1# 2# Generic algorithms support 3# 4config XOR_BLOCKS 5 tristate 6 7# 8# async_tx api: hardware offloaded memory transfer/transform support 9# 10source "crypto/async_tx/Kconfig" 11 12# 13# Cryptographic API Configuration 14# 15menuconfig CRYPTO 16 tristate "Cryptographic API" 17 help 18 This option provides the core Cryptographic API. 19 20if CRYPTO 21 22comment "Crypto core or helper" 23 24config CRYPTO_FIPS 25 bool "FIPS 200 compliance" 26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 27 depends on MODULE_SIG 28 help 29 This options enables the fips boot option which is 30 required if you want to system to operate in a FIPS 200 31 certification. You should say no unless you know what 32 this is. 33 34config CRYPTO_ALGAPI 35 tristate 36 select CRYPTO_ALGAPI2 37 help 38 This option provides the API for cryptographic algorithms. 39 40config CRYPTO_ALGAPI2 41 tristate 42 43config CRYPTO_AEAD 44 tristate 45 select CRYPTO_AEAD2 46 select CRYPTO_ALGAPI 47 48config CRYPTO_AEAD2 49 tristate 50 select CRYPTO_ALGAPI2 51 select CRYPTO_NULL2 52 select CRYPTO_RNG2 53 54config CRYPTO_BLKCIPHER 55 tristate 56 select CRYPTO_BLKCIPHER2 57 select CRYPTO_ALGAPI 58 59config CRYPTO_BLKCIPHER2 60 tristate 61 select CRYPTO_ALGAPI2 62 select CRYPTO_RNG2 63 select CRYPTO_WORKQUEUE 64 65config CRYPTO_HASH 66 tristate 67 select CRYPTO_HASH2 68 select CRYPTO_ALGAPI 69 70config CRYPTO_HASH2 71 tristate 72 select CRYPTO_ALGAPI2 73 74config CRYPTO_RNG 75 tristate 76 select CRYPTO_RNG2 77 select CRYPTO_ALGAPI 78 79config CRYPTO_RNG2 80 tristate 81 select CRYPTO_ALGAPI2 82 83config CRYPTO_RNG_DEFAULT 84 tristate 85 select CRYPTO_DRBG_MENU 86 87config CRYPTO_PCOMP 88 tristate 89 select CRYPTO_PCOMP2 90 select CRYPTO_ALGAPI 91 92config CRYPTO_PCOMP2 93 tristate 94 select CRYPTO_ALGAPI2 95 96config CRYPTO_AKCIPHER2 97 tristate 98 select CRYPTO_ALGAPI2 99 100config CRYPTO_AKCIPHER 101 tristate 102 select CRYPTO_AKCIPHER2 103 select CRYPTO_ALGAPI 104 105config CRYPTO_RSA 106 tristate "RSA algorithm" 107 select CRYPTO_AKCIPHER 108 select MPILIB 109 select ASN1 110 help 111 Generic implementation of the RSA public key algorithm. 112 113config CRYPTO_MANAGER 114 tristate "Cryptographic algorithm manager" 115 select CRYPTO_MANAGER2 116 help 117 Create default cryptographic template instantiations such as 118 cbc(aes). 119 120config CRYPTO_MANAGER2 121 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 122 select CRYPTO_AEAD2 123 select CRYPTO_HASH2 124 select CRYPTO_BLKCIPHER2 125 select CRYPTO_PCOMP2 126 select CRYPTO_AKCIPHER2 127 128config CRYPTO_USER 129 tristate "Userspace cryptographic algorithm configuration" 130 depends on NET 131 select CRYPTO_MANAGER 132 help 133 Userspace configuration for cryptographic instantiations such as 134 cbc(aes). 135 136config CRYPTO_MANAGER_DISABLE_TESTS 137 bool "Disable run-time self tests" 138 default y 139 depends on CRYPTO_MANAGER2 140 help 141 Disable run-time self tests that normally take place at 142 algorithm registration. 143 144config CRYPTO_GF128MUL 145 tristate "GF(2^128) multiplication functions" 146 help 147 Efficient table driven implementation of multiplications in the 148 field GF(2^128). This is needed by some cypher modes. This 149 option will be selected automatically if you select such a 150 cipher mode. Only select this option by hand if you expect to load 151 an external module that requires these functions. 152 153config CRYPTO_NULL 154 tristate "Null algorithms" 155 select CRYPTO_NULL2 156 help 157 These are 'Null' algorithms, used by IPsec, which do nothing. 158 159config CRYPTO_NULL2 160 tristate 161 select CRYPTO_ALGAPI2 162 select CRYPTO_BLKCIPHER2 163 select CRYPTO_HASH2 164 165config CRYPTO_PCRYPT 166 tristate "Parallel crypto engine" 167 depends on SMP 168 select PADATA 169 select CRYPTO_MANAGER 170 select CRYPTO_AEAD 171 help 172 This converts an arbitrary crypto algorithm into a parallel 173 algorithm that executes in kernel threads. 174 175config CRYPTO_WORKQUEUE 176 tristate 177 178config CRYPTO_CRYPTD 179 tristate "Software async crypto daemon" 180 select CRYPTO_BLKCIPHER 181 select CRYPTO_HASH 182 select CRYPTO_MANAGER 183 select CRYPTO_WORKQUEUE 184 help 185 This is a generic software asynchronous crypto daemon that 186 converts an arbitrary synchronous software crypto algorithm 187 into an asynchronous algorithm that executes in a kernel thread. 188 189config CRYPTO_MCRYPTD 190 tristate "Software async multi-buffer crypto daemon" 191 select CRYPTO_BLKCIPHER 192 select CRYPTO_HASH 193 select CRYPTO_MANAGER 194 select CRYPTO_WORKQUEUE 195 help 196 This is a generic software asynchronous crypto daemon that 197 provides the kernel thread to assist multi-buffer crypto 198 algorithms for submitting jobs and flushing jobs in multi-buffer 199 crypto algorithms. Multi-buffer crypto algorithms are executed 200 in the context of this kernel thread and drivers can post 201 their crypto request asynchronously to be processed by this daemon. 202 203config CRYPTO_AUTHENC 204 tristate "Authenc support" 205 select CRYPTO_AEAD 206 select CRYPTO_BLKCIPHER 207 select CRYPTO_MANAGER 208 select CRYPTO_HASH 209 select CRYPTO_NULL 210 help 211 Authenc: Combined mode wrapper for IPsec. 212 This is required for IPSec. 213 214config CRYPTO_TEST 215 tristate "Testing module" 216 depends on m 217 select CRYPTO_MANAGER 218 help 219 Quick & dirty crypto test module. 220 221config CRYPTO_ABLK_HELPER 222 tristate 223 select CRYPTO_CRYPTD 224 225config CRYPTO_GLUE_HELPER_X86 226 tristate 227 depends on X86 228 select CRYPTO_ALGAPI 229 230comment "Authenticated Encryption with Associated Data" 231 232config CRYPTO_CCM 233 tristate "CCM support" 234 select CRYPTO_CTR 235 select CRYPTO_AEAD 236 help 237 Support for Counter with CBC MAC. Required for IPsec. 238 239config CRYPTO_GCM 240 tristate "GCM/GMAC support" 241 select CRYPTO_CTR 242 select CRYPTO_AEAD 243 select CRYPTO_GHASH 244 select CRYPTO_NULL 245 help 246 Support for Galois/Counter Mode (GCM) and Galois Message 247 Authentication Code (GMAC). Required for IPSec. 248 249config CRYPTO_CHACHA20POLY1305 250 tristate "ChaCha20-Poly1305 AEAD support" 251 select CRYPTO_CHACHA20 252 select CRYPTO_POLY1305 253 select CRYPTO_AEAD 254 help 255 ChaCha20-Poly1305 AEAD support, RFC7539. 256 257 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 258 with the Poly1305 authenticator. It is defined in RFC7539 for use in 259 IETF protocols. 