAPI 730 select CRYPTO_AES 731 help 732 AES cipher algorithms (FIPS-197). AES uses the Rijndael 733 algorithm. 734 735 Rijndael appears to be consistently a very good performer in 736 both hardware and software across a wide range of computing 737 environments regardless of its use in feedback or non-feedback 738 modes. Its key setup time is excellent, and its key agility is 739 good. Rijndael's very low memory requirements make it very well 740 suited for restricted-space environments, in which it also 741 demonstrates excellent performance. Rijndael's operations are 742 among the easiest to defend against power and timing attacks. 743 744 The AES specifies three key sizes: 128, 192 and 256 bits 745 746 See <http://csrc.nist.gov/encryption/aes/> for more information. 747 748config CRYPTO_AES_NI_INTEL 749 tristate "AES cipher algorithms (AES-NI)" 750 depends on X86 751 select CRYPTO_AES_X86_64 if 64BIT 752 select CRYPTO_AES_586 if !64BIT 753 select CRYPTO_CRYPTD 754 select CRYPTO_ABLK_HELPER 755 select CRYPTO_ALGAPI 756 select CRYPTO_GLUE_HELPER_X86 if 64BIT 757 select CRYPTO_LRW 758 select CRYPTO_XTS 759 help 760 Use Intel AES-NI instructions for AES algorithm. 761 762 AES cipher algorithms (FIPS-197). AES uses the Rijndael 763 algorithm. 764 765 Rijndael appears to be consistently a very good performer in 766 both hardware and software across a wide range of computing 767 environments regardless of its use in feedback or non-feedback 768 modes. Its key setup time is excellent, and its key agility is 769 good. Rijndael's very low memory requirements make it very well 770 suited for restricted-space environments, in which it also 771 demonstrates excellent performance. Rijndael's operations are 772 among the easiest to defend against power and timing attacks. 773 774 The AES specifies three key sizes: 128, 192 and 256 bits 775 776 See <http://csrc.nist.gov/encryption/aes/> for more information. 777 778 In addition to AES cipher algorithm support, the acceleration 779 for some popular block cipher mode is supported too, including 780 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 781 acceleration for CTR. 782 783config CRYPTO_AES_SPARC64 784 tristate "AES cipher algorithms (SPARC64)" 785 depends on SPARC64 786 select CRYPTO_CRYPTD 787 select CRYPTO_ALGAPI 788 help 789 Use SPARC64 crypto opcodes for AES algorithm. 790 791 AES cipher algorithms (FIPS-197). AES uses the Rijndael 792 algorithm. 793 794 Rijndael appears to be consistently a very good performer in 795 both hardware and software across a wide range of computing 796 environments regardless of its use in feedback or non-feedback 797 modes. Its key setup time is excellent, and its key agility is 798 good. Rijndael's very low memory requirements make it very well 799 suited for restricted-space environments, in which it also 800 demonstrates excellent performance. Rijndael's operations are 801 among the easiest to defend against power and timing attacks. 802 803 The AES specifies three key sizes: 128, 192 and 256 bits 804 805 See <http://csrc.nist.gov/encryption/aes/> for more information. 806 807 In addition to AES cipher algorithm support, the acceleration 808 for some popular block cipher mode is supported too, including 809 ECB and CBC. 810 811config CRYPTO_AES_ARM 812 tristate "AES cipher algorithms (ARM-asm)" 813 depends on ARM 814 select CRYPTO_ALGAPI 815 select CRYPTO_AES 816 help 817 Use optimized AES assembler routines for ARM platforms. 818 819 AES cipher algorithms (FIPS-197). AES uses the Rijndael 820 algorithm. 