1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 help 19 This option provides the core Cryptographic API. 20 21if CRYPTO 22 23comment "Crypto core or helper" 24 25config CRYPTO_FIPS 26 bool "FIPS 200 compliance" 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 28 depends on (MODULE_SIG || !MODULES) 29 help 30 This option enables the fips boot option which is 31 required if you want the system to operate in a FIPS 200 32 certification. You should say no unless you know what 33 this is. 34 35config CRYPTO_ALGAPI 36 tristate 37 select CRYPTO_ALGAPI2 38 help 39 This option provides the API for cryptographic algorithms. 40 41config CRYPTO_ALGAPI2 42 tristate 43 44config CRYPTO_AEAD 45 tristate 46 select CRYPTO_AEAD2 47 select CRYPTO_ALGAPI 48 49config CRYPTO_AEAD2 50 tristate 51 select CRYPTO_ALGAPI2 52 select CRYPTO_NULL2 53 select CRYPTO_RNG2 54 55config CRYPTO_BLKCIPHER 56 tristate 57 select CRYPTO_BLKCIPHER2 58 select CRYPTO_ALGAPI 59 60config CRYPTO_BLKCIPHER2 61 tristate 62 select CRYPTO_ALGAPI2 63 select CRYPTO_RNG2 64 65config CRYPTO_HASH 66 tristate 67 select CRYPTO_HASH2 68 select CRYPTO_ALGAPI 69 70config CRYPTO_HASH2 71 tristate 72 select CRYPTO_ALGAPI2 73 74config CRYPTO_RNG 75 tristate 76 select CRYPTO_RNG2 77 select CRYPTO_ALGAPI 78 79config CRYPTO_RNG2 80 tristate 81 select CRYPTO_ALGAPI2 82 83config CRYPTO_RNG_DEFAULT 84 tristate 85 select CRYPTO_DRBG_MENU 86 87config CRYPTO_AKCIPHER2 88 tristate 89 select CRYPTO_ALGAPI2 90 91config CRYPTO_AKCIPHER 92 tristate 93 select CRYPTO_AKCIPHER2 94 select CRYPTO_ALGAPI 95 96config CRYPTO_KPP2 97 tristate 98 select CRYPTO_ALGAPI2 99 100config CRYPTO_KPP 101 tristate 102 select CRYPTO_ALGAPI 103 select CRYPTO_KPP2 104 105config CRYPTO_ACOMP2 106 tristate 107 select CRYPTO_ALGAPI2 108 select SGL_ALLOC 109 110config CRYPTO_ACOMP 111 tristate 112 select CRYPTO_ALGAPI 113 select CRYPTO_ACOMP2 114 115config CRYPTO_MANAGER 116 tristate "Cryptographic algorithm manager" 117 select CRYPTO_MANAGER2 118 help 119 Create default cryptographic template instantiations such as 120 cbc(aes). 121 122config CRYPTO_MANAGER2 123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 124 select CRYPTO_AEAD2 125 select CRYPTO_HASH2 126 select CRYPTO_BLKCIPHER2 127 select CRYPTO_AKCIPHER2 128 select CRYPTO_KPP2 129 select CRYPTO_ACOMP2 130 131config CRYPTO_USER 132 tristate "Userspace cryptographic algorithm configuration" 133 depends on NET 134 select CRYPTO_MANAGER 135 help 136 Userspace configuration for cryptographic instantiations such as 137 cbc(aes). 138 139if CRYPTO_MANAGER2 140 141config CRYPTO_MANAGER_DISABLE_TESTS 142 bool "Disable run-time self tests" 143 default y 144 help 145 Disable run-time self tests that normally take place at 146 algorithm registration. 147 148config CRYPTO_MANAGER_EXTRA_TESTS 149 bool "Enable extra run-time crypto self tests" 150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 151 help 152 Enable extra run-time self tests of registered crypto algorithms, 153 including randomized fuzz tests. 154 155 This is intended for developer use only, as these tests take much 156 longer to run than the normal self tests. 157 158endif # if CRYPTO_MANAGER2 159 160config CRYPTO_GF128MUL 161 tristate 162 163config CRYPTO_NULL 164 tristate "Null algorithms" 165 select CRYPTO_NULL2 166 help 167 These are 'Null' algorithms, used by IPsec, which do nothing. 168 169config CRYPTO_NULL2 170 tristate 171 select CRYPTO_ALGAPI2 172 select CRYPTO_BLKCIPHER2 173 select CRYPTO_HASH2 174 175config CRYPTO_PCRYPT 176 tristate "Parallel crypto engine" 177 depends on SMP 178 select PADATA 179 select CRYPTO_MANAGER 180 select CRYPTO_AEAD 181 help 182 This converts an arbitrary crypto algorithm into a parallel 183 algorithm that executes in kernel threads. 184 185config CRYPTO_CRYPTD 186 tristate "Software async crypto daemon" 187 select CRYPTO_BLKCIPHER 188 select CRYPTO_HASH 189 select CRYPTO_MANAGER 190 help 191 This is a generic software asynchronous crypto daemon that 192 converts an arbitrary synchronous software crypto algorithm 193 into an asynchronous algorithm that executes in a kernel thread. 194 195config CRYPTO_AUTHENC 196 tristate "Authenc support" 197 select CRYPTO_AEAD 198 select CRYPTO_BLKCIPHER 199 select CRYPTO_MANAGER 200 select CRYPTO_HASH 201 select CRYPTO_NULL 202 help 203 Authenc: Combined mode wrapper for IPsec. 204 This is required for IPSec. 205 206config CRYPTO_TEST 207 tristate "Testing module" 208 depends on m 209 select CRYPTO_MANAGER 210 help 211 Quick & dirty crypto test module. 212 213config CRYPTO_SIMD 214 tristate 215 select CRYPTO_CRYPTD 216 217config CRYPTO_GLUE_HELPER_X86 218 tristate 219 depends on X86 220 select CRYPTO_BLKCIPHER 221 222config CRYPTO_ENGINE 223 tristate 224 225comment "Public-key cryptography" 226 227config CRYPTO_RSA 228 tristate "RSA algorithm" 229 select CRYPTO_AKCIPHER 230 select CRYPTO_MANAGER 231 select MPILIB 232 select ASN1 233 help 234 Generic implementation of the RSA public key algorithm. 235 236config CRYPTO_DH 237 tristate "Diffie-Hellman algorithm" 238 select CRYPTO_KPP 239 select MPILIB 240 help 241 Generic implementation of the Diffie-Hellman algorithm. 242 243config CRYPTO_ECC 244 tristate 245 246config CRYPTO_ECDH 247 tristate "ECDH algorithm" 248 select CRYPTO_ECC 249 select CRYPTO_KPP 250 select CRYPTO_RNG_DEFAULT 251 help 252 Generic implementation of the ECDH algorithm 253 254config CRYPTO_ECRDSA 255 tristate "EC-RDSA (GOST 34.10) algorithm" 256 select CRYPTO_ECC 257 select CRYPTO_AKCIPHER 258 select CRYPTO_STREEBOG 259 select OID_REGISTRY 260 select ASN1 261 help 262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 264 standard algorithms (called GOST algorithms). Only signature verification 265 is implemented. 266 267comment "Authenticated Encryption with Associated Data" 268 269config CRYPTO_CCM 270 tristate "CCM support" 271 select CRYPTO_CTR 272 select CRYPTO_HASH 273 select CRYPTO_AEAD 274 select CRYPTO_MANAGER 275 help 276 Support for Counter with CBC MAC. Required for IPsec. 277 278config CRYPTO_GCM 279 tristate "GCM/GMAC support" 280 select CRYPTO_CTR 281 select CRYPTO_AEAD 282 select CRYPTO_GHASH 283 select CRYPTO_NULL 284 select CRYPTO_MANAGER 285 help 286 Support for Galois/Counter Mode (GCM) and Galois Message 287 Authentication Code (GMAC). Required for IPSec. 288 289config CRYPTO_CHACHA20POLY1305 290 tristate "ChaCha20-Poly1305 AEAD support" 291 select CRYPTO_CHACHA20 292 select CRYPTO_POLY1305 293 select CRYPTO_AEAD 294 select CRYPTO_MANAGER 295 help 296 ChaCha20-Poly1305 AEAD support, RFC7539. 297 298 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 299 with the Poly1305 authenticator. It is defined in RFC7539 for use in 300 IETF protocols. 301 302config CRYPTO_AEGIS128 303 tristate "AEGIS-128 AEAD algorithm" 304 select CRYPTO_AEAD 305 select CRYPTO_AES # for AES S-box tables 306 help 307 Support for the AEGIS-128 dedicated AEAD algorithm. 