260 261config CRYPTO_SEQIV 262 tristate "Sequence Number IV Generator" 263 select CRYPTO_AEAD 264 select CRYPTO_BLKCIPHER 265 select CRYPTO_NULL 266 select CRYPTO_RNG_DEFAULT 267 help 268 This IV generator generates an IV based on a sequence number by 269 xoring it with a salt. This algorithm is mainly useful for CTR 270 271config CRYPTO_ECHAINIV 272 tristate "Encrypted Chain IV Generator" 273 select CRYPTO_AEAD 274 select CRYPTO_NULL 275 select CRYPTO_RNG_DEFAULT 276 default m 277 help 278 This IV generator generates an IV based on the encryption of 279 a sequence number xored with a salt. This is the default 280 algorithm for CBC. 281 282comment "Block modes" 283 284config CRYPTO_CBC 285 tristate "CBC support" 286 select CRYPTO_BLKCIPHER 287 select CRYPTO_MANAGER 288 help 289 CBC: Cipher Block Chaining mode 290 This block cipher algorithm is required for IPSec. 291 292config CRYPTO_CTR 293 tristate "CTR support" 294 select CRYPTO_BLKCIPHER 295 select CRYPTO_SEQIV 296 select CRYPTO_MANAGER 297 help 298 CTR: Counter mode 299 This block cipher algorithm is required for IPSec. 300 301config CRYPTO_CTS 302 tristate "CTS support" 303 select CRYPTO_BLKCIPHER 304 help 305 CTS: Cipher Text Stealing 306 This is the Cipher Text Stealing mode as described by 307 Section 8 of rfc2040 and referenced by rfc3962. 308 (rfc3962 includes errata information in its Appendix A) 309 This mode is required for Kerberos gss mechanism support 310 for AES encryption. 311 312config CRYPTO_ECB 313 tristate "ECB support" 314 select CRYPTO_BLKCIPHER 315 select CRYPTO_MANAGER 316 help 317 ECB: Electronic CodeBook mode 318 This is the simplest block cipher algorithm. It simply encrypts 319 the input block by block. 320 321config CRYPTO_LRW 322 tristate "LRW support" 323 select CRYPTO_BLKCIPHER 324 select CRYPTO_MANAGER 325 select CRYPTO_GF128MUL 326 help 327 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 328 narrow block cipher mode for dm-crypt. Use it with cipher 329 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 330 The first 128, 192 or 256 bits in the key are used for AES and the 331 rest is used to tie each cipher block to its logical position. 332 333config CRYPTO_PCBC 334 tristate "PCBC support" 335 select CRYPTO_BLKCIPHER 336 select CRYPTO_MANAGER 337 help 338 PCBC: Propagating Cipher Block Chaining mode 339 This block cipher algorithm is required for RxRPC. 340 341config CRYPTO_XTS 342 tristate "XTS support" 343 select CRYPTO_BLKCIPHER 344 select CRYPTO_MANAGER 345 select CRYPTO_GF128MUL 346 help 347 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 348 key size 256, 384 or 512 bits. This implementation currently 349 can't handle a sectorsize which is not a multiple of 16 bytes. 350 351config CRYPTO_KEYWRAP 352 tristate "Key wrapping support" 353 select CRYPTO_BLKCIPHER 354 help 355 Support for key wrapping (NIST SP800-38F / RFC3394) without 356 padding. 357 358comment "Hash modes" 359 360config CRYPTO_CMAC 361 tristate "CMAC support" 362 select CRYPTO_HASH 363 select CRYPTO_MANAGER 364 help 365 Cipher-based Message Authentication Code (CMAC) specified by 366 The National Institute of Standards and Technology (NIST). 367 368 https://tools.ietf.org/html/rfc4493 369 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 370 371config CRYPTO_HMAC 372 tristate "HMAC support" 373 select CRYPTO_HASH 374 select CRYPTO_MANAGER 375 help 376 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 377 This is required for IPSec. 378 379config CRYPTO_XCBC 380 tristate "XCBC support" 381 select CRYPTO_HASH 382 select CRYPTO_MANAGER 383 help 384 XCBC: Keyed-Hashing with encryption algorithm 385 http://www.ietf.org/rfc/rfc3566.txt 386 http://csrc.nist.gov/encryption/modes/proposedmodes/ 387 xcbc-mac/xcbc-mac-spec.pdf 388 389config CRYPTO_VMAC 390 tristate "VMAC support" 391 select CRYPTO_HASH 392 select CRYPTO_MANAGER 393 help 394 VMAC is a message authentication algorithm designed for 395 very high speed on 64-bit architectures. 396 397 See also: 398 <http://fastcrypto.org/vmac> 399 400comment "Digest" 401 402config CRYPTO_CRC32C 403 tristate "CRC32c CRC algorithm" 404 select CRYPTO_HASH 405 select CRC32 406 help 407 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 408 by iSCSI for header and data digests and by others. 409 See Castagnoli93. Module will be crc32c. 410 411config CRYPTO_CRC32C_INTEL 412 tristate "CRC32c INTEL hardware acceleration" 413 depends on X86 414 select CRYPTO_HASH 415 help 416 In Intel processor with SSE4.2 supported, the processor will 417 support CRC32C implementation using hardware accelerated CRC32 418 instruction. This option will create 'crc32c-intel' module, 419 which will enable any routine to use the CRC32 instruction to 420 gain performance compared with software implementation. 421 Module will be crc32c-intel. 422 423config CRYPTO_CRC32C_SPARC64 424 tristate "CRC32c CRC algorithm (SPARC64)" 425 depends on SPARC64 426 select CRYPTO_HASH 427 select CRC32 428 help 429 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 430 when available. 431 432config CRYPTO_CRC32 433 tristate "CRC32 CRC algorithm" 434 select CRYPTO_HASH 435 select CRC32 436 help 437 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 438 Shash crypto api wrappers to crc32_le function. 439 440config CRYPTO_CRC32_PCLMUL 441 tristate "CRC32 PCLMULQDQ hardware acceleration" 442 depends on X86 443 select CRYPTO_HASH 444 select CRC32 445 help 446 From Intel Westmere and AMD Bulldozer processor with SSE4.2 447 and PCLMULQDQ supported, the processor will support 448 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 449 instruction. This option will create 'crc32-plcmul' module, 450 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 451 and gain better performance as compared with the table implementation. 452 453config CRYPTO_CRCT10DIF 454 tristate "CRCT10DIF algorithm" 455 select CRYPTO_HASH 456 help 457 CRC T10 Data Integrity Field computation is being cast as 458 a crypto transform. This allows for faster crc t10 diff 459 transforms to be used if they are available. 460 461config CRYPTO_CRCT10DIF_PCLMUL 462 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 463 depends on X86 && 64BIT && CRC_T10DIF 464 select CRYPTO_HASH 465 help 466 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 467 CRC T10 DIF PCLMULQDQ computation can be hardware 468 accelerated PCLMULQDQ instruction. This option will create 469 'crct10dif-plcmul' module, which is faster when computing the 470 crct10dif checksum as compared with the generic table implementation. 