xref: /openbmc/linux/crypto/Kconfig (revision 11788d9b)
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6	tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17	tristate "Cryptographic API"
18	help
19	  This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26	bool "FIPS 200 compliance"
27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28	depends on (MODULE_SIG || !MODULES)
29	help
30	  This option enables the fips boot option which is
31	  required if you want the system to operate in a FIPS 200
32	  certification.  You should say no unless you know what
33	  this is.
34
35config CRYPTO_ALGAPI
36	tristate
37	select CRYPTO_ALGAPI2
38	help
39	  This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42	tristate
43
44config CRYPTO_AEAD
45	tristate
46	select CRYPTO_AEAD2
47	select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50	tristate
51	select CRYPTO_ALGAPI2
52	select CRYPTO_NULL2
53	select CRYPTO_RNG2
54
55config CRYPTO_SKCIPHER
56	tristate
57	select CRYPTO_SKCIPHER2
58	select CRYPTO_ALGAPI
59
60config CRYPTO_SKCIPHER2
61	tristate
62	select CRYPTO_ALGAPI2
63	select CRYPTO_RNG2
64
65config CRYPTO_HASH
66	tristate
67	select CRYPTO_HASH2
68	select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71	tristate
72	select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75	tristate
76	select CRYPTO_RNG2
77	select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80	tristate
81	select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84	tristate
85	select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88	tristate
89	select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92	tristate
93	select CRYPTO_AKCIPHER2
94	select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97	tristate
98	select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101	tristate
102	select CRYPTO_ALGAPI
103	select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106	tristate
107	select CRYPTO_ALGAPI2
108	select SGL_ALLOC
109
110config CRYPTO_ACOMP
111	tristate
112	select CRYPTO_ALGAPI
113	select CRYPTO_ACOMP2
114
115config CRYPTO_MANAGER
116	tristate "Cryptographic algorithm manager"
117	select CRYPTO_MANAGER2
118	help
119	  Create default cryptographic template instantiations such as
120	  cbc(aes).
121
122config CRYPTO_MANAGER2
123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124	select CRYPTO_AEAD2
125	select CRYPTO_HASH2
126	select CRYPTO_SKCIPHER2
127	select CRYPTO_AKCIPHER2
128	select CRYPTO_KPP2
129	select CRYPTO_ACOMP2
130
131config CRYPTO_USER
132	tristate "Userspace cryptographic algorithm configuration"
133	depends on NET
134	select CRYPTO_MANAGER
135	help
136	  Userspace configuration for cryptographic instantiations such as
137	  cbc(aes).
138
139config CRYPTO_MANAGER_DISABLE_TESTS
140	bool "Disable run-time self tests"
141	default y
142	help
143	  Disable run-time self tests that normally take place at
144	  algorithm registration.
145
146config CRYPTO_MANAGER_EXTRA_TESTS
147	bool "Enable extra run-time crypto self tests"
148	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
149	help
150	  Enable extra run-time self tests of registered crypto algorithms,
151	  including randomized fuzz tests.
152
153	  This is intended for developer use only, as these tests take much
154	  longer to run than the normal self tests.
155
156config CRYPTO_GF128MUL
157	tristate
158
159config CRYPTO_NULL
160	tristate "Null algorithms"
161	select CRYPTO_NULL2
162	help
163	  These are 'Null' algorithms, used by IPsec, which do nothing.
164
165config CRYPTO_NULL2
166	tristate
167	select CRYPTO_ALGAPI2
168	select CRYPTO_SKCIPHER2
169	select CRYPTO_HASH2
170
171config CRYPTO_PCRYPT
172	tristate "Parallel crypto engine"
173	depends on SMP
174	select PADATA
175	select CRYPTO_MANAGER
176	select CRYPTO_AEAD
177	help
178	  This converts an arbitrary crypto algorithm into a parallel
179	  algorithm that executes in kernel threads.
180
181config CRYPTO_CRYPTD
182	tristate "Software async crypto daemon"
183	select CRYPTO_SKCIPHER
184	select CRYPTO_HASH
185	select CRYPTO_MANAGER
186	help
187	  This is a generic software asynchronous crypto daemon that
188	  converts an arbitrary synchronous software crypto algorithm
189	  into an asynchronous algorithm that executes in a kernel thread.
190
191config CRYPTO_AUTHENC
192	tristate "Authenc support"
193	select CRYPTO_AEAD
194	select CRYPTO_SKCIPHER
195	select CRYPTO_MANAGER
196	select CRYPTO_HASH
197	select CRYPTO_NULL
198	help
199	  Authenc: Combined mode wrapper for IPsec.
200	  This is required for IPSec.
201
202config CRYPTO_TEST
203	tristate "Testing module"
204	depends on m
205	select CRYPTO_MANAGER
206	help
207	  Quick & dirty crypto test module.
208
209config CRYPTO_SIMD
210	tristate
211	select CRYPTO_CRYPTD
212
213config CRYPTO_GLUE_HELPER_X86
214	tristate
215	depends on X86
216	select CRYPTO_SKCIPHER
217
218config CRYPTO_ENGINE
219	tristate
220
221comment "Public-key cryptography"
222
223config CRYPTO_RSA
224	tristate "RSA algorithm"
225	select CRYPTO_AKCIPHER
226	select CRYPTO_MANAGER
227	select MPILIB
228	select ASN1
229	help
230	  Generic implementation of the RSA public key algorithm.
231
232config CRYPTO_DH
233	tristate "Diffie-Hellman algorithm"
234	select CRYPTO_KPP
235	select MPILIB
236	help
237	  Generic implementation of the Diffie-Hellman algorithm.
238
239config CRYPTO_ECC
240	tristate
241
242config CRYPTO_ECDH
243	tristate "ECDH algorithm"
244	select CRYPTO_ECC
245	select CRYPTO_KPP
246	select CRYPTO_RNG_DEFAULT
247	help
248	  Generic implementation of the ECDH algorithm
249
250config CRYPTO_ECRDSA
251	tristate "EC-RDSA (GOST 34.10) algorithm"
252	select CRYPTO_ECC
253	select CRYPTO_AKCIPHER
254	select CRYPTO_STREEBOG
255	select OID_REGISTRY
256	select ASN1
257	help
258	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
259	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
260	  standard algorithms (called GOST algorithms). Only signature verification
261	  is implemented.
262
263config CRYPTO_CURVE25519
264	tristate "Curve25519 algorithm"
265	select CRYPTO_KPP
266	select CRYPTO_LIB_CURVE25519_GENERIC
267
268config CRYPTO_CURVE25519_X86
269	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
270	depends on X86 && 64BIT
271	select CRYPTO_LIB_CURVE25519_GENERIC
272	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
273
274comment "Authenticated Encryption with Associated Data"
275
276config CRYPTO_CCM
277	tristate "CCM support"
278	select CRYPTO_CTR
279	select CRYPTO_HASH
280	select CRYPTO_AEAD
281	select CRYPTO_MANAGER
282	help
283	  Support for Counter with CBC MAC. Required for IPsec.
284
285config CRYPTO_GCM
286	tristate "GCM/GMAC support"
287	select CRYPTO_CTR
288	select CRYPTO_AEAD
289	select CRYPTO_GHASH
290	select CRYPTO_NULL
291	select CRYPTO_MANAGER
292	help
293	  Support for Galois/Counter Mode (GCM) and Galois Message
294	  Authentication Code (GMAC). Required for IPSec.
295
296config CRYPTO_CHACHA20POLY1305
297	tristate "ChaCha20-Poly1305 AEAD support"