821 822 Rijndael appears to be consistently a very good performer in 823 both hardware and software across a wide range of computing 824 environments regardless of its use in feedback or non-feedback 825 modes. Its key setup time is excellent, and its key agility is 826 good. Rijndael's very low memory requirements make it very well 827 suited for restricted-space environments, in which it also 828 demonstrates excellent performance. Rijndael's operations are 829 among the easiest to defend against power and timing attacks. 830 831 The AES specifies three key sizes: 128, 192 and 256 bits 832 833 See <http://csrc.nist.gov/encryption/aes/> for more information. 834 835config CRYPTO_AES_ARM_BS 836 tristate "Bit sliced AES using NEON instructions" 837 depends on ARM && KERNEL_MODE_NEON 838 select CRYPTO_ALGAPI 839 select CRYPTO_AES_ARM 840 select CRYPTO_ABLK_HELPER 841 help 842 Use a faster and more secure NEON based implementation of AES in CBC, 843 CTR and XTS modes 844 845 Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode 846 and for XTS mode encryption, CBC and XTS mode decryption speedup is 847 around 25%. (CBC encryption speed is not affected by this driver.) 848 This implementation does not rely on any lookup tables so it is 849 believed to be invulnerable to cache timing attacks. 850 851config CRYPTO_ANUBIS 852 tristate "Anubis cipher algorithm" 853 select CRYPTO_ALGAPI 854 help 855 Anubis cipher algorithm. 856 857 Anubis is a variable key length cipher which can use keys from 858 128 bits to 320 bits in length. It was evaluated as a entrant 859 in the NESSIE competition. 860 861 See also: 862 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 863 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 864 865config CRYPTO_ARC4 866 tristate "ARC4 cipher algorithm" 867 select CRYPTO_BLKCIPHER 868 help 869 ARC4 cipher algorithm. 870 871 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 872 bits in length. This algorithm is required for driver-based 873 WEP, but it should not be for other purposes because of the 874 weakness of the algorithm. 875 876config CRYPTO_BLOWFISH 877 tristate "Blowfish cipher algorithm" 878 select CRYPTO_ALGAPI 879 select CRYPTO_BLOWFISH_COMMON 880 help 881 Blowfish cipher algorithm, by Bruce Schneier. 882 883 This is a variable key length cipher which can use keys from 32 884 bits to 448 bits in length. It's fast, simple and specifically 885 designed for use on "large microprocessors". 886 887 See also: 888 <http://www.schneier.com/blowfish.html> 889 890config CRYPTO_BLOWFISH_COMMON 891 tristate 892 help 893 Common parts of the Blowfish cipher algorithm shared by the 894 generic c and the assembler implementations. 895 896 See also: 897 <http://www.schneier.com/blowfish.html> 898 899config CRYPTO_BLOWFISH_X86_64 900 tristate "Blowfish cipher algorithm (x86_64)" 901 depends on X86 && 64BIT 902 select CRYPTO_ALGAPI 903 select CRYPTO_BLOWFISH_COMMON 904 help 905 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 906 907 This is a variable key length cipher which can use keys from 32 908 bits to 448 bits in length. It's fast, simple and specifically 909 designed for use on "large microprocessors". 910 911 See also: 912 <http://www.schneier.com/blowfish.html> 913 914config CRYPTO_CAMELLIA 915 tristate "Camellia cipher algorithms" 916 depends on CRYPTO 917 select CRYPTO_ALGAPI 918 help 919 Camellia cipher algorithms module. 920 921 Camellia is a symmetric key block cipher developed jointly 922 at NTT and Mitsubishi Electric Corporation. 