308 309config CRYPTO_AEGIS128_SIMD 310 bool "Support SIMD acceleration for AEGIS-128" 311 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 312 default y 313 314config CRYPTO_AEGIS128_AESNI_SSE2 315 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 316 depends on X86 && 64BIT 317 select CRYPTO_AEAD 318 select CRYPTO_SIMD 319 help 320 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 321 322config CRYPTO_SEQIV 323 tristate "Sequence Number IV Generator" 324 select CRYPTO_AEAD 325 select CRYPTO_BLKCIPHER 326 select CRYPTO_NULL 327 select CRYPTO_RNG_DEFAULT 328 select CRYPTO_MANAGER 329 help 330 This IV generator generates an IV based on a sequence number by 331 xoring it with a salt. This algorithm is mainly useful for CTR 332 333config CRYPTO_ECHAINIV 334 tristate "Encrypted Chain IV Generator" 335 select CRYPTO_AEAD 336 select CRYPTO_NULL 337 select CRYPTO_RNG_DEFAULT 338 select CRYPTO_MANAGER 339 help 340 This IV generator generates an IV based on the encryption of 341 a sequence number xored with a salt. This is the default 342 algorithm for CBC. 343 344comment "Block modes" 345 346config CRYPTO_CBC 347 tristate "CBC support" 348 select CRYPTO_BLKCIPHER 349 select CRYPTO_MANAGER 350 help 351 CBC: Cipher Block Chaining mode 352 This block cipher algorithm is required for IPSec. 353 354config CRYPTO_CFB 355 tristate "CFB support" 356 select CRYPTO_BLKCIPHER 357 select CRYPTO_MANAGER 358 help 359 CFB: Cipher FeedBack mode 360 This block cipher algorithm is required for TPM2 Cryptography. 361 362config CRYPTO_CTR 363 tristate "CTR support" 364 select CRYPTO_BLKCIPHER 365 select CRYPTO_SEQIV 366 select CRYPTO_MANAGER 367 help 368 CTR: Counter mode 369 This block cipher algorithm is required for IPSec. 370 371config CRYPTO_CTS 372 tristate "CTS support" 373 select CRYPTO_BLKCIPHER 374 select CRYPTO_MANAGER 375 help 376 CTS: Cipher Text Stealing 377 This is the Cipher Text Stealing mode as described by 378 Section 8 of rfc2040 and referenced by rfc3962 379 (rfc3962 includes errata information in its Appendix A) or 380 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 381 This mode is required for Kerberos gss mechanism support 382 for AES encryption. 383 384 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 385 386config CRYPTO_ECB 387 tristate "ECB support" 388 select CRYPTO_BLKCIPHER 389 select CRYPTO_MANAGER 390 help 391 ECB: Electronic CodeBook mode 392 This is the simplest block cipher algorithm. It simply encrypts 393 the input block by block. 394 395config CRYPTO_LRW 396 tristate "LRW support" 397 select CRYPTO_BLKCIPHER 398 select CRYPTO_MANAGER 399 select CRYPTO_GF128MUL 400 help 401 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 402 narrow block cipher mode for dm-crypt. Use it with cipher 403 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 404 The first 128, 192 or 256 bits in the key are used for AES and the 405 rest is used to tie each cipher block to its logical position. 406 407config CRYPTO_OFB 408 tristate "OFB support" 409 select CRYPTO_BLKCIPHER 410 select CRYPTO_MANAGER 411 help 412 OFB: the Output Feedback mode makes a block cipher into a synchronous 413 stream cipher. It generates keystream blocks, which are then XORed 414 with the plaintext blocks to get the ciphertext. Flipping a bit in the 415 ciphertext produces a flipped bit in the plaintext at the same 416 location. This property allows many error correcting codes to function 417 normally even when applied before encryption. 418 419config CRYPTO_PCBC 420 tristate "PCBC support" 421 select CRYPTO_BLKCIPHER 422 select CRYPTO_MANAGER 423 help 424 PCBC: Propagating Cipher Block Chaining mode 425 This block cipher algorithm is required for RxRPC. 426 427config CRYPTO_XTS 428 tristate "XTS support" 429 select CRYPTO_BLKCIPHER 430 select CRYPTO_MANAGER 431 select CRYPTO_ECB 432 help 433 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 434 key size 256, 384 or 512 bits. This implementation currently 435 can't handle a sectorsize which is not a multiple of 16 bytes. 436 437config CRYPTO_KEYWRAP 438 tristate "Key wrapping support" 439 select CRYPTO_BLKCIPHER 440 select CRYPTO_MANAGER 441 help 442 Support for key wrapping (NIST SP800-38F / RFC3394) without 443 padding. 444 445config CRYPTO_NHPOLY1305 446 tristate 447 select CRYPTO_HASH 448 select CRYPTO_POLY1305 449 450config CRYPTO_NHPOLY1305_SSE2 451 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 452 depends on X86 && 64BIT 453 select CRYPTO_NHPOLY1305 454 help 455 SSE2 optimized implementation of the hash function used by the 456 Adiantum encryption mode. 457 458config CRYPTO_NHPOLY1305_AVX2 459 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 460 depends on X86 && 64BIT 461 select CRYPTO_NHPOLY1305 462 help 463 AVX2 optimized implementation of the hash function used by the 464 Adiantum encryption mode. 465 466config CRYPTO_ADIANTUM 467 tristate "Adiantum support" 468 select CRYPTO_CHACHA20 469 select CRYPTO_POLY1305 470 select CRYPTO_NHPOLY1305 471 select CRYPTO_MANAGER 472 help 473 Adiantum is a tweakable, length-preserving encryption mode 474 designed for fast and secure disk encryption, especially on 475 CPUs without dedicated crypto instructions. It encrypts 476 each sector using the XChaCha12 stream cipher, two passes of 477 an ε-almost-∆-universal hash function, and an invocation of 478 the AES-256 block cipher on a single 16-byte block. On CPUs 479 without AES instructions, Adiantum is much faster than 480 AES-XTS. 481 482 Adiantum's security is provably reducible to that of its 483 underlying stream and block ciphers, subject to a security 484 bound. Unlike XTS, Adiantum is a true wide-block encryption 485 mode, so it actually provides an even stronger notion of 486 security than XTS, subject to the security bound. 487 488 If unsure, say N. 489 490comment "Hash modes" 491 492config CRYPTO_CMAC 493 tristate "CMAC support" 494 select CRYPTO_HASH 495 select CRYPTO_MANAGER 496 help 497 Cipher-based Message Authentication Code (CMAC) specified by 498 The National Institute of Standards and Technology (NIST). 499 500 https://tools.ietf.org/html/rfc4493 501 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 502 503config CRYPTO_HMAC 504 tristate "HMAC support" 505 select CRYPTO_HASH 506 select CRYPTO_MANAGER 507 help 508 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 509 This is required for IPSec. 510 511config CRYPTO_XCBC 512 tristate "XCBC support" 513 select CRYPTO_HASH 514 select CRYPTO_MANAGER 515 help 516 XCBC: Keyed-Hashing with encryption algorithm 517 http://www.ietf.org/rfc/rfc3566.txt 518 http://csrc.nist.gov/encryption/modes/proposedmodes/ 519 xcbc-mac/xcbc-mac-spec.pdf 520 521config CRYPTO_VMAC 522 tristate "VMAC support" 523 select CRYPTO_HASH 524 select CRYPTO_MANAGER 525 help 526 VMAC is a message authentication algorithm designed for 527 very high speed on 64-bit architectures. 528 529 See also: 530 <http://fastcrypto.org/vmac> 531 532comment "Digest" 533 534config CRYPTO_CRC32C 535 tristate "CRC32c CRC algorithm" 536 select CRYPTO_HASH 537 select CRC32 538 help 539 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 540 by iSCSI for header and data digests and by others. 