298	select CRYPTO_CHACHA20
299	select CRYPTO_POLY1305
300	select CRYPTO_AEAD
301	select CRYPTO_MANAGER
302	help
303	  ChaCha20-Poly1305 AEAD support, RFC7539.
304
305	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
306	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
307	  IETF protocols.
308
309config CRYPTO_AEGIS128
310	tristate "AEGIS-128 AEAD algorithm"
311	select CRYPTO_AEAD
312	select CRYPTO_AES  # for AES S-box tables
313	help
314	 Support for the AEGIS-128 dedicated AEAD algorithm.
315
316config CRYPTO_AEGIS128_SIMD
317	bool "Support SIMD acceleration for AEGIS-128"
318	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
319	default y
320
321config CRYPTO_AEGIS128_AESNI_SSE2
322	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
323	depends on X86 && 64BIT
324	select CRYPTO_AEAD
325	select CRYPTO_SIMD
326	help
327	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
328
329config CRYPTO_SEQIV
330	tristate "Sequence Number IV Generator"
331	select CRYPTO_AEAD
332	select CRYPTO_SKCIPHER
333	select CRYPTO_NULL
334	select CRYPTO_RNG_DEFAULT
335	select CRYPTO_MANAGER
336	help
337	  This IV generator generates an IV based on a sequence number by
338	  xoring it with a salt.  This algorithm is mainly useful for CTR
339
340config CRYPTO_ECHAINIV
341	tristate "Encrypted Chain IV Generator"
342	select CRYPTO_AEAD
343	select CRYPTO_NULL
344	select CRYPTO_RNG_DEFAULT
345	select CRYPTO_MANAGER
346	help
347	  This IV generator generates an IV based on the encryption of
348	  a sequence number xored with a salt.  This is the default
349	  algorithm for CBC.
350
351comment "Block modes"
352
353config CRYPTO_CBC
354	tristate "CBC support"
355	select CRYPTO_SKCIPHER
356	select CRYPTO_MANAGER
357	help
358	  CBC: Cipher Block Chaining mode
359	  This block cipher algorithm is required for IPSec.
360
361config CRYPTO_CFB
362	tristate "CFB support"
363	select CRYPTO_SKCIPHER
364	select CRYPTO_MANAGER
365	help
366	  CFB: Cipher FeedBack mode
367	  This block cipher algorithm is required for TPM2 Cryptography.
368
369config CRYPTO_CTR
370	tristate "CTR support"
371	select CRYPTO_SKCIPHER
372	select CRYPTO_MANAGER
373	help
374	  CTR: Counter mode
375	  This block cipher algorithm is required for IPSec.
376
377config CRYPTO_CTS
378	tristate "CTS support"
379	select CRYPTO_SKCIPHER
380	select CRYPTO_MANAGER
381	help
382	  CTS: Cipher Text Stealing
383	  This is the Cipher Text Stealing mode as described by
384	  Section 8 of rfc2040 and referenced by rfc3962
385	  (rfc3962 includes errata information in its Appendix A) or
386	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
387	  This mode is required for Kerberos gss mechanism support
388	  for AES encryption.
389
390	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
391
392config CRYPTO_ECB
393	tristate "ECB support"
394	select CRYPTO_SKCIPHER
395	select CRYPTO_MANAGER
396	help
397	  ECB: Electronic CodeBook mode
398	  This is the simplest block cipher algorithm.  It simply encrypts
399	  the input block by block.
400
401config CRYPTO_LRW
402	tristate "LRW support"
403	select CRYPTO_SKCIPHER
404	select CRYPTO_MANAGER
405	select CRYPTO_GF128MUL
406	help
407	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
408	  narrow block cipher mode for dm-crypt.  Use it with cipher
409	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
410	  The first 128, 192 or 256 bits in the key are used for AES and the
411	  rest is used to tie each cipher block to its logical position.
412
413config CRYPTO_OFB
414	tristate "OFB support"
415	select CRYPTO_SKCIPHER
416	select CRYPTO_MANAGER
417	help
418	  OFB: the Output Feedback mode makes a block cipher into a synchronous
419	  stream cipher. It generates keystream blocks, which are then XORed
420	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
421	  ciphertext produces a flipped bit in the plaintext at the same
422	  location. This property allows many error correcting codes to function
423	  normally even when applied before encryption.
424
425config CRYPTO_PCBC
426	tristate "PCBC support"
427	select CRYPTO_SKCIPHER
428	select CRYPTO_MANAGER
429	help
430	  PCBC: Propagating Cipher Block Chaining mode
431	  This block cipher algorithm is required for RxRPC.
432
433config CRYPTO_XTS
434	tristate "XTS support"
435	select CRYPTO_SKCIPHER
436	select CRYPTO_MANAGER
437	select CRYPTO_ECB
438	help
439	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
440	  key size 256, 384 or 512 bits. This implementation currently
441	  can't handle a sectorsize which is not a multiple of 16 bytes.
442
443config CRYPTO_KEYWRAP
444	tristate "Key wrapping support"
445	select CRYPTO_SKCIPHER
446	select CRYPTO_MANAGER
447	help
448	  Support for key wrapping (NIST SP800-38F / RFC3394) without
449	  padding.
450
451config CRYPTO_NHPOLY1305
452	tristate
453	select CRYPTO_HASH
454	select CRYPTO_LIB_POLY1305_GENERIC
455
456config CRYPTO_NHPOLY1305_SSE2
457	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
458	depends on X86 && 64BIT
459	select CRYPTO_NHPOLY1305
460	help
461	  SSE2 optimized implementation of the hash function used by the
462	  Adiantum encryption mode.
463
464config CRYPTO_NHPOLY1305_AVX2
465	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
466	depends on X86 && 64BIT
467	select CRYPTO_NHPOLY1305
468	help
469	  AVX2 optimized implementation of the hash function used by the
470	  Adiantum encryption mode.
471
472config CRYPTO_ADIANTUM
473	tristate "Adiantum support"
474	select CRYPTO_CHACHA20
475	select CRYPTO_LIB_POLY1305_GENERIC
476	select CRYPTO_NHPOLY1305
477	select CRYPTO_MANAGER
478	help
479	  Adiantum is a tweakable, length-preserving encryption mode
480	  designed for fast and secure disk encryption, especially on
481	  CPUs without dedicated crypto instructions.  It encrypts
482	  each sector using the XChaCha12 stream cipher, two passes of
483	  an ε-almost-∆-universal hash function, and an invocation of
484	  the AES-256 block cipher on a single 16-byte block.  On CPUs
485	  without AES instructions, Adiantum is much faster than
486	  AES-XTS.
487
488	  Adiantum's security is provably reducible to that of its
489	  underlying stream and block ciphers, subject to a security
490	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
491	  mode, so it actually provides an even stronger notion of
492	  security than XTS, subject to the security bound.
493
494	  If unsure, say N.
495
496config CRYPTO_ESSIV
497	tristate "ESSIV support for block encryption"
498	select CRYPTO_AUTHENC
499	help
500	  Encrypted salt-sector initialization vector (ESSIV) is an IV
501	  generation method that is used in some cases by fscrypt and/or
502	  dm-crypt. It uses the hash of the block encryption key as the
503	  symmetric key for a block encryption pass applied to the input
504	  IV, making low entropy IV sources more suitable for block
505	  encryption.
506
507	  This driver implements a crypto API template that can be
508	  instantiated either as an skcipher or as an AEAD (depending on the
509	  type of the first template argument), and which defers encryption
510	  and decryption requests to the encapsulated cipher after applying
511	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
512	  that the keys are presented in the same format used by the authenc
513	  template, and that the IV appears at the end of the authenticated
514	  associated data (AAD) region (which is how dm-crypt uses it.)