471 472config CRYPTO_GHASH 473 tristate "GHASH digest algorithm" 474 select CRYPTO_GF128MUL 475 help 476 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 477 478config CRYPTO_POLY1305 479 tristate "Poly1305 authenticator algorithm" 480 help 481 Poly1305 authenticator algorithm, RFC7539. 482 483 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 484 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 485 in IETF protocols. This is the portable C implementation of Poly1305. 486 487config CRYPTO_POLY1305_X86_64 488 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 489 depends on X86 && 64BIT 490 select CRYPTO_POLY1305 491 help 492 Poly1305 authenticator algorithm, RFC7539. 493 494 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 495 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 496 in IETF protocols. This is the x86_64 assembler implementation using SIMD 497 instructions. 498 499config CRYPTO_MD4 500 tristate "MD4 digest algorithm" 501 select CRYPTO_HASH 502 help 503 MD4 message digest algorithm (RFC1320). 504 505config CRYPTO_MD5 506 tristate "MD5 digest algorithm" 507 select CRYPTO_HASH 508 help 509 MD5 message digest algorithm (RFC1321). 510 511config CRYPTO_MD5_OCTEON 512 tristate "MD5 digest algorithm (OCTEON)" 513 depends on CPU_CAVIUM_OCTEON 514 select CRYPTO_MD5 515 select CRYPTO_HASH 516 help 517 MD5 message digest algorithm (RFC1321) implemented 518 using OCTEON crypto instructions, when available. 519 520config CRYPTO_MD5_PPC 521 tristate "MD5 digest algorithm (PPC)" 522 depends on PPC 523 select CRYPTO_HASH 524 help 525 MD5 message digest algorithm (RFC1321) implemented 526 in PPC assembler. 527 528config CRYPTO_MD5_SPARC64 529 tristate "MD5 digest algorithm (SPARC64)" 530 depends on SPARC64 531 select CRYPTO_MD5 532 select CRYPTO_HASH 533 help 534 MD5 message digest algorithm (RFC1321) implemented 535 using sparc64 crypto instructions, when available. 536 537config CRYPTO_MICHAEL_MIC 538 tristate "Michael MIC keyed digest algorithm" 539 select CRYPTO_HASH 540 help 541 Michael MIC is used for message integrity protection in TKIP 542 (IEEE 802.11i). This algorithm is required for TKIP, but it 543 should not be used for other purposes because of the weakness 544 of the algorithm. 545 546config CRYPTO_RMD128 547 tristate "RIPEMD-128 digest algorithm" 548 select CRYPTO_HASH 549 help 550 RIPEMD-128 (ISO/IEC 10118-3:2004). 551 552 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 553 be used as a secure replacement for RIPEMD. For other use cases, 554 RIPEMD-160 should be used. 555 556 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 557 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 558 559config CRYPTO_RMD160 560 tristate "RIPEMD-160 digest algorithm" 561 select CRYPTO_HASH 562 help 563 RIPEMD-160 (ISO/IEC 10118-3:2004). 564 565 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 566 to be used as a secure replacement for the 128-bit hash functions 567 MD4, MD5 and it's predecessor RIPEMD 568 (not to be confused with RIPEMD-128). 569 570 It's speed is comparable to SHA1 and there are no known attacks 571 against RIPEMD-160. 572 573 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 574 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 575 576config CRYPTO_RMD256 577 tristate "RIPEMD-256 digest algorithm" 578 select CRYPTO_HASH 579 help 580 RIPEMD-256 is an optional extension of RIPEMD-128 with a 581 256 bit hash. It is intended for applications that require 582 longer hash-results, without needing a larger security level 583 (than RIPEMD-128). 584 585 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 586 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 587 588config CRYPTO_RMD320 589 tristate "RIPEMD-320 digest algorithm" 590 select CRYPTO_HASH 591 help 592 RIPEMD-320 is an optional extension of RIPEMD-160 with a 593 320 bit hash. It is intended for applications that require 594 longer hash-results, without needing a larger security level 595 (than RIPEMD-160). 596 597 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 598 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 599 600config CRYPTO_SHA1 601 tristate "SHA1 digest algorithm" 602 select CRYPTO_HASH 603 help 604 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 605 606config CRYPTO_SHA1_SSSE3 607 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 608 depends on X86 && 64BIT 609 select CRYPTO_SHA1 610 select CRYPTO_HASH 611 help 612 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 613 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 614 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 615 when available. 616 617config CRYPTO_SHA256_SSSE3 618 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 619 depends on X86 && 64BIT 620 select CRYPTO_SHA256 621 select CRYPTO_HASH 622 help 623 SHA-256 secure hash standard (DFIPS 180-2) implemented 624 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 625 Extensions version 1 (AVX1), or Advanced Vector Extensions 626 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 627 Instructions) when available. 628 629config CRYPTO_SHA512_SSSE3 630 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 631 depends on X86 && 64BIT 632 select CRYPTO_SHA512 633 select CRYPTO_HASH 634 help 635 SHA-512 secure hash standard (DFIPS 180-2) implemented 636 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 637 Extensions version 1 (AVX1), or Advanced Vector Extensions 638 version 2 (AVX2) instructions, when available. 639 640config CRYPTO_SHA1_OCTEON 641 tristate "SHA1 digest algorithm (OCTEON)" 642 depends on CPU_CAVIUM_OCTEON 643 select CRYPTO_SHA1 644 select CRYPTO_HASH 645 help 646 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 647 using OCTEON crypto instructions, when available. 648 649config CRYPTO_SHA1_SPARC64 650 tristate "SHA1 digest algorithm (SPARC64)" 651 depends on SPARC64 652 select CRYPTO_SHA1 653 select CRYPTO_HASH 654 help 655 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 656 using sparc64 crypto instructions, when available. 