923 924 The Camellia specifies three key sizes: 128, 192 and 256 bits. 925 926 See also: 927 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 928 929config CRYPTO_CAMELLIA_X86_64 930 tristate "Camellia cipher algorithm (x86_64)" 931 depends on X86 && 64BIT 932 depends on CRYPTO 933 select CRYPTO_ALGAPI 934 select CRYPTO_GLUE_HELPER_X86 935 select CRYPTO_LRW 936 select CRYPTO_XTS 937 help 938 Camellia cipher algorithm module (x86_64). 939 940 Camellia is a symmetric key block cipher developed jointly 941 at NTT and Mitsubishi Electric Corporation. 942 943 The Camellia specifies three key sizes: 128, 192 and 256 bits. 944 945 See also: 946 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 947 948config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 949 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 950 depends on X86 && 64BIT 951 depends on CRYPTO 952 select CRYPTO_ALGAPI 953 select CRYPTO_CRYPTD 954 select CRYPTO_ABLK_HELPER 955 select CRYPTO_GLUE_HELPER_X86 956 select CRYPTO_CAMELLIA_X86_64 957 select CRYPTO_LRW 958 select CRYPTO_XTS 959 help 960 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 961 962 Camellia is a symmetric key block cipher developed jointly 963 at NTT and Mitsubishi Electric Corporation. 964 965 The Camellia specifies three key sizes: 128, 192 and 256 bits. 966 967 See also: 968 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 969 970config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 971 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 972 depends on X86 && 64BIT 973 depends on CRYPTO 974 select CRYPTO_ALGAPI 975 select CRYPTO_CRYPTD 976 select CRYPTO_ABLK_HELPER 977 select CRYPTO_GLUE_HELPER_X86 978 select CRYPTO_CAMELLIA_X86_64 979 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 980 select CRYPTO_LRW 981 select CRYPTO_XTS 982 help 983 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 984 985 Camellia is a symmetric key block cipher developed jointly 986 at NTT and Mitsubishi Electric Corporation. 987 988 The Camellia specifies three key sizes: 128, 192 and 256 bits. 989 990 See also: 991 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 992 993config CRYPTO_CAMELLIA_SPARC64 994 tristate "Camellia cipher algorithm (SPARC64)" 995 depends on SPARC64 996 depends on CRYPTO 997 select CRYPTO_ALGAPI 998 help 999 Camellia cipher algorithm module (SPARC64). 1000 1001 Camellia is a symmetric key block cipher developed jointly 1002 at NTT and Mitsubishi Electric Corporation. 1003 1004 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1005 1006 See also: 1007 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1008 1009config CRYPTO_CAST_COMMON 1010 tristate 1011 help 1012 Common parts of the CAST cipher algorithms shared by the 1013 generic c and the assembler implementations. 1014 1015config CRYPTO_CAST5 1016 tristate "CAST5 (CAST-128) cipher algorithm" 1017 select CRYPTO_ALGAPI 1018 select CRYPTO_CAST_COMMON 1019 help 1020 The CAST5 encryption algorithm (synonymous with CAST-128) is 1021 described in RFC2144. 1022 1023config CRYPTO_CAST5_AVX_X86_64 1024 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1025 depends on X86 && 64BIT 1026 select CRYPTO_ALGAPI 1027 select CRYPTO_CRYPTD 1028 select CRYPTO_ABLK_HELPER 1029 select CRYPTO_CAST_COMMON 1030 select CRYPTO_CAST5 1031 help 1032 The CAST5 encryption algorithm (synonymous with CAST-128) is 1033 described in RFC2144. 1034 1035 This module provides the Cast5 cipher algorithm that processes 1036 sixteen blocks parallel using the AVX instruction set. 1037 1038config CRYPTO_CAST6 1039 tristate "CAST6 (CAST-256) cipher algorithm" 1040 select CRYPTO_ALGAPI 1041 select CRYPTO_CAST_COMMON 1042 help 1043 The CAST6 encryption algorithm (synonymous with CAST-256) is 1044 described in RFC2612. 