515
516	  Note that the use of ESSIV is not recommended for new deployments,
517	  and so this only needs to be enabled when interoperability with
518	  existing encrypted volumes of filesystems is required, or when
519	  building for a particular system that requires it (e.g., when
520	  the SoC in question has accelerated CBC but not XTS, making CBC
521	  combined with ESSIV the only feasible mode for h/w accelerated
522	  block encryption)
523
524comment "Hash modes"
525
526config CRYPTO_CMAC
527	tristate "CMAC support"
528	select CRYPTO_HASH
529	select CRYPTO_MANAGER
530	help
531	  Cipher-based Message Authentication Code (CMAC) specified by
532	  The National Institute of Standards and Technology (NIST).
533
534	  https://tools.ietf.org/html/rfc4493
535	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
536
537config CRYPTO_HMAC
538	tristate "HMAC support"
539	select CRYPTO_HASH
540	select CRYPTO_MANAGER
541	help
542	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
543	  This is required for IPSec.
544
545config CRYPTO_XCBC
546	tristate "XCBC support"
547	select CRYPTO_HASH
548	select CRYPTO_MANAGER
549	help
550	  XCBC: Keyed-Hashing with encryption algorithm
551		https://www.ietf.org/rfc/rfc3566.txt
552		http://csrc.nist.gov/encryption/modes/proposedmodes/
553		 xcbc-mac/xcbc-mac-spec.pdf
554
555config CRYPTO_VMAC
556	tristate "VMAC support"
557	select CRYPTO_HASH
558	select CRYPTO_MANAGER
559	help
560	  VMAC is a message authentication algorithm designed for
561	  very high speed on 64-bit architectures.
562
563	  See also:
564	  <https://fastcrypto.org/vmac>
565
566comment "Digest"
567
568config CRYPTO_CRC32C
569	tristate "CRC32c CRC algorithm"
570	select CRYPTO_HASH
571	select CRC32
572	help
573	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
574	  by iSCSI for header and data digests and by others.
575	  See Castagnoli93.  Module will be crc32c.
576
577config CRYPTO_CRC32C_INTEL
578	tristate "CRC32c INTEL hardware acceleration"
579	depends on X86
580	select CRYPTO_HASH
581	help
582	  In Intel processor with SSE4.2 supported, the processor will
583	  support CRC32C implementation using hardware accelerated CRC32
584	  instruction. This option will create 'crc32c-intel' module,
585	  which will enable any routine to use the CRC32 instruction to
586	  gain performance compared with software implementation.
587	  Module will be crc32c-intel.
588
589config CRYPTO_CRC32C_VPMSUM
590	tristate "CRC32c CRC algorithm (powerpc64)"
591	depends on PPC64 && ALTIVEC
592	select CRYPTO_HASH
593	select CRC32
594	help
595	  CRC32c algorithm implemented using vector polynomial multiply-sum
596	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
597	  and newer processors for improved performance.
598
599
600config CRYPTO_CRC32C_SPARC64
601	tristate "CRC32c CRC algorithm (SPARC64)"
602	depends on SPARC64
603	select CRYPTO_HASH
604	select CRC32
605	help
606	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
607	  when available.
608
609config CRYPTO_CRC32
610	tristate "CRC32 CRC algorithm"
611	select CRYPTO_HASH
612	select CRC32
613	help
614	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
615	  Shash crypto api wrappers to crc32_le function.
616
617config CRYPTO_CRC32_PCLMUL
618	tristate "CRC32 PCLMULQDQ hardware acceleration"
619	depends on X86
620	select CRYPTO_HASH
621	select CRC32
622	help
623	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
624	  and PCLMULQDQ supported, the processor will support
625	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
626	  instruction. This option will create 'crc32-pclmul' module,
627	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
628	  and gain better performance as compared with the table implementation.
629
630config CRYPTO_CRC32_MIPS
631	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
632	depends on MIPS_CRC_SUPPORT
633	select CRYPTO_HASH
634	help
635	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
636	  instructions, when available.
637
638
639config CRYPTO_XXHASH
640	tristate "xxHash hash algorithm"
641	select CRYPTO_HASH
642	select XXHASH
643	help
644	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
645	  speeds close to RAM limits.
646
647config CRYPTO_BLAKE2B
648	tristate "BLAKE2b digest algorithm"
649	select CRYPTO_HASH
650	help
651	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
652	  optimized for 64bit platforms and can produce digests of any size
653	  between 1 to 64.  The keyed hash is also implemented.
654
655	  This module provides the following algorithms:
656
657	  - blake2b-160
658	  - blake2b-256
659	  - blake2b-384
660	  - blake2b-512
661
662	  See https://blake2.net for further information.
663
664config CRYPTO_BLAKE2S
665	tristate "BLAKE2s digest algorithm"
666	select CRYPTO_LIB_BLAKE2S_GENERIC
667	select CRYPTO_HASH
668	help
669	  Implementation of cryptographic hash function BLAKE2s
670	  optimized for 8-32bit platforms and can produce digests of any size
671	  between 1 to 32.  The keyed hash is also implemented.
672
673	  This module provides the following algorithms:
674
675	  - blake2s-128
676	  - blake2s-160
677	  - blake2s-224
678	  - blake2s-256
679
680	  See https://blake2.net for further information.
681
682config CRYPTO_BLAKE2S_X86
683	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
684	depends on X86 && 64BIT
685	select CRYPTO_LIB_BLAKE2S_GENERIC
686	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
687
688config CRYPTO_CRCT10DIF
689	tristate "CRCT10DIF algorithm"
690	select CRYPTO_HASH
691	help
692	  CRC T10 Data Integrity Field computation is being cast as
693	  a crypto transform.  This allows for faster crc t10 diff
694	  transforms to be used if they are available.
695
696config CRYPTO_CRCT10DIF_PCLMUL
697	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
698	depends on X86 && 64BIT && CRC_T10DIF
699	select CRYPTO_HASH
700	help
701	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
702	  CRC T10 DIF PCLMULQDQ computation can be hardware
703	  accelerated PCLMULQDQ instruction. This option will create
704	  'crct10dif-pclmul' module, which is faster when computing the
705	  crct10dif checksum as compared with the generic table implementation.
706
707config CRYPTO_CRCT10DIF_VPMSUM
708	tristate "CRC32T10DIF powerpc64 hardware acceleration"
709	depends on PPC64 && ALTIVEC && CRC_T10DIF
710	select CRYPTO_HASH
711	help
712	  CRC10T10DIF algorithm implemented using vector polynomial
713	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
714	  POWER8 and newer processors for improved performance.
715
716config CRYPTO_VPMSUM_TESTER
717	tristate "Powerpc64 vpmsum hardware acceleration tester"
718	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
719	help
720	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
721	  POWER8 vpmsum instructions.
722	  Unless you are testing these algorithms, you don't need this.
723
724config CRYPTO_GHASH
725	tristate "GHASH hash function"
726	select CRYPTO_GF128MUL
727	select CRYPTO_HASH
728	help
729	  GHASH is the hash function used in GCM (Galois/Counter Mode).
730	  It is not a general-purpose cryptographic hash function.
731
732config CRYPTO_POLY1305
733	tristate "Poly1305 authenticator algorithm"
734	select CRYPTO_HASH
735	select CRYPTO_LIB_POLY1305_GENERIC
736	help
737	  Poly1305 authenticator algorithm, RFC7539.
738
739	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
740	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
741	  in IETF protocols. This is the portable C implementation of Poly1305.
742
743config CRYPTO_POLY1305_X86_64
744	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
745	depends on X86 && 64BIT
746	select CRYPTO_LIB_POLY1305_GENERIC
747	select CRYPTO_ARCH_HAVE_LIB_POLY1305
748	help
749	  Poly1305 authenticator algorithm, RFC7539.
750
751	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
752	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
753	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
754	  instructions.