657 658config CRYPTO_SHA1_PPC 659 tristate "SHA1 digest algorithm (powerpc)" 660 depends on PPC 661 help 662 This is the powerpc hardware accelerated implementation of the 663 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 664 665config CRYPTO_SHA1_PPC_SPE 666 tristate "SHA1 digest algorithm (PPC SPE)" 667 depends on PPC && SPE 668 help 669 SHA-1 secure hash standard (DFIPS 180-4) implemented 670 using powerpc SPE SIMD instruction set. 671 672config CRYPTO_SHA1_MB 673 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" 674 depends on X86 && 64BIT 675 select CRYPTO_SHA1 676 select CRYPTO_HASH 677 select CRYPTO_MCRYPTD 678 help 679 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 680 using multi-buffer technique. This algorithm computes on 681 multiple data lanes concurrently with SIMD instructions for 682 better throughput. It should not be enabled by default but 683 used when there is significant amount of work to keep the keep 684 the data lanes filled to get performance benefit. If the data 685 lanes remain unfilled, a flush operation will be initiated to 686 process the crypto jobs, adding a slight latency. 687 688config CRYPTO_SHA256 689 tristate "SHA224 and SHA256 digest algorithm" 690 select CRYPTO_HASH 691 help 692 SHA256 secure hash standard (DFIPS 180-2). 693 694 This version of SHA implements a 256 bit hash with 128 bits of 695 security against collision attacks. 696 697 This code also includes SHA-224, a 224 bit hash with 112 bits 698 of security against collision attacks. 699 700config CRYPTO_SHA256_PPC_SPE 701 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 702 depends on PPC && SPE 703 select CRYPTO_SHA256 704 select CRYPTO_HASH 705 help 706 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 707 implemented using powerpc SPE SIMD instruction set. 708 709config CRYPTO_SHA256_OCTEON 710 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 711 depends on CPU_CAVIUM_OCTEON 712 select CRYPTO_SHA256 713 select CRYPTO_HASH 714 help 715 SHA-256 secure hash standard (DFIPS 180-2) implemented 716 using OCTEON crypto instructions, when available. 717 718config CRYPTO_SHA256_SPARC64 719 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 720 depends on SPARC64 721 select CRYPTO_SHA256 722 select CRYPTO_HASH 723 help 724 SHA-256 secure hash standard (DFIPS 180-2) implemented 725 using sparc64 crypto instructions, when available. 726 727config CRYPTO_SHA512 728 tristate "SHA384 and SHA512 digest algorithms" 729 select CRYPTO_HASH 730 help 731 SHA512 secure hash standard (DFIPS 180-2). 732 733 This version of SHA implements a 512 bit hash with 256 bits of 734 security against collision attacks. 735 736 This code also includes SHA-384, a 384 bit hash with 192 bits 737 of security against collision attacks. 738 739config CRYPTO_SHA512_OCTEON 740 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 741 depends on CPU_CAVIUM_OCTEON 742 select CRYPTO_SHA512 743 select CRYPTO_HASH 744 help 745 SHA-512 secure hash standard (DFIPS 180-2) implemented 746 using OCTEON crypto instructions, when available. 747 748config CRYPTO_SHA512_SPARC64 749 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 750 depends on SPARC64 751 select CRYPTO_SHA512 752 select CRYPTO_HASH 753 help 754 SHA-512 secure hash standard (DFIPS 180-2) implemented 755 using sparc64 crypto instructions, when available. 756 757config CRYPTO_TGR192 758 tristate "Tiger digest algorithms" 759 select CRYPTO_HASH 760 help 761 Tiger hash algorithm 192, 160 and 128-bit hashes 762 763 Tiger is a hash function optimized for 64-bit processors while 764 still having decent performance on 32-bit processors. 765 Tiger was developed by Ross Anderson and Eli Biham. 766 767 See also: 768 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 769 770config CRYPTO_WP512 771 tristate "Whirlpool digest algorithms" 772 select CRYPTO_HASH 773 help 774 Whirlpool hash algorithm 512, 384 and 256-bit hashes 775 776 Whirlpool-512 is part of the NESSIE cryptographic primitives. 777 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 778 779 See also: 780 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 781 782config CRYPTO_GHASH_CLMUL_NI_INTEL 783 tristate "GHASH digest algorithm (CLMUL-NI accelerated)" 784 depends on X86 && 64BIT 785 select CRYPTO_CRYPTD 786 help 787 GHASH is message digest algorithm for GCM (Galois/Counter Mode). 788 The implementation is accelerated by CLMUL-NI of Intel. 789 790comment "Ciphers" 791 792config CRYPTO_AES 793 tristate "AES cipher algorithms" 794 select CRYPTO_ALGAPI 795 help 796 AES cipher algorithms (FIPS-197). AES uses the Rijndael 797 algorithm. 798 799 Rijndael appears to be consistently a very good performer in 800 both hardware and software across a wide range of computing 801 environments regardless of its use in feedback or non-feedback 802 modes. Its key setup time is excellent, and its key agility is 803 good. Rijndael's very low memory requirements make it very well 804 suited for restricted-space environments, in which it also 805 demonstrates excellent performance. Rijndael's operations are 806 among the easiest to defend against power and timing attacks. 807 808 The AES specifies three key sizes: 128, 192 and 256 bits 809 810 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 811 812config CRYPTO_AES_586 813 tristate "AES cipher algorithms (i586)" 814 depends on (X86 || UML_X86) && !64BIT 815 select CRYPTO_ALGAPI 816 select CRYPTO_AES 817 help 818 AES cipher algorithms (FIPS-197). AES uses the Rijndael 819 algorithm. 820 821 Rijndael appears to be consistently a very good performer in 822 both hardware and software across a wide range of computing 823 environments regardless of its use in feedback or non-feedback 824 modes. Its key setup time is excellent, and its key agility is 825 good. Rijndael's very low memory requirements make it very well 826 suited for restricted-space environments, in which it also 827 demonstrates excellent performance. Rijndael's operations are 828 among the easiest to defend against power and timing attacks. 829 830 The AES specifies three key sizes: 128, 192 and 256 bits 831 832 See <http://csrc.nist.gov/encryption/aes/> for more information. 833 834config CRYPTO_AES_X86_64 835 tristate "AES cipher algorithms (x86_64)" 836 depends on (X86 || UML_X86) && 64BIT 837 select CRYPTO_ALGAPI 838 select CRYPTO_AES 839 help 840 AES cipher algorithms (FIPS-197). AES uses the Rijndael 841 algorithm. 842 843 Rijndael appears to be consistently a very good performer in 844 both hardware and software across a wide range of computing 845 environments regardless of its use in feedback or non-feedback 846 modes. Its key setup time is excellent, and its key agility is 847 good. Rijndael's very low memory requirements make it very well 848 suited for restricted-space environments, in which it also 849 demonstrates excellent performance. Rijndael's operations are 850 among the easiest to defend against power and timing attacks. 