541 See Castagnoli93. Module will be crc32c. 542 543config CRYPTO_CRC32C_INTEL 544 tristate "CRC32c INTEL hardware acceleration" 545 depends on X86 546 select CRYPTO_HASH 547 help 548 In Intel processor with SSE4.2 supported, the processor will 549 support CRC32C implementation using hardware accelerated CRC32 550 instruction. This option will create 'crc32c-intel' module, 551 which will enable any routine to use the CRC32 instruction to 552 gain performance compared with software implementation. 553 Module will be crc32c-intel. 554 555config CRYPTO_CRC32C_VPMSUM 556 tristate "CRC32c CRC algorithm (powerpc64)" 557 depends on PPC64 && ALTIVEC 558 select CRYPTO_HASH 559 select CRC32 560 help 561 CRC32c algorithm implemented using vector polynomial multiply-sum 562 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 563 and newer processors for improved performance. 564 565 566config CRYPTO_CRC32C_SPARC64 567 tristate "CRC32c CRC algorithm (SPARC64)" 568 depends on SPARC64 569 select CRYPTO_HASH 570 select CRC32 571 help 572 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 573 when available. 574 575config CRYPTO_CRC32 576 tristate "CRC32 CRC algorithm" 577 select CRYPTO_HASH 578 select CRC32 579 help 580 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 581 Shash crypto api wrappers to crc32_le function. 582 583config CRYPTO_CRC32_PCLMUL 584 tristate "CRC32 PCLMULQDQ hardware acceleration" 585 depends on X86 586 select CRYPTO_HASH 587 select CRC32 588 help 589 From Intel Westmere and AMD Bulldozer processor with SSE4.2 590 and PCLMULQDQ supported, the processor will support 591 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 592 instruction. This option will create 'crc32-pclmul' module, 593 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 594 and gain better performance as compared with the table implementation. 595 596config CRYPTO_CRC32_MIPS 597 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 598 depends on MIPS_CRC_SUPPORT 599 select CRYPTO_HASH 600 help 601 CRC32c and CRC32 CRC algorithms implemented using mips crypto 602 instructions, when available. 603 604 605config CRYPTO_XXHASH 606 tristate "xxHash hash algorithm" 607 select CRYPTO_HASH 608 select XXHASH 609 help 610 xxHash non-cryptographic hash algorithm. Extremely fast, working at 611 speeds close to RAM limits. 612 613config CRYPTO_CRCT10DIF 614 tristate "CRCT10DIF algorithm" 615 select CRYPTO_HASH 616 help 617 CRC T10 Data Integrity Field computation is being cast as 618 a crypto transform. This allows for faster crc t10 diff 619 transforms to be used if they are available. 620 621config CRYPTO_CRCT10DIF_PCLMUL 622 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 623 depends on X86 && 64BIT && CRC_T10DIF 624 select CRYPTO_HASH 625 help 626 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 627 CRC T10 DIF PCLMULQDQ computation can be hardware 628 accelerated PCLMULQDQ instruction. This option will create 629 'crct10dif-pclmul' module, which is faster when computing the 630 crct10dif checksum as compared with the generic table implementation. 631 632config CRYPTO_CRCT10DIF_VPMSUM 633 tristate "CRC32T10DIF powerpc64 hardware acceleration" 634 depends on PPC64 && ALTIVEC && CRC_T10DIF 635 select CRYPTO_HASH 636 help 637 CRC10T10DIF algorithm implemented using vector polynomial 638 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 639 POWER8 and newer processors for improved performance. 640 641config CRYPTO_VPMSUM_TESTER 642 tristate "Powerpc64 vpmsum hardware acceleration tester" 643 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 644 help 645 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 646 POWER8 vpmsum instructions. 647 Unless you are testing these algorithms, you don't need this. 648 649config CRYPTO_GHASH 650 tristate "GHASH hash function" 651 select CRYPTO_GF128MUL 652 select CRYPTO_HASH 653 help 654 GHASH is the hash function used in GCM (Galois/Counter Mode). 655 It is not a general-purpose cryptographic hash function. 656 657config CRYPTO_POLY1305 658 tristate "Poly1305 authenticator algorithm" 659 select CRYPTO_HASH 660 help 661 Poly1305 authenticator algorithm, RFC7539. 662 663 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 664 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 665 in IETF protocols. This is the portable C implementation of Poly1305. 666 667config CRYPTO_POLY1305_X86_64 668 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 669 depends on X86 && 64BIT 670 select CRYPTO_POLY1305 671 help 672 Poly1305 authenticator algorithm, RFC7539. 673 674 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 675 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 676 in IETF protocols. This is the x86_64 assembler implementation using SIMD 677 instructions. 678 679config CRYPTO_MD4 680 tristate "MD4 digest algorithm" 681 select CRYPTO_HASH 682 help 683 MD4 message digest algorithm (RFC1320). 684 685config CRYPTO_MD5 686 tristate "MD5 digest algorithm" 687 select CRYPTO_HASH 688 help 689 MD5 message digest algorithm (RFC1321). 690 691config CRYPTO_MD5_OCTEON 692 tristate "MD5 digest algorithm (OCTEON)" 693 depends on CPU_CAVIUM_OCTEON 694 select CRYPTO_MD5 695 select CRYPTO_HASH 696 help 697 MD5 message digest algorithm (RFC1321) implemented 698 using OCTEON crypto instructions, when available. 699 700config CRYPTO_MD5_PPC 701 tristate "MD5 digest algorithm (PPC)" 702 depends on PPC 703 select CRYPTO_HASH 704 help 705 MD5 message digest algorithm (RFC1321) implemented 706 in PPC assembler. 707 708config CRYPTO_MD5_SPARC64 709 tristate "MD5 digest algorithm (SPARC64)" 710 depends on SPARC64 711 select CRYPTO_MD5 712 select CRYPTO_HASH 713 help 714 MD5 message digest algorithm (RFC1321) implemented 715 using sparc64 crypto instructions, when available. 716 717config CRYPTO_MICHAEL_MIC 718 tristate "Michael MIC keyed digest algorithm" 719 select CRYPTO_HASH 720 help 721 Michael MIC is used for message integrity protection in TKIP 722 (IEEE 802.11i). This algorithm is required for TKIP, but it 723 should not be used for other purposes because of the weakness 724 of the algorithm. 725 726config CRYPTO_RMD128 727 tristate "RIPEMD-128 digest algorithm" 728 select CRYPTO_HASH 729 help 730 RIPEMD-128 (ISO/IEC 10118-3:2004). 731 732 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 733 be used as a secure replacement for RIPEMD. For other use cases, 734 RIPEMD-160 should be used. 735 736 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 737 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 738 739config CRYPTO_RMD160 740 tristate "RIPEMD-160 digest algorithm" 741 select CRYPTO_HASH 742 help 743 RIPEMD-160 (ISO/IEC 10118-3:2004). 744 745 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 746 to be used as a secure replacement for the 128-bit hash functions 747 MD4, MD5 and it's predecessor RIPEMD 748 (not to be confused with RIPEMD-128). 749 750 It's speed is comparable to SHA1 and there are no known attacks 751 against RIPEMD-160. 