1045 1046config CRYPTO_CAST6_AVX_X86_64 1047 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1048 depends on X86 && 64BIT 1049 select CRYPTO_ALGAPI 1050 select CRYPTO_CRYPTD 1051 select CRYPTO_ABLK_HELPER 1052 select CRYPTO_GLUE_HELPER_X86 1053 select CRYPTO_CAST_COMMON 1054 select CRYPTO_CAST6 1055 select CRYPTO_LRW 1056 select CRYPTO_XTS 1057 help 1058 The CAST6 encryption algorithm (synonymous with CAST-256) is 1059 described in RFC2612. 1060 1061 This module provides the Cast6 cipher algorithm that processes 1062 eight blocks parallel using the AVX instruction set. 1063 1064config CRYPTO_DES 1065 tristate "DES and Triple DES EDE cipher algorithms" 1066 select CRYPTO_ALGAPI 1067 help 1068 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1069 1070config CRYPTO_DES_SPARC64 1071 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1072 depends on SPARC64 1073 select CRYPTO_ALGAPI 1074 select CRYPTO_DES 1075 help 1076 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1077 optimized using SPARC64 crypto opcodes. 1078 1079config CRYPTO_DES3_EDE_X86_64 1080 tristate "Triple DES EDE cipher algorithm (x86-64)" 1081 depends on X86 && 64BIT 1082 select CRYPTO_ALGAPI 1083 select CRYPTO_DES 1084 help 1085 Triple DES EDE (FIPS 46-3) algorithm. 1086 1087 This module provides implementation of the Triple DES EDE cipher 1088 algorithm that is optimized for x86-64 processors. Two versions of 1089 algorithm are provided; regular processing one input block and 1090 one that processes three blocks parallel. 1091 1092config CRYPTO_FCRYPT 1093 tristate "FCrypt cipher algorithm" 1094 select CRYPTO_ALGAPI 1095 select CRYPTO_BLKCIPHER 1096 help 1097 FCrypt algorithm used by RxRPC. 1098 1099config CRYPTO_KHAZAD 1100 tristate "Khazad cipher algorithm" 1101 select CRYPTO_ALGAPI 1102 help 1103 Khazad cipher algorithm. 1104 1105 Khazad was a finalist in the initial NESSIE competition. It is 1106 an algorithm optimized for 64-bit processors with good performance 1107 on 32-bit processors. Khazad uses an 128 bit key size. 1108 1109 See also: 1110 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1111 1112config CRYPTO_SALSA20 1113 tristate "Salsa20 stream cipher algorithm" 1114 select CRYPTO_BLKCIPHER 1115 help 1116 Salsa20 stream cipher algorithm. 1117 1118 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1119 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1120 1121 The Salsa20 stream cipher algorithm is designed by Daniel J. 1122 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1123 1124config CRYPTO_SALSA20_586 1125 tristate "Salsa20 stream cipher algorithm (i586)" 1126 depends on (X86 || UML_X86) && !64BIT 1127 select CRYPTO_BLKCIPHER 1128 help 1129 Salsa20 stream cipher algorithm. 1130 1131 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1132 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1133 1134 The Salsa20 stream cipher algorithm is designed by Daniel J. 1135 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1136 1137config CRYPTO_SALSA20_X86_64 1138 tristate "Salsa20 stream cipher algorithm (x86_64)" 1139 depends on (X86 || UML_X86) && 64BIT 1140 select CRYPTO_BLKCIPHER 1141 help 1142 Salsa20 stream cipher algorithm. 1143 1144 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1145 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1146 1147 The Salsa20 stream cipher algorithm is designed by Daniel J. 1148 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1149 1150config CRYPTO_SEED 1151 tristate "SEED cipher algorithm" 1152 select CRYPTO_ALGAPI 1153 help 1154 SEED cipher algorithm (RFC4269). 