851 852 The AES specifies three key sizes: 128, 192 and 256 bits 853 854 See <http://csrc.nist.gov/encryption/aes/> for more information. 855 856config CRYPTO_AES_NI_INTEL 857 tristate "AES cipher algorithms (AES-NI)" 858 depends on X86 859 select CRYPTO_AES_X86_64 if 64BIT 860 select CRYPTO_AES_586 if !64BIT 861 select CRYPTO_CRYPTD 862 select CRYPTO_ABLK_HELPER 863 select CRYPTO_ALGAPI 864 select CRYPTO_GLUE_HELPER_X86 if 64BIT 865 select CRYPTO_LRW 866 select CRYPTO_XTS 867 help 868 Use Intel AES-NI instructions for AES algorithm. 869 870 AES cipher algorithms (FIPS-197). AES uses the Rijndael 871 algorithm. 872 873 Rijndael appears to be consistently a very good performer in 874 both hardware and software across a wide range of computing 875 environments regardless of its use in feedback or non-feedback 876 modes. Its key setup time is excellent, and its key agility is 877 good. Rijndael's very low memory requirements make it very well 878 suited for restricted-space environments, in which it also 879 demonstrates excellent performance. Rijndael's operations are 880 among the easiest to defend against power and timing attacks. 881 882 The AES specifies three key sizes: 128, 192 and 256 bits 883 884 See <http://csrc.nist.gov/encryption/aes/> for more information. 885 886 In addition to AES cipher algorithm support, the acceleration 887 for some popular block cipher mode is supported too, including 888 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional 889 acceleration for CTR. 890 891config CRYPTO_AES_SPARC64 892 tristate "AES cipher algorithms (SPARC64)" 893 depends on SPARC64 894 select CRYPTO_CRYPTD 895 select CRYPTO_ALGAPI 896 help 897 Use SPARC64 crypto opcodes for AES algorithm. 898 899 AES cipher algorithms (FIPS-197). AES uses the Rijndael 900 algorithm. 901 902 Rijndael appears to be consistently a very good performer in 903 both hardware and software across a wide range of computing 904 environments regardless of its use in feedback or non-feedback 905 modes. Its key setup time is excellent, and its key agility is 906 good. Rijndael's very low memory requirements make it very well 907 suited for restricted-space environments, in which it also 908 demonstrates excellent performance. Rijndael's operations are 909 among the easiest to defend against power and timing attacks. 910 911 The AES specifies three key sizes: 128, 192 and 256 bits 912 913 See <http://csrc.nist.gov/encryption/aes/> for more information. 914 915 In addition to AES cipher algorithm support, the acceleration 916 for some popular block cipher mode is supported too, including 917 ECB and CBC. 918 919config CRYPTO_AES_PPC_SPE 920 tristate "AES cipher algorithms (PPC SPE)" 921 depends on PPC && SPE 922 help 923 AES cipher algorithms (FIPS-197). Additionally the acceleration 924 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 925 This module should only be used for low power (router) devices 926 without hardware AES acceleration (e.g. caam crypto). It reduces the 927 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 928 timining attacks. Nevertheless it might be not as secure as other 929 architecture specific assembler implementations that work on 1KB 930 tables or 256 bytes S-boxes. 931 932config CRYPTO_ANUBIS 933 tristate "Anubis cipher algorithm" 934 select CRYPTO_ALGAPI 935 help 936 Anubis cipher algorithm. 937 938 Anubis is a variable key length cipher which can use keys from 939 128 bits to 320 bits in length. It was evaluated as a entrant 940 in the NESSIE competition. 941 942 See also: 943 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 944 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 945 946config CRYPTO_ARC4 947 tristate "ARC4 cipher algorithm" 948 select CRYPTO_BLKCIPHER 949 help 950 ARC4 cipher algorithm. 951 952 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 953 bits in length. This algorithm is required for driver-based 954 WEP, but it should not be for other purposes because of the 955 weakness of the algorithm. 956 957config CRYPTO_BLOWFISH 958 tristate "Blowfish cipher algorithm" 959 select CRYPTO_ALGAPI 960 select CRYPTO_BLOWFISH_COMMON 961 help 962 Blowfish cipher algorithm, by Bruce Schneier. 963 964 This is a variable key length cipher which can use keys from 32 965 bits to 448 bits in length. It's fast, simple and specifically 966 designed for use on "large microprocessors". 967 968 See also: 969 <http://www.schneier.com/blowfish.html> 970 971config CRYPTO_BLOWFISH_COMMON 972 tristate 973 help 974 Common parts of the Blowfish cipher algorithm shared by the 975 generic c and the assembler implementations. 976 977 See also: 978 <http://www.schneier.com/blowfish.html> 979 980config CRYPTO_BLOWFISH_X86_64 981 tristate "Blowfish cipher algorithm (x86_64)" 982 depends on X86 && 64BIT 983 select CRYPTO_ALGAPI 984 select CRYPTO_BLOWFISH_COMMON 985 help 986 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 987 988 This is a variable key length cipher which can use keys from 32 989 bits to 448 bits in length. It's fast, simple and specifically 990 designed for use on "large microprocessors". 991 992 See also: 993 <http://www.schneier.com/blowfish.html> 994 995config CRYPTO_CAMELLIA 996 tristate "Camellia cipher algorithms" 997 depends on CRYPTO 998 select CRYPTO_ALGAPI 999 help 1000 Camellia cipher algorithms module. 1001 1002 Camellia is a symmetric key block cipher developed jointly 1003 at NTT and Mitsubishi Electric Corporation. 1004 1005 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1006 1007 See also: 1008 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1009 1010config CRYPTO_CAMELLIA_X86_64 1011 tristate "Camellia cipher algorithm (x86_64)" 1012 depends on X86 && 64BIT 1013 depends on CRYPTO 1014 select CRYPTO_ALGAPI 1015 select CRYPTO_GLUE_HELPER_X86 1016 select CRYPTO_LRW 1017 select CRYPTO_XTS 1018 help 1019 Camellia cipher algorithm module (x86_64). 1020 1021 Camellia is a symmetric key block cipher developed jointly 1022 at NTT and Mitsubishi Electric Corporation. 