752 753 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 754 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 755 756config CRYPTO_RMD256 757 tristate "RIPEMD-256 digest algorithm" 758 select CRYPTO_HASH 759 help 760 RIPEMD-256 is an optional extension of RIPEMD-128 with a 761 256 bit hash. It is intended for applications that require 762 longer hash-results, without needing a larger security level 763 (than RIPEMD-128). 764 765 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 766 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 767 768config CRYPTO_RMD320 769 tristate "RIPEMD-320 digest algorithm" 770 select CRYPTO_HASH 771 help 772 RIPEMD-320 is an optional extension of RIPEMD-160 with a 773 320 bit hash. It is intended for applications that require 774 longer hash-results, without needing a larger security level 775 (than RIPEMD-160). 776 777 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 778 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 779 780config CRYPTO_SHA1 781 tristate "SHA1 digest algorithm" 782 select CRYPTO_HASH 783 help 784 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 785 786config CRYPTO_SHA1_SSSE3 787 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 788 depends on X86 && 64BIT 789 select CRYPTO_SHA1 790 select CRYPTO_HASH 791 help 792 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 793 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 794 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 795 when available. 796 797config CRYPTO_SHA256_SSSE3 798 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 799 depends on X86 && 64BIT 800 select CRYPTO_SHA256 801 select CRYPTO_HASH 802 help 803 SHA-256 secure hash standard (DFIPS 180-2) implemented 804 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 805 Extensions version 1 (AVX1), or Advanced Vector Extensions 806 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 807 Instructions) when available. 808 809config CRYPTO_SHA512_SSSE3 810 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 811 depends on X86 && 64BIT 812 select CRYPTO_SHA512 813 select CRYPTO_HASH 814 help 815 SHA-512 secure hash standard (DFIPS 180-2) implemented 816 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 817 Extensions version 1 (AVX1), or Advanced Vector Extensions 818 version 2 (AVX2) instructions, when available. 819 820config CRYPTO_SHA1_OCTEON 821 tristate "SHA1 digest algorithm (OCTEON)" 822 depends on CPU_CAVIUM_OCTEON 823 select CRYPTO_SHA1 824 select CRYPTO_HASH 825 help 826 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 827 using OCTEON crypto instructions, when available. 828 829config CRYPTO_SHA1_SPARC64 830 tristate "SHA1 digest algorithm (SPARC64)" 831 depends on SPARC64 832 select CRYPTO_SHA1 833 select CRYPTO_HASH 834 help 835 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 836 using sparc64 crypto instructions, when available. 837 838config CRYPTO_SHA1_PPC 839 tristate "SHA1 digest algorithm (powerpc)" 840 depends on PPC 841 help 842 This is the powerpc hardware accelerated implementation of the 843 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 844 845config CRYPTO_SHA1_PPC_SPE 846 tristate "SHA1 digest algorithm (PPC SPE)" 847 depends on PPC && SPE 848 help 849 SHA-1 secure hash standard (DFIPS 180-4) implemented 850 using powerpc SPE SIMD instruction set. 851 852config CRYPTO_SHA256 853 tristate "SHA224 and SHA256 digest algorithm" 854 select CRYPTO_HASH 855 help 856 SHA256 secure hash standard (DFIPS 180-2). 857 858 This version of SHA implements a 256 bit hash with 128 bits of 859 security against collision attacks. 860 861 This code also includes SHA-224, a 224 bit hash with 112 bits 862 of security against collision attacks. 863 864config CRYPTO_SHA256_PPC_SPE 865 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 866 depends on PPC && SPE 867 select CRYPTO_SHA256 868 select CRYPTO_HASH 869 help 870 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 871 implemented using powerpc SPE SIMD instruction set. 872 873config CRYPTO_SHA256_OCTEON 874 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 875 depends on CPU_CAVIUM_OCTEON 876 select CRYPTO_SHA256 877 select CRYPTO_HASH 878 help 879 SHA-256 secure hash standard (DFIPS 180-2) implemented 880 using OCTEON crypto instructions, when available. 881 882config CRYPTO_SHA256_SPARC64 883 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 884 depends on SPARC64 885 select CRYPTO_SHA256 886 select CRYPTO_HASH 887 help 888 SHA-256 secure hash standard (DFIPS 180-2) implemented 889 using sparc64 crypto instructions, when available. 890 891config CRYPTO_SHA512 892 tristate "SHA384 and SHA512 digest algorithms" 893 select CRYPTO_HASH 894 help 895 SHA512 secure hash standard (DFIPS 180-2). 896 897 This version of SHA implements a 512 bit hash with 256 bits of 898 security against collision attacks. 899 900 This code also includes SHA-384, a 384 bit hash with 192 bits 901 of security against collision attacks. 902 903config CRYPTO_SHA512_OCTEON 904 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 905 depends on CPU_CAVIUM_OCTEON 906 select CRYPTO_SHA512 907 select CRYPTO_HASH 908 help 909 SHA-512 secure hash standard (DFIPS 180-2) implemented 910 using OCTEON crypto instructions, when available. 911 912config CRYPTO_SHA512_SPARC64 913 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 914 depends on SPARC64 915 select CRYPTO_SHA512 916 select CRYPTO_HASH 917 help 918 SHA-512 secure hash standard (DFIPS 180-2) implemented 919 using sparc64 crypto instructions, when available. 920 921config CRYPTO_SHA3 922 tristate "SHA3 digest algorithm" 923 select CRYPTO_HASH 924 help 925 SHA-3 secure hash standard (DFIPS 202). It's based on 926 cryptographic sponge function family called Keccak. 927 928 References: 929 http://keccak.noekeon.org/ 930 931config CRYPTO_SM3 932 tristate "SM3 digest algorithm" 933 select CRYPTO_HASH 934 help 935 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 936 It is part of the Chinese Commercial Cryptography suite. 937 938 References: 939 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 940 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 941 942config CRYPTO_STREEBOG 943 tristate "Streebog Hash Function" 944 select CRYPTO_HASH 945 help 946 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 947 cryptographic standard algorithms (called GOST algorithms). 948 This setting enables two hash algorithms with 256 and 512 bits output. 949 950 References: 951 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 952 https://tools.ietf.org/html/rfc6986 953 954config CRYPTO_TGR192 955 tristate "Tiger digest algorithms" 956 select CRYPTO_HASH 957 help 958 Tiger hash algorithm 192, 160 and 128-bit hashes 959 960 Tiger is a hash function optimized for 64-bit processors while 961 still having decent performance on 32-bit processors. 962 Tiger was developed by Ross Anderson and Eli Biham. 