755
756config CRYPTO_POLY1305_MIPS
757	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
758	depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
759	select CRYPTO_ARCH_HAVE_LIB_POLY1305
760
761config CRYPTO_MD4
762	tristate "MD4 digest algorithm"
763	select CRYPTO_HASH
764	help
765	  MD4 message digest algorithm (RFC1320).
766
767config CRYPTO_MD5
768	tristate "MD5 digest algorithm"
769	select CRYPTO_HASH
770	help
771	  MD5 message digest algorithm (RFC1321).
772
773config CRYPTO_MD5_OCTEON
774	tristate "MD5 digest algorithm (OCTEON)"
775	depends on CPU_CAVIUM_OCTEON
776	select CRYPTO_MD5
777	select CRYPTO_HASH
778	help
779	  MD5 message digest algorithm (RFC1321) implemented
780	  using OCTEON crypto instructions, when available.
781
782config CRYPTO_MD5_PPC
783	tristate "MD5 digest algorithm (PPC)"
784	depends on PPC
785	select CRYPTO_HASH
786	help
787	  MD5 message digest algorithm (RFC1321) implemented
788	  in PPC assembler.
789
790config CRYPTO_MD5_SPARC64
791	tristate "MD5 digest algorithm (SPARC64)"
792	depends on SPARC64
793	select CRYPTO_MD5
794	select CRYPTO_HASH
795	help
796	  MD5 message digest algorithm (RFC1321) implemented
797	  using sparc64 crypto instructions, when available.
798
799config CRYPTO_MICHAEL_MIC
800	tristate "Michael MIC keyed digest algorithm"
801	select CRYPTO_HASH
802	help
803	  Michael MIC is used for message integrity protection in TKIP
804	  (IEEE 802.11i). This algorithm is required for TKIP, but it
805	  should not be used for other purposes because of the weakness
806	  of the algorithm.
807
808config CRYPTO_RMD128
809	tristate "RIPEMD-128 digest algorithm"
810	select CRYPTO_HASH
811	help
812	  RIPEMD-128 (ISO/IEC 10118-3:2004).
813
814	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
815	  be used as a secure replacement for RIPEMD. For other use cases,
816	  RIPEMD-160 should be used.
817
818	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
819	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
820
821config CRYPTO_RMD160
822	tristate "RIPEMD-160 digest algorithm"
823	select CRYPTO_HASH
824	help
825	  RIPEMD-160 (ISO/IEC 10118-3:2004).
826
827	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
828	  to be used as a secure replacement for the 128-bit hash functions
829	  MD4, MD5 and it's predecessor RIPEMD
830	  (not to be confused with RIPEMD-128).
831
832	  It's speed is comparable to SHA1 and there are no known attacks
833	  against RIPEMD-160.
834
835	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
836	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
837
838config CRYPTO_RMD256
839	tristate "RIPEMD-256 digest algorithm"
840	select CRYPTO_HASH
841	help
842	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
843	  256 bit hash. It is intended for applications that require
844	  longer hash-results, without needing a larger security level
845	  (than RIPEMD-128).
846
847	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
848	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
849
850config CRYPTO_RMD320
851	tristate "RIPEMD-320 digest algorithm"
852	select CRYPTO_HASH
853	help
854	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
855	  320 bit hash. It is intended for applications that require
856	  longer hash-results, without needing a larger security level
857	  (than RIPEMD-160).
858
859	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
860	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
861
862config CRYPTO_SHA1
863	tristate "SHA1 digest algorithm"
864	select CRYPTO_HASH
865	help
866	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
867
868config CRYPTO_SHA1_SSSE3
869	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
870	depends on X86 && 64BIT
871	select CRYPTO_SHA1
872	select CRYPTO_HASH
873	help
874	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
875	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
876	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
877	  when available.
878
879config CRYPTO_SHA256_SSSE3
880	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
881	depends on X86 && 64BIT
882	select CRYPTO_SHA256
883	select CRYPTO_HASH
884	help
885	  SHA-256 secure hash standard (DFIPS 180-2) implemented
886	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
887	  Extensions version 1 (AVX1), or Advanced Vector Extensions
888	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
889	  Instructions) when available.
890
891config CRYPTO_SHA512_SSSE3
892	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
893	depends on X86 && 64BIT
894	select CRYPTO_SHA512
895	select CRYPTO_HASH
896	help
897	  SHA-512 secure hash standard (DFIPS 180-2) implemented
898	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
899	  Extensions version 1 (AVX1), or Advanced Vector Extensions
900	  version 2 (AVX2) instructions, when available.
901
902config CRYPTO_SHA1_OCTEON
903	tristate "SHA1 digest algorithm (OCTEON)"
904	depends on CPU_CAVIUM_OCTEON
905	select CRYPTO_SHA1
906	select CRYPTO_HASH
907	help
908	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
909	  using OCTEON crypto instructions, when available.
910
911config CRYPTO_SHA1_SPARC64
912	tristate "SHA1 digest algorithm (SPARC64)"
913	depends on SPARC64
914	select CRYPTO_SHA1
915	select CRYPTO_HASH
916	help
917	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
918	  using sparc64 crypto instructions, when available.
919
920config CRYPTO_SHA1_PPC
921	tristate "SHA1 digest algorithm (powerpc)"
922	depends on PPC
923	help
924	  This is the powerpc hardware accelerated implementation of the
925	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
926
927config CRYPTO_SHA1_PPC_SPE
928	tristate "SHA1 digest algorithm (PPC SPE)"
929	depends on PPC && SPE
930	help
931	  SHA-1 secure hash standard (DFIPS 180-4) implemented
932	  using powerpc SPE SIMD instruction set.
933
934config CRYPTO_SHA256
935	tristate "SHA224 and SHA256 digest algorithm"
936	select CRYPTO_HASH
937	select CRYPTO_LIB_SHA256
938	help
939	  SHA256 secure hash standard (DFIPS 180-2).
940
941	  This version of SHA implements a 256 bit hash with 128 bits of
942	  security against collision attacks.
943
944	  This code also includes SHA-224, a 224 bit hash with 112 bits
945	  of security against collision attacks.
946
947config CRYPTO_SHA256_PPC_SPE
948	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
949	depends on PPC && SPE
950	select CRYPTO_SHA256
951	select CRYPTO_HASH
952	help
953	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
954	  implemented using powerpc SPE SIMD instruction set.
955
956config CRYPTO_SHA256_OCTEON
957	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
958	depends on CPU_CAVIUM_OCTEON
959	select CRYPTO_SHA256
960	select CRYPTO_HASH
961	help
962	  SHA-256 secure hash standard (DFIPS 180-2) implemented
963	  using OCTEON crypto instructions, when available.
964
965config CRYPTO_SHA256_SPARC64
966	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
967	depends on SPARC64
968	select CRYPTO_SHA256
969	select CRYPTO_HASH
970	help
971	  SHA-256 secure hash standard (DFIPS 180-2) implemented
972	  using sparc64 crypto instructions, when available.
973
974config CRYPTO_SHA512
975	tristate "SHA384 and SHA512 digest algorithms"
976	select CRYPTO_HASH
977	help
978	  SHA512 secure hash standard (DFIPS 180-2).
979
980	  This version of SHA implements a 512 bit hash with 256 bits of
981	  security against collision attacks.
982
983	  This code also includes SHA-384, a 384 bit hash with 192 bits
984	  of security against collision attacks.
985
986config CRYPTO_SHA512_OCTEON
987	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
988	depends on CPU_CAVIUM_OCTEON
989	select CRYPTO_SHA512
990	select CRYPTO_HASH
991	help
992	  SHA-512 secure hash standard (DFIPS 180-2) implemented
993	  using OCTEON crypto instructions, when available.
