1 /** 2 * ldm - Support for Windows Logical Disk Manager (Dynamic Disks) 3 * 4 * Copyright (C) 2001,2002 Richard Russon <ldm@flatcap.org> 5 * Copyright (c) 2001-2012 Anton Altaparmakov 6 * Copyright (C) 2001,2002 Jakob Kemi <jakob.kemi@telia.com> 7 * 8 * Documentation is available at http://www.linux-ntfs.org/doku.php?id=downloads 9 * 10 * This program is free software; you can redistribute it and/or modify it under 11 * the terms of the GNU General Public License as published by the Free Software 12 * Foundation; either version 2 of the License, or (at your option) any later 13 * version. 14 * 15 * This program is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 17 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 18 * details. 19 * 20 * You should have received a copy of the GNU General Public License along with 21 * this program (in the main directory of the source in the file COPYING); if 22 * not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, 23 * Boston, MA 02111-1307 USA 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/pagemap.h> 28 #include <linux/stringify.h> 29 #include <linux/kernel.h> 30 #include <linux/uuid.h> 31 32 #include "ldm.h" 33 #include "check.h" 34 #include "msdos.h" 35 36 /** 37 * ldm_debug/info/error/crit - Output an error message 38 * @f: A printf format string containing the message 39 * @...: Variables to substitute into @f 40 * 41 * ldm_debug() writes a DEBUG level message to the syslog but only if the 42 * driver was compiled with debug enabled. Otherwise, the call turns into a NOP. 43 */ 44 #ifndef CONFIG_LDM_DEBUG 45 #define ldm_debug(...) do {} while (0) 46 #else 47 #define ldm_debug(f, a...) _ldm_printk (KERN_DEBUG, __func__, f, ##a) 48 #endif 49 50 #define ldm_crit(f, a...) _ldm_printk (KERN_CRIT, __func__, f, ##a) 51 #define ldm_error(f, a...) _ldm_printk (KERN_ERR, __func__, f, ##a) 52 #define ldm_info(f, a...) _ldm_printk (KERN_INFO, __func__, f, ##a) 53 54 static __printf(3, 4) 55 void _ldm_printk(const char *level, const char *function, const char *fmt, ...) 56 { 57 struct va_format vaf; 58 va_list args; 59 60 va_start (args, fmt); 61 62 vaf.fmt = fmt; 63 vaf.va = &args; 64 65 printk("%s%s(): %pV\n", level, function, &vaf); 66 67 va_end(args); 68 } 69 70 /** 71 * ldm_parse_privhead - Read the LDM Database PRIVHEAD structure 72 * @data: Raw database PRIVHEAD structure loaded from the device 73 * @ph: In-memory privhead structure in which to return parsed information 74 * 75 * This parses the LDM database PRIVHEAD structure supplied in @data and 76 * sets up the in-memory privhead structure @ph with the obtained information. 77 * 78 * Return: 'true' @ph contains the PRIVHEAD data 79 * 'false' @ph contents are undefined 80 */ 81 static bool ldm_parse_privhead(const u8 *data, struct privhead *ph) 82 { 83 bool is_vista = false; 84 85 BUG_ON(!data || !ph); 86 if (MAGIC_PRIVHEAD != get_unaligned_be64(data)) { 87 ldm_error("Cannot find PRIVHEAD structure. LDM database is" 88 " corrupt. Aborting."); 89 return false; 90 } 91 ph->ver_major = get_unaligned_be16(data + 0x000C); 92 ph->ver_minor = get_unaligned_be16(data + 0x000E); 93 ph->logical_disk_start = get_unaligned_be64(data + 0x011B); 94 ph->logical_disk_size = get_unaligned_be64(data + 0x0123); 95 ph->config_start = get_unaligned_be64(data + 0x012B); 96 ph->config_size = get_unaligned_be64(data + 0x0133); 97 /* Version 2.11 is Win2k/XP and version 2.12 is Vista. */ 98 if (ph->ver_major == 2 && ph->ver_minor == 12) 99 is_vista = true; 100 if (!is_vista && (ph->ver_major != 2 || ph->ver_minor != 11)) { 101 ldm_error("Expected PRIVHEAD version 2.11 or 2.12, got %d.