1023 1024 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1025 1026 See also: 1027 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1028 1029config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1030 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1031 depends on X86 && 64BIT 1032 depends on CRYPTO 1033 select CRYPTO_ALGAPI 1034 select CRYPTO_CRYPTD 1035 select CRYPTO_ABLK_HELPER 1036 select CRYPTO_GLUE_HELPER_X86 1037 select CRYPTO_CAMELLIA_X86_64 1038 select CRYPTO_LRW 1039 select CRYPTO_XTS 1040 help 1041 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1042 1043 Camellia is a symmetric key block cipher developed jointly 1044 at NTT and Mitsubishi Electric Corporation. 1045 1046 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1047 1048 See also: 1049 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1050 1051config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1052 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1053 depends on X86 && 64BIT 1054 depends on CRYPTO 1055 select CRYPTO_ALGAPI 1056 select CRYPTO_CRYPTD 1057 select CRYPTO_ABLK_HELPER 1058 select CRYPTO_GLUE_HELPER_X86 1059 select CRYPTO_CAMELLIA_X86_64 1060 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1061 select CRYPTO_LRW 1062 select CRYPTO_XTS 1063 help 1064 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1065 1066 Camellia is a symmetric key block cipher developed jointly 1067 at NTT and Mitsubishi Electric Corporation. 1068 1069 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1070 1071 See also: 1072 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1073 1074config CRYPTO_CAMELLIA_SPARC64 1075 tristate "Camellia cipher algorithm (SPARC64)" 1076 depends on SPARC64 1077 depends on CRYPTO 1078 select CRYPTO_ALGAPI 1079 help 1080 Camellia cipher algorithm module (SPARC64). 1081 1082 Camellia is a symmetric key block cipher developed jointly 1083 at NTT and Mitsubishi Electric Corporation. 1084 1085 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1086 1087 See also: 1088 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1089 1090config CRYPTO_CAST_COMMON 1091 tristate 1092 help 1093 Common parts of the CAST cipher algorithms shared by the 1094 generic c and the assembler implementations. 1095 1096config CRYPTO_CAST5 1097 tristate "CAST5 (CAST-128) cipher algorithm" 1098 select CRYPTO_ALGAPI 1099 select CRYPTO_CAST_COMMON 1100 help 1101 The CAST5 encryption algorithm (synonymous with CAST-128) is 1102 described in RFC2144. 1103 1104config CRYPTO_CAST5_AVX_X86_64 1105 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1106 depends on X86 && 64BIT 1107 select CRYPTO_ALGAPI 1108 select CRYPTO_CRYPTD 1109 select CRYPTO_ABLK_HELPER 1110 select CRYPTO_CAST_COMMON 1111 select CRYPTO_CAST5 1112 help 1113 The CAST5 encryption algorithm (synonymous with CAST-128) is 1114 described in RFC2144. 1115 1116 This module provides the Cast5 cipher algorithm that processes 1117 sixteen blocks parallel using the AVX instruction set. 1118 1119config CRYPTO_CAST6 1120 tristate "CAST6 (CAST-256) cipher algorithm" 1121 select CRYPTO_ALGAPI 1122 select CRYPTO_CAST_COMMON 1123 help 1124 The CAST6 encryption algorithm (synonymous with CAST-256) is 1125 described in RFC2612. 1126 1127config CRYPTO_CAST6_AVX_X86_64 1128 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1129 depends on X86 && 64BIT 1130 select CRYPTO_ALGAPI 1131 select CRYPTO_CRYPTD 1132 select CRYPTO_ABLK_HELPER 1133 select CRYPTO_GLUE_HELPER_X86 1134 select CRYPTO_CAST_COMMON 1135 select CRYPTO_CAST6 1136 select CRYPTO_LRW 1137 select CRYPTO_XTS 1138 help 1139 The CAST6 encryption algorithm (synonymous with CAST-256) is 1140 described in RFC2612. 1141 1142 This module provides the Cast6 cipher algorithm that processes 1143 eight blocks parallel using the AVX instruction set. 1144 1145config CRYPTO_DES 1146 tristate "DES and Triple DES EDE cipher algorithms" 1147 select CRYPTO_ALGAPI 1148 help 1149 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1150 1151config CRYPTO_DES_SPARC64 1152 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1153 depends on SPARC64 1154 select CRYPTO_ALGAPI 1155 select CRYPTO_DES 1156 help 1157 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1158 optimized using SPARC64 crypto opcodes. 1159 1160config CRYPTO_DES3_EDE_X86_64 1161 tristate "Triple DES EDE cipher algorithm (x86-64)" 1162 depends on X86 && 64BIT 1163 select CRYPTO_ALGAPI 1164 select CRYPTO_DES 1165 help 1166 Triple DES EDE (FIPS 46-3) algorithm. 1167 1168 This module provides implementation of the Triple DES EDE cipher 1169 algorithm that is optimized for x86-64 processors. Two versions of 1170 algorithm are provided; regular processing one input block and 1171 one that processes three blocks parallel. 1172 1173config CRYPTO_FCRYPT 1174 tristate "FCrypt cipher algorithm" 1175 select CRYPTO_ALGAPI 1176 select CRYPTO_BLKCIPHER 1177 help 1178 FCrypt algorithm used by RxRPC. 1179 1180config CRYPTO_KHAZAD 1181 tristate "Khazad cipher algorithm" 1182 select CRYPTO_ALGAPI 1183 help 1184 Khazad cipher algorithm. 1185 1186 Khazad was a finalist in the initial NESSIE competition. It is 1187 an algorithm optimized for 64-bit processors with good performance 1188 on 32-bit processors. Khazad uses an 128 bit key size. 1189 1190 See also: 1191 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1192 1193config CRYPTO_SALSA20 1194 tristate "Salsa20 stream cipher algorithm" 1195 select CRYPTO_BLKCIPHER 1196 help 1197 Salsa20 stream cipher algorithm. 1198 1199 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1200 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1201 1202 The Salsa20 stream cipher algorithm is designed by Daniel J. 1203 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1204 1205config CRYPTO_SALSA20_586 1206 tristate "Salsa20 stream cipher algorithm (i586)" 1207 depends on (X86 || UML_X86) && !64BIT 1208 select CRYPTO_BLKCIPHER 1209 help 1210 Salsa20 stream cipher algorithm. 1211 1212 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1213 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1214 1215 The Salsa20 stream cipher algorithm is designed by Daniel J. 1216 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1217 1218config CRYPTO_SALSA20_X86_64 1219 tristate "Salsa20 stream cipher algorithm (x86_64)" 1220 depends on (X86 || UML_X86) && 64BIT 1221 select CRYPTO_BLKCIPHER 1222 help 1223 Salsa20 stream cipher algorithm. 1224 1225 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1226 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1227 1228 The Salsa20 stream cipher algorithm is designed by Daniel J. 1229 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1230 1231config CRYPTO_CHACHA20 1232 tristate "ChaCha20 cipher algorithm" 1233 select CRYPTO_BLKCIPHER 1234 help 1235 ChaCha20 cipher algorithm, RFC7539. 