994
995config CRYPTO_SHA512_SPARC64
996	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
997	depends on SPARC64
998	select CRYPTO_SHA512
999	select CRYPTO_HASH
1000	help
1001	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1002	  using sparc64 crypto instructions, when available.
1003
1004config CRYPTO_SHA3
1005	tristate "SHA3 digest algorithm"
1006	select CRYPTO_HASH
1007	help
1008	  SHA-3 secure hash standard (DFIPS 202). It's based on
1009	  cryptographic sponge function family called Keccak.
1010
1011	  References:
1012	  http://keccak.noekeon.org/
1013
1014config CRYPTO_SM3
1015	tristate "SM3 digest algorithm"
1016	select CRYPTO_HASH
1017	help
1018	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1019	  It is part of the Chinese Commercial Cryptography suite.
1020
1021	  References:
1022	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1023	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1024
1025config CRYPTO_STREEBOG
1026	tristate "Streebog Hash Function"
1027	select CRYPTO_HASH
1028	help
1029	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1030	  cryptographic standard algorithms (called GOST algorithms).
1031	  This setting enables two hash algorithms with 256 and 512 bits output.
1032
1033	  References:
1034	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1035	  https://tools.ietf.org/html/rfc6986
1036
1037config CRYPTO_TGR192
1038	tristate "Tiger digest algorithms"
1039	select CRYPTO_HASH
1040	help
1041	  Tiger hash algorithm 192, 160 and 128-bit hashes
1042
1043	  Tiger is a hash function optimized for 64-bit processors while
1044	  still having decent performance on 32-bit processors.
1045	  Tiger was developed by Ross Anderson and Eli Biham.
1046
1047	  See also:
1048	  <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1049
1050config CRYPTO_WP512
1051	tristate "Whirlpool digest algorithms"
1052	select CRYPTO_HASH
1053	help
1054	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1055
1056	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1057	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1058
1059	  See also:
1060	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1061
1062config CRYPTO_GHASH_CLMUL_NI_INTEL
1063	tristate "GHASH hash function (CLMUL-NI accelerated)"
1064	depends on X86 && 64BIT
1065	select CRYPTO_CRYPTD
1066	help
1067	  This is the x86_64 CLMUL-NI accelerated implementation of
1068	  GHASH, the hash function used in GCM (Galois/Counter mode).
1069
1070comment "Ciphers"
1071
1072config CRYPTO_AES
1073	tristate "AES cipher algorithms"
1074	select CRYPTO_ALGAPI
1075	select CRYPTO_LIB_AES
1076	help
1077	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1078	  algorithm.
1079
1080	  Rijndael appears to be consistently a very good performer in
1081	  both hardware and software across a wide range of computing
1082	  environments regardless of its use in feedback or non-feedback
1083	  modes. Its key setup time is excellent, and its key agility is
1084	  good. Rijndael's very low memory requirements make it very well
1085	  suited for restricted-space environments, in which it also
1086	  demonstrates excellent performance. Rijndael's operations are
1087	  among the easiest to defend against power and timing attacks.
1088
1089	  The AES specifies three key sizes: 128, 192 and 256 bits
1090
1091	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1092
1093config CRYPTO_AES_TI
1094	tristate "Fixed time AES cipher"
1095	select CRYPTO_ALGAPI
1096	select CRYPTO_LIB_AES
1097	help
1098	  This is a generic implementation of AES that attempts to eliminate
1099	  data dependent latencies as much as possible without affecting
1100	  performance too much. It is intended for use by the generic CCM
1101	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1102	  solely on encryption (although decryption is supported as well, but
1103	  with a more dramatic performance hit)
1104
1105	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1106	  8 for decryption), this implementation only uses just two S-boxes of
1107	  256 bytes each, and attempts to eliminate data dependent latencies by
1108	  prefetching the entire table into the cache at the start of each
1109	  block. Interrupts are also disabled to avoid races where cachelines
1110	  are evicted when the CPU is interrupted to do something else.
1111
1112config CRYPTO_AES_NI_INTEL
1113	tristate "AES cipher algorithms (AES-NI)"
1114	depends on X86
1115	select CRYPTO_AEAD
1116	select CRYPTO_LIB_AES
1117	select CRYPTO_ALGAPI
1118	select CRYPTO_SKCIPHER
1119	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1120	select CRYPTO_SIMD
1121	help
1122	  Use Intel AES-NI instructions for AES algorithm.
1123
1124	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1125	  algorithm.
1126
1127	  Rijndael appears to be consistently a very good performer in
1128	  both hardware and software across a wide range of computing
1129	  environments regardless of its use in feedback or non-feedback
1130	  modes. Its key setup time is excellent, and its key agility is
1131	  good. Rijndael's very low memory requirements make it very well
1132	  suited for restricted-space environments, in which it also
1133	  demonstrates excellent performance. Rijndael's operations are
1134	  among the easiest to defend against power and timing attacks.
1135
1136	  The AES specifies three key sizes: 128, 192 and 256 bits
1137
1138	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1139
1140	  In addition to AES cipher algorithm support, the acceleration
1141	  for some popular block cipher mode is supported too, including
1142	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1143	  acceleration for CTR.
1144
1145config CRYPTO_AES_SPARC64
1146	tristate "AES cipher algorithms (SPARC64)"
1147	depends on SPARC64
1148	select CRYPTO_SKCIPHER
1149	help
1150	  Use SPARC64 crypto opcodes for AES algorithm.
1151
1152	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1153	  algorithm.
1154
1155	  Rijndael appears to be consistently a very good performer in
1156	  both hardware and software across a wide range of computing
1157	  environments regardless of its use in feedback or non-feedback
1158	  modes. Its key setup time is excellent, and its key agility is
1159	  good. Rijndael's very low memory requirements make it very well
1160	  suited for restricted-space environments, in which it also
1161	  demonstrates excellent performance. Rijndael's operations are
1162	  among the easiest to defend against power and timing attacks.
1163
1164	  The AES specifies three key sizes: 128, 192 and 256 bits
1165
1166	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1167
1168	  In addition to AES cipher algorithm support, the acceleration
1169	  for some popular block cipher mode is supported too, including
1170	  ECB and CBC.
1171
1172config CRYPTO_AES_PPC_SPE
1173	tristate "AES cipher algorithms (PPC SPE)"
1174	depends on PPC && SPE
1175	select CRYPTO_SKCIPHER
1176	help
1177	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1178	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1179	  This module should only be used for low power (router) devices
1180	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1181	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1182	  timining attacks. Nevertheless it might be not as secure as other
1183	  architecture specific assembler implementations that work on 1KB
1184	  tables or 256 bytes S-boxes.
1185
1186config CRYPTO_ANUBIS
1187	tristate "Anubis cipher algorithm"
1188	select CRYPTO_ALGAPI
1189	help
1190	  Anubis cipher algorithm.
1191
1192	  Anubis is a variable key length cipher which can use keys from
1193	  128 bits to 320 bits in length.  It was evaluated as a entrant
1194	  in the NESSIE competition.
1195
1196	  See also:
1197	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1198	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1199
1200config CRYPTO_ARC4
1201	tristate "ARC4 cipher algorithm"
1202	select CRYPTO_SKCIPHER
1203	select CRYPTO_LIB_ARC4
1204	help
1205	  ARC4 cipher algorithm.
1206
1207	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1208	  bits in length.  This algorithm is required for driver-based
1209	  WEP, but it should not be for other purposes because of the
1210	  weakness of the algorithm.