963 964 See also: 965 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 966 967config CRYPTO_WP512 968 tristate "Whirlpool digest algorithms" 969 select CRYPTO_HASH 970 help 971 Whirlpool hash algorithm 512, 384 and 256-bit hashes 972 973 Whirlpool-512 is part of the NESSIE cryptographic primitives. 974 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 975 976 See also: 977 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 978 979config CRYPTO_GHASH_CLMUL_NI_INTEL 980 tristate "GHASH hash function (CLMUL-NI accelerated)" 981 depends on X86 && 64BIT 982 select CRYPTO_CRYPTD 983 help 984 This is the x86_64 CLMUL-NI accelerated implementation of 985 GHASH, the hash function used in GCM (Galois/Counter mode). 986 987comment "Ciphers" 988 989config CRYPTO_LIB_AES 990 tristate 991 992config CRYPTO_AES 993 tristate "AES cipher algorithms" 994 select CRYPTO_ALGAPI 995 select CRYPTO_LIB_AES 996 help 997 AES cipher algorithms (FIPS-197). AES uses the Rijndael 998 algorithm. 999 1000 Rijndael appears to be consistently a very good performer in 1001 both hardware and software across a wide range of computing 1002 environments regardless of its use in feedback or non-feedback 1003 modes. Its key setup time is excellent, and its key agility is 1004 good. Rijndael's very low memory requirements make it very well 1005 suited for restricted-space environments, in which it also 1006 demonstrates excellent performance. Rijndael's operations are 1007 among the easiest to defend against power and timing attacks. 1008 1009 The AES specifies three key sizes: 128, 192 and 256 bits 1010 1011 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1012 1013config CRYPTO_AES_TI 1014 tristate "Fixed time AES cipher" 1015 select CRYPTO_ALGAPI 1016 select CRYPTO_LIB_AES 1017 help 1018 This is a generic implementation of AES that attempts to eliminate 1019 data dependent latencies as much as possible without affecting 1020 performance too much. It is intended for use by the generic CCM 1021 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1022 solely on encryption (although decryption is supported as well, but 1023 with a more dramatic performance hit) 1024 1025 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1026 8 for decryption), this implementation only uses just two S-boxes of 1027 256 bytes each, and attempts to eliminate data dependent latencies by 1028 prefetching the entire table into the cache at the start of each 1029 block. Interrupts are also disabled to avoid races where cachelines 1030 are evicted when the CPU is interrupted to do something else. 1031 1032config CRYPTO_AES_NI_INTEL 1033 tristate "AES cipher algorithms (AES-NI)" 1034 depends on X86 1035 select CRYPTO_AEAD 1036 select CRYPTO_LIB_AES 1037 select CRYPTO_ALGAPI 1038 select CRYPTO_BLKCIPHER 1039 select CRYPTO_GLUE_HELPER_X86 if 64BIT 1040 select CRYPTO_SIMD 1041 help 1042 Use Intel AES-NI instructions for AES algorithm. 1043 1044 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1045 algorithm. 1046 1047 Rijndael appears to be consistently a very good performer in 1048 both hardware and software across a wide range of computing 1049 environments regardless of its use in feedback or non-feedback 1050 modes. Its key setup time is excellent, and its key agility is 1051 good. Rijndael's very low memory requirements make it very well 1052 suited for restricted-space environments, in which it also 1053 demonstrates excellent performance. Rijndael's operations are 1054 among the easiest to defend against power and timing attacks. 1055 1056 The AES specifies three key sizes: 128, 192 and 256 bits 1057 1058 See <http://csrc.nist.gov/encryption/aes/> for more information. 1059 1060 In addition to AES cipher algorithm support, the acceleration 1061 for some popular block cipher mode is supported too, including 1062 ECB, CBC, LRW, XTS. The 64 bit version has additional 1063 acceleration for CTR. 1064 1065config CRYPTO_AES_SPARC64 1066 tristate "AES cipher algorithms (SPARC64)" 1067 depends on SPARC64 1068 select CRYPTO_CRYPTD 1069 select CRYPTO_ALGAPI 1070 help 1071 Use SPARC64 crypto opcodes for AES algorithm. 1072 1073 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1074 algorithm. 1075 1076 Rijndael appears to be consistently a very good performer in 1077 both hardware and software across a wide range of computing 1078 environments regardless of its use in feedback or non-feedback 1079 modes. Its key setup time is excellent, and its key agility is 1080 good. Rijndael's very low memory requirements make it very well 1081 suited for restricted-space environments, in which it also 1082 demonstrates excellent performance. Rijndael's operations are 1083 among the easiest to defend against power and timing attacks. 1084 1085 The AES specifies three key sizes: 128, 192 and 256 bits 1086 1087 See <http://csrc.nist.gov/encryption/aes/> for more information. 1088 1089 In addition to AES cipher algorithm support, the acceleration 1090 for some popular block cipher mode is supported too, including 1091 ECB and CBC. 1092 1093config CRYPTO_AES_PPC_SPE 1094 tristate "AES cipher algorithms (PPC SPE)" 1095 depends on PPC && SPE 1096 help 1097 AES cipher algorithms (FIPS-197). Additionally the acceleration 1098 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1099 This module should only be used for low power (router) devices 1100 without hardware AES acceleration (e.g. caam crypto). It reduces the 1101 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1102 timining attacks. Nevertheless it might be not as secure as other 1103 architecture specific assembler implementations that work on 1KB 1104 tables or 256 bytes S-boxes. 1105 1106config CRYPTO_ANUBIS 1107 tristate "Anubis cipher algorithm" 1108 select CRYPTO_ALGAPI 1109 help 1110 Anubis cipher algorithm. 1111 1112 Anubis is a variable key length cipher which can use keys from 1113 128 bits to 320 bits in length. It was evaluated as a entrant 1114 in the NESSIE competition. 1115 1116 See also: 1117 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1118 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1119 1120config CRYPTO_LIB_ARC4 1121 tristate 1122 1123config CRYPTO_ARC4 1124 tristate "ARC4 cipher algorithm" 1125 select CRYPTO_BLKCIPHER 1126 select CRYPTO_LIB_ARC4 1127 help 1128 ARC4 cipher algorithm. 1129 1130 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1131 bits in length. This algorithm is required for driver-based 1132 WEP, but it should not be for other purposes because of the 1133 weakness of the algorithm. 1134 1135config CRYPTO_BLOWFISH 1136 tristate "Blowfish cipher algorithm" 1137 select CRYPTO_ALGAPI 1138 select CRYPTO_BLOWFISH_COMMON 1139 help 1140 Blowfish cipher algorithm, by Bruce Schneier. 1141 1142 This is a variable key length cipher which can use keys from 32 1143 bits to 448 bits in length. It's fast, simple and specifically 1144 designed for use on "large microprocessors". 1145 1146 See also: 1147 <http://www.schneier.com/blowfish.html> 1148 1149config CRYPTO_BLOWFISH_COMMON 1150 tristate 1151 help 1152 Common parts of the Blowfish cipher algorithm shared by the 1153 generic c and the assembler implementations. 