1155 1156 SEED is a 128-bit symmetric key block cipher that has been 1157 developed by KISA (Korea Information Security Agency) as a 1158 national standard encryption algorithm of the Republic of Korea. 1159 It is a 16 round block cipher with the key size of 128 bit. 1160 1161 See also: 1162 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1163 1164config CRYPTO_SERPENT 1165 tristate "Serpent cipher algorithm" 1166 select CRYPTO_ALGAPI 1167 help 1168 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1169 1170 Keys are allowed to be from 0 to 256 bits in length, in steps 1171 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1172 variant of Serpent for compatibility with old kerneli.org code. 1173 1174 See also: 1175 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1176 1177config CRYPTO_SERPENT_SSE2_X86_64 1178 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1179 depends on X86 && 64BIT 1180 select CRYPTO_ALGAPI 1181 select CRYPTO_CRYPTD 1182 select CRYPTO_ABLK_HELPER 1183 select CRYPTO_GLUE_HELPER_X86 1184 select CRYPTO_SERPENT 1185 select CRYPTO_LRW 1186 select CRYPTO_XTS 1187 help 1188 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1189 1190 Keys are allowed to be from 0 to 256 bits in length, in steps 1191 of 8 bits. 1192 1193 This module provides Serpent cipher algorithm that processes eigth 1194 blocks parallel using SSE2 instruction set. 1195 1196 See also: 1197 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1198 1199config CRYPTO_SERPENT_SSE2_586 1200 tristate "Serpent cipher algorithm (i586/SSE2)" 1201 depends on X86 && !64BIT 1202 select CRYPTO_ALGAPI 1203 select CRYPTO_CRYPTD 1204 select CRYPTO_ABLK_HELPER 1205 select CRYPTO_GLUE_HELPER_X86 1206 select CRYPTO_SERPENT 1207 select CRYPTO_LRW 1208 select CRYPTO_XTS 1209 help 1210 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1211 1212 Keys are allowed to be from 0 to 256 bits in length, in steps 1213 of 8 bits. 1214 1215 This module provides Serpent cipher algorithm that processes four 1216 blocks parallel using SSE2 instruction set. 1217 1218 See also: 1219 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1220 1221config CRYPTO_SERPENT_AVX_X86_64 1222 tristate "Serpent cipher algorithm (x86_64/AVX)" 1223 depends on X86 && 64BIT 1224 select CRYPTO_ALGAPI 1225 select CRYPTO_CRYPTD 1226 select CRYPTO_ABLK_HELPER 1227 select CRYPTO_GLUE_HELPER_X86 1228 select CRYPTO_SERPENT 1229 select CRYPTO_LRW 1230 select CRYPTO_XTS 1231 help 1232 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1233 1234 Keys are allowed to be from 0 to 256 bits in length, in steps 1235 of 8 bits. 1236 1237 This module provides the Serpent cipher algorithm that processes 1238 eight blocks parallel using the AVX instruction set. 1239 1240 See also: 1241 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1242 1243config CRYPTO_SERPENT_AVX2_X86_64 1244 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1245 depends on X86 && 64BIT 1246 select CRYPTO_ALGAPI 1247 select CRYPTO_CRYPTD 1248 select CRYPTO_ABLK_HELPER 1249 select CRYPTO_GLUE_HELPER_X86 1250 select CRYPTO_SERPENT 1251 select CRYPTO_SERPENT_AVX_X86_64 1252 select CRYPTO_LRW 1253 select CRYPTO_XTS 1254 help 1255 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1256 1257 Keys are allowed to be from 0 to 256 bits in length, in steps 1258 of 8 bits. 1259 1260 This module provides Serpent cipher algorithm that processes 16 1261 blocks parallel using AVX2 instruction set. 1262 1263 See also: 1264 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1265 1266config CRYPTO_TEA 1267 tristate "TEA, XTEA and XETA cipher algorithms" 1268 select CRYPTO_ALGAPI 1269 help 1270 TEA cipher algorithm. 