1211
1212config CRYPTO_BLOWFISH
1213	tristate "Blowfish cipher algorithm"
1214	select CRYPTO_ALGAPI
1215	select CRYPTO_BLOWFISH_COMMON
1216	help
1217	  Blowfish cipher algorithm, by Bruce Schneier.
1218
1219	  This is a variable key length cipher which can use keys from 32
1220	  bits to 448 bits in length.  It's fast, simple and specifically
1221	  designed for use on "large microprocessors".
1222
1223	  See also:
1224	  <https://www.schneier.com/blowfish.html>
1225
1226config CRYPTO_BLOWFISH_COMMON
1227	tristate
1228	help
1229	  Common parts of the Blowfish cipher algorithm shared by the
1230	  generic c and the assembler implementations.
1231
1232	  See also:
1233	  <https://www.schneier.com/blowfish.html>
1234
1235config CRYPTO_BLOWFISH_X86_64
1236	tristate "Blowfish cipher algorithm (x86_64)"
1237	depends on X86 && 64BIT
1238	select CRYPTO_SKCIPHER
1239	select CRYPTO_BLOWFISH_COMMON
1240	help
1241	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1242
1243	  This is a variable key length cipher which can use keys from 32
1244	  bits to 448 bits in length.  It's fast, simple and specifically
1245	  designed for use on "large microprocessors".
1246
1247	  See also:
1248	  <https://www.schneier.com/blowfish.html>
1249
1250config CRYPTO_CAMELLIA
1251	tristate "Camellia cipher algorithms"
1252	depends on CRYPTO
1253	select CRYPTO_ALGAPI
1254	help
1255	  Camellia cipher algorithms module.
1256
1257	  Camellia is a symmetric key block cipher developed jointly
1258	  at NTT and Mitsubishi Electric Corporation.
1259
1260	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1261
1262	  See also:
1263	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1264
1265config CRYPTO_CAMELLIA_X86_64
1266	tristate "Camellia cipher algorithm (x86_64)"
1267	depends on X86 && 64BIT
1268	depends on CRYPTO
1269	select CRYPTO_SKCIPHER
1270	select CRYPTO_GLUE_HELPER_X86
1271	help
1272	  Camellia cipher algorithm module (x86_64).
1273
1274	  Camellia is a symmetric key block cipher developed jointly
1275	  at NTT and Mitsubishi Electric Corporation.
1276
1277	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1278
1279	  See also:
1280	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1281
1282config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1283	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1284	depends on X86 && 64BIT
1285	depends on CRYPTO
1286	select CRYPTO_SKCIPHER
1287	select CRYPTO_CAMELLIA_X86_64
1288	select CRYPTO_GLUE_HELPER_X86
1289	select CRYPTO_SIMD
1290	select CRYPTO_XTS
1291	help
1292	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1293
1294	  Camellia is a symmetric key block cipher developed jointly
1295	  at NTT and Mitsubishi Electric Corporation.
1296
1297	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1298
1299	  See also:
1300	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1301
1302config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1303	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1304	depends on X86 && 64BIT
1305	depends on CRYPTO
1306	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1307	help
1308	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1309
1310	  Camellia is a symmetric key block cipher developed jointly
1311	  at NTT and Mitsubishi Electric Corporation.
1312
1313	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1314
1315	  See also:
1316	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1317
1318config CRYPTO_CAMELLIA_SPARC64
1319	tristate "Camellia cipher algorithm (SPARC64)"
1320	depends on SPARC64
1321	depends on CRYPTO
1322	select CRYPTO_ALGAPI
1323	select CRYPTO_SKCIPHER
1324	help
1325	  Camellia cipher algorithm module (SPARC64).
1326
1327	  Camellia is a symmetric key block cipher developed jointly
1328	  at NTT and Mitsubishi Electric Corporation.
1329
1330	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1331
1332	  See also:
1333	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1334
1335config CRYPTO_CAST_COMMON
1336	tristate
1337	help
1338	  Common parts of the CAST cipher algorithms shared by the
1339	  generic c and the assembler implementations.
1340
1341config CRYPTO_CAST5
1342	tristate "CAST5 (CAST-128) cipher algorithm"
1343	select CRYPTO_ALGAPI
1344	select CRYPTO_CAST_COMMON
1345	help
1346	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1347	  described in RFC2144.
1348
1349config CRYPTO_CAST5_AVX_X86_64
1350	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1351	depends on X86 && 64BIT
1352	select CRYPTO_SKCIPHER
1353	select CRYPTO_CAST5
1354	select CRYPTO_CAST_COMMON
1355	select CRYPTO_SIMD
1356	help
1357	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1358	  described in RFC2144.
1359
1360	  This module provides the Cast5 cipher algorithm that processes
1361	  sixteen blocks parallel using the AVX instruction set.
1362
1363config CRYPTO_CAST6
1364	tristate "CAST6 (CAST-256) cipher algorithm"
1365	select CRYPTO_ALGAPI
1366	select CRYPTO_CAST_COMMON
1367	help
1368	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1369	  described in RFC2612.
1370
1371config CRYPTO_CAST6_AVX_X86_64
1372	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1373	depends on X86 && 64BIT
1374	select CRYPTO_SKCIPHER
1375	select CRYPTO_CAST6
1376	select CRYPTO_CAST_COMMON
1377	select CRYPTO_GLUE_HELPER_X86
1378	select CRYPTO_SIMD
1379	select CRYPTO_XTS
1380	help
1381	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1382	  described in RFC2612.
1383
1384	  This module provides the Cast6 cipher algorithm that processes
1385	  eight blocks parallel using the AVX instruction set.
1386
1387config CRYPTO_DES
1388	tristate "DES and Triple DES EDE cipher algorithms"
1389	select CRYPTO_ALGAPI
1390	select CRYPTO_LIB_DES
1391	help
1392	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1393
1394config CRYPTO_DES_SPARC64
1395	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1396	depends on SPARC64
1397	select CRYPTO_ALGAPI
1398	select CRYPTO_LIB_DES
1399	select CRYPTO_SKCIPHER
1400	help
1401	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1402	  optimized using SPARC64 crypto opcodes.
1403
1404config CRYPTO_DES3_EDE_X86_64
1405	tristate "Triple DES EDE cipher algorithm (x86-64)"
1406	depends on X86 && 64BIT
1407	select CRYPTO_SKCIPHER
1408	select CRYPTO_LIB_DES
1409	help
1410	  Triple DES EDE (FIPS 46-3) algorithm.
1411
1412	  This module provides implementation of the Triple DES EDE cipher
1413	  algorithm that is optimized for x86-64 processors. Two versions of
1414	  algorithm are provided; regular processing one input block and
1415	  one that processes three blocks parallel.
1416
1417config CRYPTO_FCRYPT
1418	tristate "FCrypt cipher algorithm"
1419	select CRYPTO_ALGAPI
1420	select CRYPTO_SKCIPHER
1421	help
1422	  FCrypt algorithm used by RxRPC.
1423
1424config CRYPTO_KHAZAD
1425	tristate "Khazad cipher algorithm"
1426	select CRYPTO_ALGAPI
1427	help
1428	  Khazad cipher algorithm.
1429
1430	  Khazad was a finalist in the initial NESSIE competition.  It is
1431	  an algorithm optimized for 64-bit processors with good performance
1432	  on 32-bit processors.  Khazad uses an 128 bit key size.
1433
1434	  See also:
1435	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1436
1437config CRYPTO_SALSA20
1438	tristate "Salsa20 stream cipher algorithm"
1439	select CRYPTO_SKCIPHER
1440	help
1441	  Salsa20 stream cipher algorithm.
1442
1443	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1444	  Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/>
1445
1446	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1447	  Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html>
1448
1449config CRYPTO_CHACHA20
1450	tristate "ChaCha stream cipher algorithms"
1451	select CRYPTO_LIB_CHACHA_GENERIC
1452	select CRYPTO_SKCIPHER
1453	help
1454	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1455
1456	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1457	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1458	  This is the portable C implementation of ChaCha20.  See also:
1459	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1460
1461	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1462	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1463	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1464	  while provably retaining ChaCha20's security.  See also:
1465	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1466
1467	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1468	  reduced security margin but increased performance.  It can be needed
1469	  in some performance-sensitive scenarios.