1154 1155 See also: 1156 <http://www.schneier.com/blowfish.html> 1157 1158config CRYPTO_BLOWFISH_X86_64 1159 tristate "Blowfish cipher algorithm (x86_64)" 1160 depends on X86 && 64BIT 1161 select CRYPTO_BLKCIPHER 1162 select CRYPTO_BLOWFISH_COMMON 1163 help 1164 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1165 1166 This is a variable key length cipher which can use keys from 32 1167 bits to 448 bits in length. It's fast, simple and specifically 1168 designed for use on "large microprocessors". 1169 1170 See also: 1171 <http://www.schneier.com/blowfish.html> 1172 1173config CRYPTO_CAMELLIA 1174 tristate "Camellia cipher algorithms" 1175 depends on CRYPTO 1176 select CRYPTO_ALGAPI 1177 help 1178 Camellia cipher algorithms module. 1179 1180 Camellia is a symmetric key block cipher developed jointly 1181 at NTT and Mitsubishi Electric Corporation. 1182 1183 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1184 1185 See also: 1186 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1187 1188config CRYPTO_CAMELLIA_X86_64 1189 tristate "Camellia cipher algorithm (x86_64)" 1190 depends on X86 && 64BIT 1191 depends on CRYPTO 1192 select CRYPTO_BLKCIPHER 1193 select CRYPTO_GLUE_HELPER_X86 1194 help 1195 Camellia cipher algorithm module (x86_64). 1196 1197 Camellia is a symmetric key block cipher developed jointly 1198 at NTT and Mitsubishi Electric Corporation. 1199 1200 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1201 1202 See also: 1203 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1204 1205config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1206 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1207 depends on X86 && 64BIT 1208 depends on CRYPTO 1209 select CRYPTO_BLKCIPHER 1210 select CRYPTO_CAMELLIA_X86_64 1211 select CRYPTO_GLUE_HELPER_X86 1212 select CRYPTO_SIMD 1213 select CRYPTO_XTS 1214 help 1215 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1216 1217 Camellia is a symmetric key block cipher developed jointly 1218 at NTT and Mitsubishi Electric Corporation. 1219 1220 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1221 1222 See also: 1223 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1224 1225config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1226 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1227 depends on X86 && 64BIT 1228 depends on CRYPTO 1229 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1230 help 1231 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1232 1233 Camellia is a symmetric key block cipher developed jointly 1234 at NTT and Mitsubishi Electric Corporation. 1235 1236 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1237 1238 See also: 1239 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1240 1241config CRYPTO_CAMELLIA_SPARC64 1242 tristate "Camellia cipher algorithm (SPARC64)" 1243 depends on SPARC64 1244 depends on CRYPTO 1245 select CRYPTO_ALGAPI 1246 help 1247 Camellia cipher algorithm module (SPARC64). 1248 1249 Camellia is a symmetric key block cipher developed jointly 1250 at NTT and Mitsubishi Electric Corporation. 1251 1252 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1253 1254 See also: 1255 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1256 1257config CRYPTO_CAST_COMMON 1258 tristate 1259 help 1260 Common parts of the CAST cipher algorithms shared by the 1261 generic c and the assembler implementations. 1262 1263config CRYPTO_CAST5 1264 tristate "CAST5 (CAST-128) cipher algorithm" 1265 select CRYPTO_ALGAPI 1266 select CRYPTO_CAST_COMMON 1267 help 1268 The CAST5 encryption algorithm (synonymous with CAST-128) is 1269 described in RFC2144. 1270 1271config CRYPTO_CAST5_AVX_X86_64 1272 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1273 depends on X86 && 64BIT 1274 select CRYPTO_BLKCIPHER 1275 select CRYPTO_CAST5 1276 select CRYPTO_CAST_COMMON 1277 select CRYPTO_SIMD 1278 help 1279 The CAST5 encryption algorithm (synonymous with CAST-128) is 1280 described in RFC2144. 1281 1282 This module provides the Cast5 cipher algorithm that processes 1283 sixteen blocks parallel using the AVX instruction set. 1284 1285config CRYPTO_CAST6 1286 tristate "CAST6 (CAST-256) cipher algorithm" 1287 select CRYPTO_ALGAPI 1288 select CRYPTO_CAST_COMMON 1289 help 1290 The CAST6 encryption algorithm (synonymous with CAST-256) is 1291 described in RFC2612. 1292 1293config CRYPTO_CAST6_AVX_X86_64 1294 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1295 depends on X86 && 64BIT 1296 select CRYPTO_BLKCIPHER 1297 select CRYPTO_CAST6 1298 select CRYPTO_CAST_COMMON 1299 select CRYPTO_GLUE_HELPER_X86 1300 select CRYPTO_SIMD 1301 select CRYPTO_XTS 1302 help 1303 The CAST6 encryption algorithm (synonymous with CAST-256) is 1304 described in RFC2612. 1305 1306 This module provides the Cast6 cipher algorithm that processes 1307 eight blocks parallel using the AVX instruction set. 1308 1309config CRYPTO_LIB_DES 1310 tristate 1311 1312config CRYPTO_DES 1313 tristate "DES and Triple DES EDE cipher algorithms" 1314 select CRYPTO_ALGAPI 1315 select CRYPTO_LIB_DES 1316 help 1317 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1318 1319config CRYPTO_DES_SPARC64 1320 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1321 depends on SPARC64 1322 select CRYPTO_ALGAPI 1323 select CRYPTO_LIB_DES 1324 help 1325 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1326 optimized using SPARC64 crypto opcodes. 1327 1328config CRYPTO_DES3_EDE_X86_64 1329 tristate "Triple DES EDE cipher algorithm (x86-64)" 1330 depends on X86 && 64BIT 1331 select CRYPTO_BLKCIPHER 1332 select CRYPTO_LIB_DES 1333 help 1334 Triple DES EDE (FIPS 46-3) algorithm. 1335 1336 This module provides implementation of the Triple DES EDE cipher 1337 algorithm that is optimized for x86-64 processors. Two versions of 1338 algorithm are provided; regular processing one input block and 1339 one that processes three blocks parallel. 1340 1341config CRYPTO_FCRYPT 1342 tristate "FCrypt cipher algorithm" 1343 select CRYPTO_ALGAPI 1344 select CRYPTO_BLKCIPHER 1345 help 1346 FCrypt algorithm used by RxRPC. 1347 1348config CRYPTO_KHAZAD 1349 tristate "Khazad cipher algorithm" 1350 select CRYPTO_ALGAPI 1351 help 1352 Khazad cipher algorithm. 1353 1354 Khazad was a finalist in the initial NESSIE competition. It is 1355 an algorithm optimized for 64-bit processors with good performance 1356 on 32-bit processors. Khazad uses an 128 bit key size. 1357 1358 See also: 1359 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1360 1361config CRYPTO_SALSA20 1362 tristate "Salsa20 stream cipher algorithm" 1363 select CRYPTO_BLKCIPHER 1364 help 1365 Salsa20 stream cipher algorithm. 1366 1367 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1368 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1369 1370 The Salsa20 stream cipher algorithm is designed by Daniel J. 1371 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1372 1373config CRYPTO_CHACHA20 1374 tristate "ChaCha stream cipher algorithms" 1375 select CRYPTO_BLKCIPHER 1376 help 1377 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1378 1379 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1380 Bernstein and further specified in RFC7539 for use in IETF protocols. 