1236 1237 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1238 Bernstein and further specified in RFC7539 for use in IETF protocols. 1239 This is the portable C implementation of ChaCha20. 1240 1241 See also: 1242 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1243 1244config CRYPTO_CHACHA20_X86_64 1245 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" 1246 depends on X86 && 64BIT 1247 select CRYPTO_BLKCIPHER 1248 select CRYPTO_CHACHA20 1249 help 1250 ChaCha20 cipher algorithm, RFC7539. 1251 1252 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1253 Bernstein and further specified in RFC7539 for use in IETF protocols. 1254 This is the x86_64 assembler implementation using SIMD instructions. 1255 1256 See also: 1257 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1258 1259config CRYPTO_SEED 1260 tristate "SEED cipher algorithm" 1261 select CRYPTO_ALGAPI 1262 help 1263 SEED cipher algorithm (RFC4269). 1264 1265 SEED is a 128-bit symmetric key block cipher that has been 1266 developed by KISA (Korea Information Security Agency) as a 1267 national standard encryption algorithm of the Republic of Korea. 1268 It is a 16 round block cipher with the key size of 128 bit. 1269 1270 See also: 1271 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1272 1273config CRYPTO_SERPENT 1274 tristate "Serpent cipher algorithm" 1275 select CRYPTO_ALGAPI 1276 help 1277 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1278 1279 Keys are allowed to be from 0 to 256 bits in length, in steps 1280 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1281 variant of Serpent for compatibility with old kerneli.org code. 1282 1283 See also: 1284 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1285 1286config CRYPTO_SERPENT_SSE2_X86_64 1287 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1288 depends on X86 && 64BIT 1289 select CRYPTO_ALGAPI 1290 select CRYPTO_CRYPTD 1291 select CRYPTO_ABLK_HELPER 1292 select CRYPTO_GLUE_HELPER_X86 1293 select CRYPTO_SERPENT 1294 select CRYPTO_LRW 1295 select CRYPTO_XTS 1296 help 1297 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1298 1299 Keys are allowed to be from 0 to 256 bits in length, in steps 1300 of 8 bits. 1301 1302 This module provides Serpent cipher algorithm that processes eight 1303 blocks parallel using SSE2 instruction set. 1304 1305 See also: 1306 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1307 1308config CRYPTO_SERPENT_SSE2_586 1309 tristate "Serpent cipher algorithm (i586/SSE2)" 1310 depends on X86 && !64BIT 1311 select CRYPTO_ALGAPI 1312 select CRYPTO_CRYPTD 1313 select CRYPTO_ABLK_HELPER 1314 select CRYPTO_GLUE_HELPER_X86 1315 select CRYPTO_SERPENT 1316 select CRYPTO_LRW 1317 select CRYPTO_XTS 1318 help 1319 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1320 1321 Keys are allowed to be from 0 to 256 bits in length, in steps 1322 of 8 bits. 1323 1324 This module provides Serpent cipher algorithm that processes four 1325 blocks parallel using SSE2 instruction set. 1326 1327 See also: 1328 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1329 1330config CRYPTO_SERPENT_AVX_X86_64 1331 tristate "Serpent cipher algorithm (x86_64/AVX)" 1332 depends on X86 && 64BIT 1333 select CRYPTO_ALGAPI 1334 select CRYPTO_CRYPTD 1335 select CRYPTO_ABLK_HELPER 1336 select CRYPTO_GLUE_HELPER_X86 1337 select CRYPTO_SERPENT 1338 select CRYPTO_LRW 1339 select CRYPTO_XTS 1340 help 1341 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1342 1343 Keys are allowed to be from 0 to 256 bits in length, in steps 1344 of 8 bits. 1345 1346 This module provides the Serpent cipher algorithm that processes 1347 eight blocks parallel using the AVX instruction set. 1348 1349 See also: 1350 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1351 1352config CRYPTO_SERPENT_AVX2_X86_64 1353 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1354 depends on X86 && 64BIT 1355 select CRYPTO_ALGAPI 1356 select CRYPTO_CRYPTD 1357 select CRYPTO_ABLK_HELPER 1358 select CRYPTO_GLUE_HELPER_X86 1359 select CRYPTO_SERPENT 1360 select CRYPTO_SERPENT_AVX_X86_64 1361 select CRYPTO_LRW 1362 select CRYPTO_XTS 1363 help 1364 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1365 1366 Keys are allowed to be from 0 to 256 bits in length, in steps 1367 of 8 bits. 1368 1369 This module provides Serpent cipher algorithm that processes 16 1370 blocks parallel using AVX2 instruction set. 1371 1372 See also: 1373 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1374 1375config CRYPTO_TEA 1376 tristate "TEA, XTEA and XETA cipher algorithms" 1377 select CRYPTO_ALGAPI 1378 help 1379 TEA cipher algorithm. 1380 1381 Tiny Encryption Algorithm is a simple cipher that uses 1382 many rounds for security. It is very fast and uses 1383 little memory. 1384 1385 Xtendend Tiny Encryption Algorithm is a modification to 1386 the TEA algorithm to address a potential key weakness 1387 in the TEA algorithm. 1388 1389 Xtendend Encryption Tiny Algorithm is a mis-implementation 1390 of the XTEA algorithm for compatibility purposes. 1391 1392config CRYPTO_TWOFISH 1393 tristate "Twofish cipher algorithm" 1394 select CRYPTO_ALGAPI 1395 select CRYPTO_TWOFISH_COMMON 1396 help 1397 Twofish cipher algorithm. 1398 1399 Twofish was submitted as an AES (Advanced Encryption Standard) 1400 candidate cipher by researchers at CounterPane Systems. It is a 1401 16 round block cipher supporting key sizes of 128, 192, and 256 1402 bits. 1403 1404 See also: 1405 <http://www.schneier.com/twofish.html> 1406 1407config CRYPTO_TWOFISH_COMMON 1408 tristate 1409 help 1410 Common parts of the Twofish cipher algorithm shared by the 1411 generic c and the assembler implementations. 1412 1413config CRYPTO_TWOFISH_586 1414 tristate "Twofish cipher algorithms (i586)" 1415 depends on (X86 || UML_X86) && !64BIT 1416 select CRYPTO_ALGAPI 1417 select CRYPTO_TWOFISH_COMMON 1418 help 1419 Twofish cipher algorithm. 1420 1421 Twofish was submitted as an AES (Advanced Encryption Standard) 1422 candidate cipher by researchers at CounterPane Systems. It is a 1423 16 round block cipher supporting key sizes of 128, 192, and 256 1424 bits. 1425 1426 See also: 1427 <http://www.schneier.com/twofish.html> 1428 1429config CRYPTO_TWOFISH_X86_64 1430 tristate "Twofish cipher algorithm (x86_64)" 1431 depends on (X86 || UML_X86) && 64BIT 1432 select CRYPTO_ALGAPI 1433 select CRYPTO_TWOFISH_COMMON 1434 help 1435 Twofish cipher algorithm (x86_64). 