1470
1471config CRYPTO_CHACHA20_X86_64
1472	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1473	depends on X86 && 64BIT
1474	select CRYPTO_SKCIPHER
1475	select CRYPTO_LIB_CHACHA_GENERIC
1476	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1477	help
1478	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1479	  XChaCha20, and XChaCha12 stream ciphers.
1480
1481config CRYPTO_CHACHA_MIPS
1482	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1483	depends on CPU_MIPS32_R2
1484	select CRYPTO_SKCIPHER
1485	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1486
1487config CRYPTO_SEED
1488	tristate "SEED cipher algorithm"
1489	select CRYPTO_ALGAPI
1490	help
1491	  SEED cipher algorithm (RFC4269).
1492
1493	  SEED is a 128-bit symmetric key block cipher that has been
1494	  developed by KISA (Korea Information Security Agency) as a
1495	  national standard encryption algorithm of the Republic of Korea.
1496	  It is a 16 round block cipher with the key size of 128 bit.
1497
1498	  See also:
1499	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1500
1501config CRYPTO_SERPENT
1502	tristate "Serpent cipher algorithm"
1503	select CRYPTO_ALGAPI
1504	help
1505	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1506
1507	  Keys are allowed to be from 0 to 256 bits in length, in steps
1508	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1509	  variant of Serpent for compatibility with old kerneli.org code.
1510
1511	  See also:
1512	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1513
1514config CRYPTO_SERPENT_SSE2_X86_64
1515	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1516	depends on X86 && 64BIT
1517	select CRYPTO_SKCIPHER
1518	select CRYPTO_GLUE_HELPER_X86
1519	select CRYPTO_SERPENT
1520	select CRYPTO_SIMD
1521	help
1522	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1523
1524	  Keys are allowed to be from 0 to 256 bits in length, in steps
1525	  of 8 bits.
1526
1527	  This module provides Serpent cipher algorithm that processes eight
1528	  blocks parallel using SSE2 instruction set.
1529
1530	  See also:
1531	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1532
1533config CRYPTO_SERPENT_SSE2_586
1534	tristate "Serpent cipher algorithm (i586/SSE2)"
1535	depends on X86 && !64BIT
1536	select CRYPTO_SKCIPHER
1537	select CRYPTO_GLUE_HELPER_X86
1538	select CRYPTO_SERPENT
1539	select CRYPTO_SIMD
1540	help
1541	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1542
1543	  Keys are allowed to be from 0 to 256 bits in length, in steps
1544	  of 8 bits.
1545
1546	  This module provides Serpent cipher algorithm that processes four
1547	  blocks parallel using SSE2 instruction set.
1548
1549	  See also:
1550	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1551
1552config CRYPTO_SERPENT_AVX_X86_64
1553	tristate "Serpent cipher algorithm (x86_64/AVX)"
1554	depends on X86 && 64BIT
1555	select CRYPTO_SKCIPHER
1556	select CRYPTO_GLUE_HELPER_X86
1557	select CRYPTO_SERPENT
1558	select CRYPTO_SIMD
1559	select CRYPTO_XTS
1560	help
1561	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1562
1563	  Keys are allowed to be from 0 to 256 bits in length, in steps
1564	  of 8 bits.
1565
1566	  This module provides the Serpent cipher algorithm that processes
1567	  eight blocks parallel using the AVX instruction set.
1568
1569	  See also:
1570	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1571
1572config CRYPTO_SERPENT_AVX2_X86_64
1573	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1574	depends on X86 && 64BIT
1575	select CRYPTO_SERPENT_AVX_X86_64
1576	help
1577	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1578
1579	  Keys are allowed to be from 0 to 256 bits in length, in steps
1580	  of 8 bits.
1581
1582	  This module provides Serpent cipher algorithm that processes 16
1583	  blocks parallel using AVX2 instruction set.
1584
1585	  See also:
1586	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1587
1588config CRYPTO_SM4
1589	tristate "SM4 cipher algorithm"
1590	select CRYPTO_ALGAPI
1591	help
1592	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1593
1594	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1595	  Organization of State Commercial Administration of China (OSCCA)
1596	  as an authorized cryptographic algorithms for the use within China.
1597
1598	  SMS4 was originally created for use in protecting wireless
1599	  networks, and is mandated in the Chinese National Standard for
1600	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1601	  (GB.15629.11-2003).
1602
1603	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1604	  standardized through TC 260 of the Standardization Administration
1605	  of the People's Republic of China (SAC).
1606
1607	  The input, output, and key of SMS4 are each 128 bits.
1608
1609	  See also: <https://eprint.iacr.org/2008/329.pdf>
1610
1611	  If unsure, say N.
1612
1613config CRYPTO_TEA
1614	tristate "TEA, XTEA and XETA cipher algorithms"
1615	select CRYPTO_ALGAPI
1616	help
1617	  TEA cipher algorithm.
1618
1619	  Tiny Encryption Algorithm is a simple cipher that uses
1620	  many rounds for security.  It is very fast and uses
1621	  little memory.
1622
1623	  Xtendend Tiny Encryption Algorithm is a modification to
1624	  the TEA algorithm to address a potential key weakness
1625	  in the TEA algorithm.
1626
1627	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1628	  of the XTEA algorithm for compatibility purposes.
1629
1630config CRYPTO_TWOFISH
1631	tristate "Twofish cipher algorithm"
1632	select CRYPTO_ALGAPI
1633	select CRYPTO_TWOFISH_COMMON
1634	help
1635	  Twofish cipher algorithm.
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  See also:
1643	  <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_COMMON
1646	tristate
1647	help
1648	  Common parts of the Twofish cipher algorithm shared by the
1649	  generic c and the assembler implementations.
1650
1651config CRYPTO_TWOFISH_586
1652	tristate "Twofish cipher algorithms (i586)"
1653	depends on (X86 || UML_X86) && !64BIT
1654	select CRYPTO_ALGAPI
1655	select CRYPTO_TWOFISH_COMMON
1656	help
1657	  Twofish cipher algorithm.
1658
1659	  Twofish was submitted as an AES (Advanced Encryption Standard)
1660	  candidate cipher by researchers at CounterPane Systems.  It is a
1661	  16 round block cipher supporting key sizes of 128, 192, and 256
1662	  bits.
1663
1664	  See also:
1665	  <https://www.schneier.com/twofish.html>
1666
1667config CRYPTO_TWOFISH_X86_64
1668	tristate "Twofish cipher algorithm (x86_64)"
1669	depends on (X86 || UML_X86) && 64BIT
1670	select CRYPTO_ALGAPI
1671	select CRYPTO_TWOFISH_COMMON
1672	help
1673	  Twofish cipher algorithm (x86_64).
1674
1675	  Twofish was submitted as an AES (Advanced Encryption Standard)
1676	  candidate cipher by researchers at CounterPane Systems.  It is a
1677	  16 round block cipher supporting key sizes of 128, 192, and 256
1678	  bits.
1679
1680	  See also:
1681	  <https://www.schneier.com/twofish.html>
1682
1683config CRYPTO_TWOFISH_X86_64_3WAY
1684	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1685	depends on X86 && 64BIT
1686	select CRYPTO_SKCIPHER
1687	select CRYPTO_TWOFISH_COMMON
1688	select CRYPTO_TWOFISH_X86_64
1689	select CRYPTO_GLUE_HELPER_X86
1690	help
1691	  Twofish cipher algorithm (x86_64, 3-way parallel).
1692
1693	  Twofish was submitted as an AES (Advanced Encryption Standard)
1694	  candidate cipher by researchers at CounterPane Systems.  It is a
1695	  16 round block cipher supporting key sizes of 128, 192, and 256
1696	  bits.