1381 This is the portable C implementation of ChaCha20. See also: 1382 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1383 1384 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1385 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1386 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1387 while provably retaining ChaCha20's security. See also: 1388 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1389 1390 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1391 reduced security margin but increased performance. It can be needed 1392 in some performance-sensitive scenarios. 1393 1394config CRYPTO_CHACHA20_X86_64 1395 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1396 depends on X86 && 64BIT 1397 select CRYPTO_BLKCIPHER 1398 select CRYPTO_CHACHA20 1399 help 1400 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1401 XChaCha20, and XChaCha12 stream ciphers. 1402 1403config CRYPTO_SEED 1404 tristate "SEED cipher algorithm" 1405 select CRYPTO_ALGAPI 1406 help 1407 SEED cipher algorithm (RFC4269). 1408 1409 SEED is a 128-bit symmetric key block cipher that has been 1410 developed by KISA (Korea Information Security Agency) as a 1411 national standard encryption algorithm of the Republic of Korea. 1412 It is a 16 round block cipher with the key size of 128 bit. 1413 1414 See also: 1415 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1416 1417config CRYPTO_SERPENT 1418 tristate "Serpent cipher algorithm" 1419 select CRYPTO_ALGAPI 1420 help 1421 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1422 1423 Keys are allowed to be from 0 to 256 bits in length, in steps 1424 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1425 variant of Serpent for compatibility with old kerneli.org code. 1426 1427 See also: 1428 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1429 1430config CRYPTO_SERPENT_SSE2_X86_64 1431 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1432 depends on X86 && 64BIT 1433 select CRYPTO_BLKCIPHER 1434 select CRYPTO_GLUE_HELPER_X86 1435 select CRYPTO_SERPENT 1436 select CRYPTO_SIMD 1437 help 1438 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1439 1440 Keys are allowed to be from 0 to 256 bits in length, in steps 1441 of 8 bits. 1442 1443 This module provides Serpent cipher algorithm that processes eight 1444 blocks parallel using SSE2 instruction set. 1445 1446 See also: 1447 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1448 1449config CRYPTO_SERPENT_SSE2_586 1450 tristate "Serpent cipher algorithm (i586/SSE2)" 1451 depends on X86 && !64BIT 1452 select CRYPTO_BLKCIPHER 1453 select CRYPTO_GLUE_HELPER_X86 1454 select CRYPTO_SERPENT 1455 select CRYPTO_SIMD 1456 help 1457 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1458 1459 Keys are allowed to be from 0 to 256 bits in length, in steps 1460 of 8 bits. 1461 1462 This module provides Serpent cipher algorithm that processes four 1463 blocks parallel using SSE2 instruction set. 1464 1465 See also: 1466 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1467 1468config CRYPTO_SERPENT_AVX_X86_64 1469 tristate "Serpent cipher algorithm (x86_64/AVX)" 1470 depends on X86 && 64BIT 1471 select CRYPTO_BLKCIPHER 1472 select CRYPTO_GLUE_HELPER_X86 1473 select CRYPTO_SERPENT 1474 select CRYPTO_SIMD 1475 select CRYPTO_XTS 1476 help 1477 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1478 1479 Keys are allowed to be from 0 to 256 bits in length, in steps 1480 of 8 bits. 1481 1482 This module provides the Serpent cipher algorithm that processes 1483 eight blocks parallel using the AVX instruction set. 1484 1485 See also: 1486 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1487 1488config CRYPTO_SERPENT_AVX2_X86_64 1489 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1490 depends on X86 && 64BIT 1491 select CRYPTO_SERPENT_AVX_X86_64 1492 help 1493 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1494 1495 Keys are allowed to be from 0 to 256 bits in length, in steps 1496 of 8 bits. 1497 1498 This module provides Serpent cipher algorithm that processes 16 1499 blocks parallel using AVX2 instruction set. 1500 1501 See also: 1502 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1503 1504config CRYPTO_SM4 1505 tristate "SM4 cipher algorithm" 1506 select CRYPTO_ALGAPI 1507 help 1508 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1509 1510 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1511 Organization of State Commercial Administration of China (OSCCA) 1512 as an authorized cryptographic algorithms for the use within China. 1513 1514 SMS4 was originally created for use in protecting wireless 1515 networks, and is mandated in the Chinese National Standard for 1516 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1517 (GB.15629.11-2003). 1518 1519 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1520 standardized through TC 260 of the Standardization Administration 1521 of the People's Republic of China (SAC). 1522 1523 The input, output, and key of SMS4 are each 128 bits. 1524 1525 See also: <https://eprint.iacr.org/2008/329.pdf> 1526 1527 If unsure, say N. 1528 1529config CRYPTO_TEA 1530 tristate "TEA, XTEA and XETA cipher algorithms" 1531 select CRYPTO_ALGAPI 1532 help 1533 TEA cipher algorithm. 1534 1535 Tiny Encryption Algorithm is a simple cipher that uses 1536 many rounds for security. It is very fast and uses 1537 little memory. 1538 1539 Xtendend Tiny Encryption Algorithm is a modification to 1540 the TEA algorithm to address a potential key weakness 1541 in the TEA algorithm. 1542 1543 Xtendend Encryption Tiny Algorithm is a mis-implementation 1544 of the XTEA algorithm for compatibility purposes. 1545 1546config CRYPTO_TWOFISH 1547 tristate "Twofish cipher algorithm" 1548 select CRYPTO_ALGAPI 1549 select CRYPTO_TWOFISH_COMMON 1550 help 1551 Twofish cipher algorithm. 1552 1553 Twofish was submitted as an AES (Advanced Encryption Standard) 1554 candidate cipher by researchers at CounterPane Systems. It is a 1555 16 round block cipher supporting key sizes of 128, 192, and 256 1556 bits. 1557 1558 See also: 1559 <http://www.schneier.com/twofish.html> 1560 1561config CRYPTO_TWOFISH_COMMON 1562 tristate 1563 help 1564 Common parts of the Twofish cipher algorithm shared by the 1565 generic c and the assembler implementations. 1566 1567config CRYPTO_TWOFISH_586 1568 tristate "Twofish cipher algorithms (i586)" 1569 depends on (X86 || UML_X86) && !64BIT 1570 select CRYPTO_ALGAPI 1571 select CRYPTO_TWOFISH_COMMON 1572 help 1573 Twofish cipher algorithm. 1574 1575 Twofish was submitted as an AES (Advanced Encryption Standard) 1576 candidate cipher by researchers at CounterPane Systems. It is a 1577 16 round block cipher supporting key sizes of 128, 192, and 256 1578 bits. 1579 1580 See also: 1581 <http://www.schneier.com/twofish.html> 1582 1583config CRYPTO_TWOFISH_X86_64 1584 tristate "Twofish cipher algorithm (x86_64)" 1585 depends on (X86 || UML_X86) && 64BIT 1586 select CRYPTO_ALGAPI 1587 select CRYPTO_TWOFISH_COMMON 1588 help 1589 Twofish cipher algorithm (x86_64). 