1436 1437 Twofish was submitted as an AES (Advanced Encryption Standard) 1438 candidate cipher by researchers at CounterPane Systems. It is a 1439 16 round block cipher supporting key sizes of 128, 192, and 256 1440 bits. 1441 1442 See also: 1443 <http://www.schneier.com/twofish.html> 1444 1445config CRYPTO_TWOFISH_X86_64_3WAY 1446 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1447 depends on X86 && 64BIT 1448 select CRYPTO_ALGAPI 1449 select CRYPTO_TWOFISH_COMMON 1450 select CRYPTO_TWOFISH_X86_64 1451 select CRYPTO_GLUE_HELPER_X86 1452 select CRYPTO_LRW 1453 select CRYPTO_XTS 1454 help 1455 Twofish cipher algorithm (x86_64, 3-way parallel). 1456 1457 Twofish was submitted as an AES (Advanced Encryption Standard) 1458 candidate cipher by researchers at CounterPane Systems. It is a 1459 16 round block cipher supporting key sizes of 128, 192, and 256 1460 bits. 1461 1462 This module provides Twofish cipher algorithm that processes three 1463 blocks parallel, utilizing resources of out-of-order CPUs better. 1464 1465 See also: 1466 <http://www.schneier.com/twofish.html> 1467 1468config CRYPTO_TWOFISH_AVX_X86_64 1469 tristate "Twofish cipher algorithm (x86_64/AVX)" 1470 depends on X86 && 64BIT 1471 select CRYPTO_ALGAPI 1472 select CRYPTO_CRYPTD 1473 select CRYPTO_ABLK_HELPER 1474 select CRYPTO_GLUE_HELPER_X86 1475 select CRYPTO_TWOFISH_COMMON 1476 select CRYPTO_TWOFISH_X86_64 1477 select CRYPTO_TWOFISH_X86_64_3WAY 1478 select CRYPTO_LRW 1479 select CRYPTO_XTS 1480 help 1481 Twofish cipher algorithm (x86_64/AVX). 1482 1483 Twofish was submitted as an AES (Advanced Encryption Standard) 1484 candidate cipher by researchers at CounterPane Systems. It is a 1485 16 round block cipher supporting key sizes of 128, 192, and 256 1486 bits. 1487 1488 This module provides the Twofish cipher algorithm that processes 1489 eight blocks parallel using the AVX Instruction Set. 1490 1491 See also: 1492 <http://www.schneier.com/twofish.html> 1493 1494comment "Compression" 1495 1496config CRYPTO_DEFLATE 1497 tristate "Deflate compression algorithm" 1498 select CRYPTO_ALGAPI 1499 select ZLIB_INFLATE 1500 select ZLIB_DEFLATE 1501 help 1502 This is the Deflate algorithm (RFC1951), specified for use in 1503 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1504 1505 You will most probably want this if using IPSec. 1506 1507config CRYPTO_ZLIB 1508 tristate "Zlib compression algorithm" 1509 select CRYPTO_PCOMP 1510 select ZLIB_INFLATE 1511 select ZLIB_DEFLATE 1512 select NLATTR 1513 help 1514 This is the zlib algorithm. 1515 1516config CRYPTO_LZO 1517 tristate "LZO compression algorithm" 1518 select CRYPTO_ALGAPI 1519 select LZO_COMPRESS 1520 select LZO_DECOMPRESS 1521 help 1522 This is the LZO algorithm. 1523 1524config CRYPTO_842 1525 tristate "842 compression algorithm" 1526 select CRYPTO_ALGAPI 1527 select 842_COMPRESS 1528 select 842_DECOMPRESS 1529 help 1530 This is the 842 algorithm. 1531 1532config CRYPTO_LZ4 1533 tristate "LZ4 compression algorithm" 1534 select CRYPTO_ALGAPI 1535 select LZ4_COMPRESS 1536 select LZ4_DECOMPRESS 1537 help 1538 This is the LZ4 algorithm. 1539 1540config CRYPTO_LZ4HC 1541 tristate "LZ4HC compression algorithm" 1542 select CRYPTO_ALGAPI 1543 select LZ4HC_COMPRESS 1544 select LZ4_DECOMPRESS 1545 help 1546 This is the LZ4 high compression mode algorithm. 1547 1548comment "Random Number Generation" 1549 1550config CRYPTO_ANSI_CPRNG 1551 tristate "Pseudo Random Number Generation for Cryptographic modules" 1552 select CRYPTO_AES 1553 select CRYPTO_RNG 1554 help 1555 This option enables the generic pseudo random number generator 1556 for cryptographic modules. Uses the Algorithm specified in 1557 ANSI X9.31 A.2.4. Note that this option must be enabled if 1558 CRYPTO_FIPS is selected 1559 1560menuconfig CRYPTO_DRBG_MENU 1561 tristate "NIST SP800-90A DRBG" 1562 help 1563 NIST SP800-90A compliant DRBG. In the following submenu, one or 1564 more of the DRBG types must be selected. 1565 1566if CRYPTO_DRBG_MENU 1567 1568config CRYPTO_DRBG_HMAC 1569 bool 1570 default y 1571 select CRYPTO_HMAC 1572 select CRYPTO_SHA256 1573 1574config CRYPTO_DRBG_HASH 1575 bool "Enable Hash DRBG" 1576 select CRYPTO_SHA256 1577 help 1578 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1579 1580config CRYPTO_DRBG_CTR 1581 bool "Enable CTR DRBG" 1582 select CRYPTO_AES 1583 help 1584 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1585 1586config CRYPTO_DRBG 1587 tristate 1588 default CRYPTO_DRBG_MENU 1589 select CRYPTO_RNG 1590 select CRYPTO_JITTERENTROPY 1591 1592endif # if CRYPTO_DRBG_MENU 1593 1594config CRYPTO_JITTERENTROPY 1595 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1596 help 1597 The Jitterentropy RNG is a noise that is intended 1598 to provide seed to another RNG. The RNG does not 1599 perform any cryptographic whitening of the generated 1600 random numbers. This Jitterentropy RNG registers with 1601 the kernel crypto API and can be used by any caller. 1602 1603config CRYPTO_USER_API 1604 tristate 1605 1606config CRYPTO_USER_API_HASH 1607 tristate "User-space interface for hash algorithms" 1608 depends on NET 1609 select CRYPTO_HASH 1610 select CRYPTO_USER_API 1611 help 1612 This option enables the user-spaces interface for hash 1613 algorithms. 1614 1615config CRYPTO_USER_API_SKCIPHER 1616 tristate "User-space interface for symmetric key cipher algorithms" 1617 depends on NET 1618 select CRYPTO_BLKCIPHER 1619 select CRYPTO_USER_API 1620 help 1621 This option enables the user-spaces interface for symmetric 1622 key cipher algorithms. 1623 1624config CRYPTO_USER_API_RNG 1625 tristate "User-space interface for random number generator algorithms" 1626 depends on NET 1627 select CRYPTO_RNG 1628 select CRYPTO_USER_API 1629 help 1630 This option enables the user-spaces interface for random 1631 number generator algorithms. 1632 1633config CRYPTO_USER_API_AEAD 1634 tristate "User-space interface for AEAD cipher algorithms" 1635 depends on NET 1636 select CRYPTO_AEAD 1637 select CRYPTO_USER_API 1638 help 1639 This option enables the user-spaces interface for AEAD 1640 cipher algorithms. 1641 1642config CRYPTO_HASH_INFO 1643 bool 1644 1645source "drivers/crypto/Kconfig" 1646source crypto/asymmetric_keys/Kconfig 1647source certs/Kconfig 1648 1649endif # if CRYPTO 1650