1271 1272 Tiny Encryption Algorithm is a simple cipher that uses 1273 many rounds for security. It is very fast and uses 1274 little memory. 1275 1276 Xtendend Tiny Encryption Algorithm is a modification to 1277 the TEA algorithm to address a potential key weakness 1278 in the TEA algorithm. 1279 1280 Xtendend Encryption Tiny Algorithm is a mis-implementation 1281 of the XTEA algorithm for compatibility purposes. 1282 1283config CRYPTO_TWOFISH 1284 tristate "Twofish cipher algorithm" 1285 select CRYPTO_ALGAPI 1286 select CRYPTO_TWOFISH_COMMON 1287 help 1288 Twofish cipher algorithm. 1289 1290 Twofish was submitted as an AES (Advanced Encryption Standard) 1291 candidate cipher by researchers at CounterPane Systems. It is a 1292 16 round block cipher supporting key sizes of 128, 192, and 256 1293 bits. 1294 1295 See also: 1296 <http://www.schneier.com/twofish.html> 1297 1298config CRYPTO_TWOFISH_COMMON 1299 tristate 1300 help 1301 Common parts of the Twofish cipher algorithm shared by the 1302 generic c and the assembler implementations. 1303 1304config CRYPTO_TWOFISH_586 1305 tristate "Twofish cipher algorithms (i586)" 1306 depends on (X86 || UML_X86) && !64BIT 1307 select CRYPTO_ALGAPI 1308 select CRYPTO_TWOFISH_COMMON 1309 help 1310 Twofish cipher algorithm. 1311 1312 Twofish was submitted as an AES (Advanced Encryption Standard) 1313 candidate cipher by researchers at CounterPane Systems. It is a 1314 16 round block cipher supporting key sizes of 128, 192, and 256 1315 bits. 1316 1317 See also: 1318 <http://www.schneier.com/twofish.html> 1319 1320config CRYPTO_TWOFISH_X86_64 1321 tristate "Twofish cipher algorithm (x86_64)" 1322 depends on (X86 || UML_X86) && 64BIT 1323 select CRYPTO_ALGAPI 1324 select CRYPTO_TWOFISH_COMMON 1325 help 1326 Twofish cipher algorithm (x86_64). 1327 1328 Twofish was submitted as an AES (Advanced Encryption Standard) 1329 candidate cipher by researchers at CounterPane Systems. It is a 1330 16 round block cipher supporting key sizes of 128, 192, and 256 1331 bits. 1332 1333 See also: 1334 <http://www.schneier.com/twofish.html> 1335 1336config CRYPTO_TWOFISH_X86_64_3WAY 1337 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1338 depends on X86 && 64BIT 1339 select CRYPTO_ALGAPI 1340 select CRYPTO_TWOFISH_COMMON 1341 select CRYPTO_TWOFISH_X86_64 1342 select CRYPTO_GLUE_HELPER_X86 1343 select CRYPTO_LRW 1344 select CRYPTO_XTS 1345 help 1346 Twofish cipher algorithm (x86_64, 3-way parallel). 1347 1348 Twofish was submitted as an AES (Advanced Encryption Standard) 1349 candidate cipher by researchers at CounterPane Systems. It is a 1350 16 round block cipher supporting key sizes of 128, 192, and 256 1351 bits. 1352 1353 This module provides Twofish cipher algorithm that processes three 1354 blocks parallel, utilizing resources of out-of-order CPUs better. 1355 1356 See also: 1357 <http://www.schneier.com/twofish.html> 1358 1359config CRYPTO_TWOFISH_AVX_X86_64 1360 tristate "Twofish cipher algorithm (x86_64/AVX)" 1361 depends on X86 && 64BIT 1362 select CRYPTO_ALGAPI 1363 select CRYPTO_CRYPTD 1364 select CRYPTO_ABLK_HELPER 1365 select CRYPTO_GLUE_HELPER_X86 1366 select CRYPTO_TWOFISH_COMMON 1367 select CRYPTO_TWOFISH_X86_64 1368 select CRYPTO_TWOFISH_X86_64_3WAY 1369 select CRYPTO_LRW 1370 select CRYPTO_XTS 1371 help 1372 Twofish cipher algorithm (x86_64/AVX). 