1590 1591 Twofish was submitted as an AES (Advanced Encryption Standard) 1592 candidate cipher by researchers at CounterPane Systems. It is a 1593 16 round block cipher supporting key sizes of 128, 192, and 256 1594 bits. 1595 1596 See also: 1597 <http://www.schneier.com/twofish.html> 1598 1599config CRYPTO_TWOFISH_X86_64_3WAY 1600 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1601 depends on X86 && 64BIT 1602 select CRYPTO_BLKCIPHER 1603 select CRYPTO_TWOFISH_COMMON 1604 select CRYPTO_TWOFISH_X86_64 1605 select CRYPTO_GLUE_HELPER_X86 1606 help 1607 Twofish cipher algorithm (x86_64, 3-way parallel). 1608 1609 Twofish was submitted as an AES (Advanced Encryption Standard) 1610 candidate cipher by researchers at CounterPane Systems. It is a 1611 16 round block cipher supporting key sizes of 128, 192, and 256 1612 bits. 1613 1614 This module provides Twofish cipher algorithm that processes three 1615 blocks parallel, utilizing resources of out-of-order CPUs better. 1616 1617 See also: 1618 <http://www.schneier.com/twofish.html> 1619 1620config CRYPTO_TWOFISH_AVX_X86_64 1621 tristate "Twofish cipher algorithm (x86_64/AVX)" 1622 depends on X86 && 64BIT 1623 select CRYPTO_BLKCIPHER 1624 select CRYPTO_GLUE_HELPER_X86 1625 select CRYPTO_SIMD 1626 select CRYPTO_TWOFISH_COMMON 1627 select CRYPTO_TWOFISH_X86_64 1628 select CRYPTO_TWOFISH_X86_64_3WAY 1629 help 1630 Twofish cipher algorithm (x86_64/AVX). 1631 1632 Twofish was submitted as an AES (Advanced Encryption Standard) 1633 candidate cipher by researchers at CounterPane Systems. It is a 1634 16 round block cipher supporting key sizes of 128, 192, and 256 1635 bits. 1636 1637 This module provides the Twofish cipher algorithm that processes 1638 eight blocks parallel using the AVX Instruction Set. 1639 1640 See also: 1641 <http://www.schneier.com/twofish.html> 1642 1643comment "Compression" 1644 1645config CRYPTO_DEFLATE 1646 tristate "Deflate compression algorithm" 1647 select CRYPTO_ALGAPI 1648 select CRYPTO_ACOMP2 1649 select ZLIB_INFLATE 1650 select ZLIB_DEFLATE 1651 help 1652 This is the Deflate algorithm (RFC1951), specified for use in 1653 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1654 1655 You will most probably want this if using IPSec. 1656 1657config CRYPTO_LZO 1658 tristate "LZO compression algorithm" 1659 select CRYPTO_ALGAPI 1660 select CRYPTO_ACOMP2 1661 select LZO_COMPRESS 1662 select LZO_DECOMPRESS 1663 help 1664 This is the LZO algorithm. 1665 1666config CRYPTO_842 1667 tristate "842 compression algorithm" 1668 select CRYPTO_ALGAPI 1669 select CRYPTO_ACOMP2 1670 select 842_COMPRESS 1671 select 842_DECOMPRESS 1672 help 1673 This is the 842 algorithm. 1674 1675config CRYPTO_LZ4 1676 tristate "LZ4 compression algorithm" 1677 select CRYPTO_ALGAPI 1678 select CRYPTO_ACOMP2 1679 select LZ4_COMPRESS 1680 select LZ4_DECOMPRESS 1681 help 1682 This is the LZ4 algorithm. 1683 1684config CRYPTO_LZ4HC 1685 tristate "LZ4HC compression algorithm" 1686 select CRYPTO_ALGAPI 1687 select CRYPTO_ACOMP2 1688 select LZ4HC_COMPRESS 1689 select LZ4_DECOMPRESS 1690 help 1691 This is the LZ4 high compression mode algorithm. 1692 1693config CRYPTO_ZSTD 1694 tristate "Zstd compression algorithm" 1695 select CRYPTO_ALGAPI 1696 select CRYPTO_ACOMP2 1697 select ZSTD_COMPRESS 1698 select ZSTD_DECOMPRESS 1699 help 1700 This is the zstd algorithm. 1701 1702comment "Random Number Generation" 1703 1704config CRYPTO_ANSI_CPRNG 1705 tristate "Pseudo Random Number Generation for Cryptographic modules" 1706 select CRYPTO_AES 1707 select CRYPTO_RNG 1708 help 1709 This option enables the generic pseudo random number generator 1710 for cryptographic modules. Uses the Algorithm specified in 1711 ANSI X9.31 A.2.4. Note that this option must be enabled if 1712 CRYPTO_FIPS is selected 1713 1714menuconfig CRYPTO_DRBG_MENU 1715 tristate "NIST SP800-90A DRBG" 1716 help 1717 NIST SP800-90A compliant DRBG. In the following submenu, one or 1718 more of the DRBG types must be selected. 1719 1720if CRYPTO_DRBG_MENU 1721 1722config CRYPTO_DRBG_HMAC 1723 bool 1724 default y 1725 select CRYPTO_HMAC 1726 select CRYPTO_SHA256 1727 1728config CRYPTO_DRBG_HASH 1729 bool "Enable Hash DRBG" 1730 select CRYPTO_SHA256 1731 help 1732 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1733 1734config CRYPTO_DRBG_CTR 1735 bool "Enable CTR DRBG" 1736 select CRYPTO_AES 1737 depends on CRYPTO_CTR 1738 help 1739 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1740 1741config CRYPTO_DRBG 1742 tristate 1743 default CRYPTO_DRBG_MENU 1744 select CRYPTO_RNG 1745 select CRYPTO_JITTERENTROPY 1746 1747endif # if CRYPTO_DRBG_MENU 1748 1749config CRYPTO_JITTERENTROPY 1750 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1751 select CRYPTO_RNG 1752 help 1753 The Jitterentropy RNG is a noise that is intended 1754 to provide seed to another RNG. The RNG does not 1755 perform any cryptographic whitening of the generated 1756 random numbers. This Jitterentropy RNG registers with 1757 the kernel crypto API and can be used by any caller. 1758 1759config CRYPTO_USER_API 1760 tristate 1761 1762config CRYPTO_USER_API_HASH 1763 tristate "User-space interface for hash algorithms" 1764 depends on NET 1765 select CRYPTO_HASH 1766 select CRYPTO_USER_API 1767 help 1768 This option enables the user-spaces interface for hash 1769 algorithms. 1770 1771config CRYPTO_USER_API_SKCIPHER 1772 tristate "User-space interface for symmetric key cipher algorithms" 1773 depends on NET 1774 select CRYPTO_BLKCIPHER 1775 select CRYPTO_USER_API 1776 help 1777 This option enables the user-spaces interface for symmetric 1778 key cipher algorithms. 1779 1780config CRYPTO_USER_API_RNG 1781 tristate "User-space interface for random number generator algorithms" 1782 depends on NET 1783 select CRYPTO_RNG 1784 select CRYPTO_USER_API 1785 help 1786 This option enables the user-spaces interface for random 1787 number generator algorithms. 1788 1789config CRYPTO_USER_API_AEAD 1790 tristate "User-space interface for AEAD cipher algorithms" 1791 depends on NET 1792 select CRYPTO_AEAD 1793 select CRYPTO_BLKCIPHER 1794 select CRYPTO_NULL 1795 select CRYPTO_USER_API 1796 help 1797 This option enables the user-spaces interface for AEAD 1798 cipher algorithms. 1799 1800config CRYPTO_STATS 1801 bool "Crypto usage statistics for User-space" 1802 depends on CRYPTO_USER 1803 help 1804 This option enables the gathering of crypto stats. 1805 This will collect: 1806 - encrypt/decrypt size and numbers of symmeric operations 1807 - compress/decompress size and numbers of compress operations 1808 - size and numbers of hash operations 1809 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1810 - generate/seed numbers for rng operations 1811 1812config CRYPTO_HASH_INFO 1813 bool 1814 1815source "drivers/crypto/Kconfig" 1816source "crypto/asymmetric_keys/Kconfig" 1817source "certs/Kconfig" 1818 1819endif # if CRYPTO 1820