1697
1698	  This module provides Twofish cipher algorithm that processes three
1699	  blocks parallel, utilizing resources of out-of-order CPUs better.
1700
1701	  See also:
1702	  <https://www.schneier.com/twofish.html>
1703
1704config CRYPTO_TWOFISH_AVX_X86_64
1705	tristate "Twofish cipher algorithm (x86_64/AVX)"
1706	depends on X86 && 64BIT
1707	select CRYPTO_SKCIPHER
1708	select CRYPTO_GLUE_HELPER_X86
1709	select CRYPTO_SIMD
1710	select CRYPTO_TWOFISH_COMMON
1711	select CRYPTO_TWOFISH_X86_64
1712	select CRYPTO_TWOFISH_X86_64_3WAY
1713	help
1714	  Twofish cipher algorithm (x86_64/AVX).
1715
1716	  Twofish was submitted as an AES (Advanced Encryption Standard)
1717	  candidate cipher by researchers at CounterPane Systems.  It is a
1718	  16 round block cipher supporting key sizes of 128, 192, and 256
1719	  bits.
1720
1721	  This module provides the Twofish cipher algorithm that processes
1722	  eight blocks parallel using the AVX Instruction Set.
1723
1724	  See also:
1725	  <https://www.schneier.com/twofish.html>
1726
1727comment "Compression"
1728
1729config CRYPTO_DEFLATE
1730	tristate "Deflate compression algorithm"
1731	select CRYPTO_ALGAPI
1732	select CRYPTO_ACOMP2
1733	select ZLIB_INFLATE
1734	select ZLIB_DEFLATE
1735	help
1736	  This is the Deflate algorithm (RFC1951), specified for use in
1737	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1738
1739	  You will most probably want this if using IPSec.
1740
1741config CRYPTO_LZO
1742	tristate "LZO compression algorithm"
1743	select CRYPTO_ALGAPI
1744	select CRYPTO_ACOMP2
1745	select LZO_COMPRESS
1746	select LZO_DECOMPRESS
1747	help
1748	  This is the LZO algorithm.
1749
1750config CRYPTO_842
1751	tristate "842 compression algorithm"
1752	select CRYPTO_ALGAPI
1753	select CRYPTO_ACOMP2
1754	select 842_COMPRESS
1755	select 842_DECOMPRESS
1756	help
1757	  This is the 842 algorithm.
1758
1759config CRYPTO_LZ4
1760	tristate "LZ4 compression algorithm"
1761	select CRYPTO_ALGAPI
1762	select CRYPTO_ACOMP2
1763	select LZ4_COMPRESS
1764	select LZ4_DECOMPRESS
1765	help
1766	  This is the LZ4 algorithm.
1767
1768config CRYPTO_LZ4HC
1769	tristate "LZ4HC compression algorithm"
1770	select CRYPTO_ALGAPI
1771	select CRYPTO_ACOMP2
1772	select LZ4HC_COMPRESS
1773	select LZ4_DECOMPRESS
1774	help
1775	  This is the LZ4 high compression mode algorithm.
1776
1777config CRYPTO_ZSTD
1778	tristate "Zstd compression algorithm"
1779	select CRYPTO_ALGAPI
1780	select CRYPTO_ACOMP2
1781	select ZSTD_COMPRESS
1782	select ZSTD_DECOMPRESS
1783	help
1784	  This is the zstd algorithm.
1785
1786comment "Random Number Generation"
1787
1788config CRYPTO_ANSI_CPRNG
1789	tristate "Pseudo Random Number Generation for Cryptographic modules"
1790	select CRYPTO_AES
1791	select CRYPTO_RNG
1792	help
1793	  This option enables the generic pseudo random number generator
1794	  for cryptographic modules.  Uses the Algorithm specified in
1795	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1796	  CRYPTO_FIPS is selected
1797
1798menuconfig CRYPTO_DRBG_MENU
1799	tristate "NIST SP800-90A DRBG"
1800	help
1801	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1802	  more of the DRBG types must be selected.
1803
1804if CRYPTO_DRBG_MENU
1805
1806config CRYPTO_DRBG_HMAC
1807	bool
1808	default y
1809	select CRYPTO_HMAC
1810	select CRYPTO_SHA256
1811
1812config CRYPTO_DRBG_HASH
1813	bool "Enable Hash DRBG"
1814	select CRYPTO_SHA256
1815	help
1816	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1817
1818config CRYPTO_DRBG_CTR
1819	bool "Enable CTR DRBG"
1820	select CRYPTO_AES
1821	select CRYPTO_CTR
1822	help
1823	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1824
1825config CRYPTO_DRBG
1826	tristate
1827	default CRYPTO_DRBG_MENU
1828	select CRYPTO_RNG
1829	select CRYPTO_JITTERENTROPY
1830
1831endif	# if CRYPTO_DRBG_MENU
1832
1833config CRYPTO_JITTERENTROPY
1834	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1835	select CRYPTO_RNG
1836	help
1837	  The Jitterentropy RNG is a noise that is intended
1838	  to provide seed to another RNG. The RNG does not
1839	  perform any cryptographic whitening of the generated
1840	  random numbers. This Jitterentropy RNG registers with
1841	  the kernel crypto API and can be used by any caller.
1842
1843config CRYPTO_USER_API
1844	tristate
1845
1846config CRYPTO_USER_API_HASH
1847	tristate "User-space interface for hash algorithms"
1848	depends on NET
1849	select CRYPTO_HASH
1850	select CRYPTO_USER_API
1851	help
1852	  This option enables the user-spaces interface for hash
1853	  algorithms.
1854
1855config CRYPTO_USER_API_SKCIPHER
1856	tristate "User-space interface for symmetric key cipher algorithms"
1857	depends on NET
1858	select CRYPTO_SKCIPHER
1859	select CRYPTO_USER_API
1860	help
1861	  This option enables the user-spaces interface for symmetric
1862	  key cipher algorithms.
1863
1864config CRYPTO_USER_API_RNG
1865	tristate "User-space interface for random number generator algorithms"
1866	depends on NET
1867	select CRYPTO_RNG
1868	select CRYPTO_USER_API
1869	help
1870	  This option enables the user-spaces interface for random
1871	  number generator algorithms.
1872
1873config CRYPTO_USER_API_AEAD
1874	tristate "User-space interface for AEAD cipher algorithms"
1875	depends on NET
1876	select CRYPTO_AEAD
1877	select CRYPTO_SKCIPHER
1878	select CRYPTO_NULL
1879	select CRYPTO_USER_API
1880	help
1881	  This option enables the user-spaces interface for AEAD
1882	  cipher algorithms.
1883
1884config CRYPTO_STATS
1885	bool "Crypto usage statistics for User-space"
1886	depends on CRYPTO_USER
1887	help
1888	  This option enables the gathering of crypto stats.
1889	  This will collect:
1890	  - encrypt/decrypt size and numbers of symmeric operations
1891	  - compress/decompress size and numbers of compress operations
1892	  - size and numbers of hash operations
1893	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1894	  - generate/seed numbers for rng operations
1895
1896config CRYPTO_HASH_INFO
1897	bool
1898
1899source "lib/crypto/Kconfig"
1900source "drivers/crypto/Kconfig"
1901source "crypto/asymmetric_keys/Kconfig"
1902source "certs/Kconfig"
1903
1904endif	# if CRYPTO
1905