1373 1374 Twofish was submitted as an AES (Advanced Encryption Standard) 1375 candidate cipher by researchers at CounterPane Systems. It is a 1376 16 round block cipher supporting key sizes of 128, 192, and 256 1377 bits. 1378 1379 This module provides the Twofish cipher algorithm that processes 1380 eight blocks parallel using the AVX Instruction Set. 1381 1382 See also: 1383 <http://www.schneier.com/twofish.html> 1384 1385comment "Compression" 1386 1387config CRYPTO_DEFLATE 1388 tristate "Deflate compression algorithm" 1389 select CRYPTO_ALGAPI 1390 select ZLIB_INFLATE 1391 select ZLIB_DEFLATE 1392 help 1393 This is the Deflate algorithm (RFC1951), specified for use in 1394 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1395 1396 You will most probably want this if using IPSec. 1397 1398config CRYPTO_ZLIB 1399 tristate "Zlib compression algorithm" 1400 select CRYPTO_PCOMP 1401 select ZLIB_INFLATE 1402 select ZLIB_DEFLATE 1403 select NLATTR 1404 help 1405 This is the zlib algorithm. 1406 1407config CRYPTO_LZO 1408 tristate "LZO compression algorithm" 1409 select CRYPTO_ALGAPI 1410 select LZO_COMPRESS 1411 select LZO_DECOMPRESS 1412 help 1413 This is the LZO algorithm. 1414 1415config CRYPTO_842 1416 tristate "842 compression algorithm" 1417 depends on CRYPTO_DEV_NX_COMPRESS 1418 # 842 uses lzo if the hardware becomes unavailable 1419 select LZO_COMPRESS 1420 select LZO_DECOMPRESS 1421 help 1422 This is the 842 algorithm. 1423 1424config CRYPTO_LZ4 1425 tristate "LZ4 compression algorithm" 1426 select CRYPTO_ALGAPI 1427 select LZ4_COMPRESS 1428 select LZ4_DECOMPRESS 1429 help 1430 This is the LZ4 algorithm. 1431 1432config CRYPTO_LZ4HC 1433 tristate "LZ4HC compression algorithm" 1434 select CRYPTO_ALGAPI 1435 select LZ4HC_COMPRESS 1436 select LZ4_DECOMPRESS 1437 help 1438 This is the LZ4 high compression mode algorithm. 1439 1440comment "Random Number Generation" 1441 1442config CRYPTO_ANSI_CPRNG 1443 tristate "Pseudo Random Number Generation for Cryptographic modules" 1444 default m 1445 select CRYPTO_AES 1446 select CRYPTO_RNG 1447 help 1448 This option enables the generic pseudo random number generator 1449 for cryptographic modules. Uses the Algorithm specified in 1450 ANSI X9.31 A.2.4. Note that this option must be enabled if 1451 CRYPTO_FIPS is selected 1452 1453menuconfig CRYPTO_DRBG_MENU 1454 tristate "NIST SP800-90A DRBG" 1455 help 1456 NIST SP800-90A compliant DRBG. In the following submenu, one or 1457 more of the DRBG types must be selected. 1458 1459if CRYPTO_DRBG_MENU 1460 1461config CRYPTO_DRBG_HMAC 1462 bool "Enable HMAC DRBG" 1463 default y 1464 select CRYPTO_HMAC 1465 help 1466 Enable the HMAC DRBG variant as defined in NIST SP800-90A. 1467 1468config CRYPTO_DRBG_HASH 1469 bool "Enable Hash DRBG" 1470 select CRYPTO_HASH 1471 help 1472 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1473 1474config CRYPTO_DRBG_CTR 1475 bool "Enable CTR DRBG" 1476 select CRYPTO_AES 1477 help 1478 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1479 1480config CRYPTO_DRBG 1481 tristate 1482 default CRYPTO_DRBG_MENU if (CRYPTO_DRBG_HMAC || CRYPTO_DRBG_HASH || CRYPTO_DRBG_CTR) 1483 select CRYPTO_RNG 1484 1485endif # if CRYPTO_DRBG_MENU 1486 1487config CRYPTO_USER_API 1488 tristate 1489 1490config CRYPTO_USER_API_HASH 1491 tristate "User-space interface for hash algorithms" 1492 depends on NET 1493 select CRYPTO_HASH 1494 select CRYPTO_USER_API 1495 help 1496 This option enables the user-spaces interface for hash 1497 algorithms. 1498 1499config CRYPTO_USER_API_SKCIPHER 1500 tristate "User-space interface for symmetric key cipher algorithms" 1501 depends on NET 1502 select CRYPTO_BLKCIPHER 1503 select CRYPTO_USER_API 1504 help 1505 This option enables the user-spaces interface for symmetric 1506 key cipher algorithms. 1507 1508config CRYPTO_HASH_INFO 1509 bool 1510 1511source "drivers/crypto/Kconfig" 1512source crypto/asymmetric_keys/Kconfig 1513 1514endif # if CRYPTO 1515