%d." 102 " Aborting.", ph->ver_major, ph->ver_minor); 103 return false; 104 } 105 ldm_debug("PRIVHEAD version %d.%d (Windows %s).", ph->ver_major, 106 ph->ver_minor, is_vista ? "Vista" : "2000/XP"); 107 if (ph->config_size != LDM_DB_SIZE) { /* 1 MiB in sectors. */ 108 /* Warn the user and continue, carefully. */ 109 ldm_info("Database is normally %u bytes, it claims to " 110 "be %llu bytes.", LDM_DB_SIZE, 111 (unsigned long long)ph->config_size); 112 } 113 if ((ph->logical_disk_size == 0) || (ph->logical_disk_start + 114 ph->logical_disk_size > ph->config_start)) { 115 ldm_error("PRIVHEAD disk size doesn't match real disk size"); 116 return false; 117 } 118 if (uuid_parse(data + 0x0030, &ph->disk_id)) { 119 ldm_error("PRIVHEAD contains an invalid GUID."); 120 return false; 121 } 122 ldm_debug("Parsed PRIVHEAD successfully."); 123 return true; 124 } 125 126 /** 127 * ldm_parse_tocblock - Read the LDM Database TOCBLOCK structure 128 * @data: Raw database TOCBLOCK structure loaded from the device 129 * @toc: In-memory toc structure in which to return parsed information 130 * 131 * This parses the LDM Database TOCBLOCK (table of contents) structure supplied 132 * in @data and sets up the in-memory tocblock structure @toc with the obtained 133 * information. 134 * 135 * N.B. The *_start and *_size values returned in @toc are not range-checked. 136 * 137 * Return: 'true' @toc contains the TOCBLOCK data 138 * 'false' @toc contents are undefined 139 */ 140 static bool ldm_parse_tocblock (const u8 *data, struct tocblock *toc) 141 { 142 BUG_ON (!data || !toc); 143 144 if (MAGIC_TOCBLOCK != get_unaligned_be64(data)) { 145 ldm_crit ("Cannot find TOCBLOCK, database may be corrupt."); 146 return false; 147 } 148 strncpy (toc->bitmap1_name, data + 0x24, sizeof (toc->bitmap1_name)); 149 toc->bitmap1_name[sizeof (toc->bitmap1_name) - 1] = 0; 150 toc->bitmap1_start = get_unaligned_be64(data + 0x2E); 151 toc->bitmap1_size = get_unaligned_be64(data + 0x36); 152 153 if (strncmp (toc->bitmap1_name, TOC_BITMAP1, 154 sizeof (toc->bitmap1_name)) != 0) { 155 ldm_crit ("TOCBLOCK's first bitmap is '%s', should be '%s'.", 156 TOC_BITMAP1, toc->bitmap1_name); 157 return false; 158 } 159 strncpy (toc->bitmap2_name, data + 0x46, sizeof (toc->bitmap2_name)); 160 toc->bitmap2_name[sizeof (toc->bitmap2_name) - 1] = 0; 161 toc->bitmap2_start = get_unaligned_be64(data + 0x50); 162 toc->bitmap2_size = get_unaligned_be64(data + 0x58); 163 if (strncmp (toc->bitmap2_name, TOC_BITMAP2, 164 sizeof (toc->bitmap2_name)) != 0) { 165 ldm_crit ("TOCBLOCK's second bitmap is '%s', should be '%s'.", 166 TOC_BITMAP2, toc->bitmap2_name); 167 return false; 168 } 169 ldm_debug ("Parsed TOCBLOCK successfully."); 170 return true; 171 } 172 173 /** 174 * ldm_parse_vmdb - Read the LDM Database VMDB structure 175 * @data: Raw database VMDB structure loaded from the device 176 * @vm: In-memory vmdb structure in which to return parsed information 177 * 178 * This parses the LDM Database VMDB structure supplied in @data and sets up 179 * the in-memory vmdb structure @vm with the obtained information. 180 * 181 * N.B. The *_start, *_size and *_seq values will be range-checked later. 182 * 183 * Return: 'true' @vm contains VMDB info 184 * 'false' @vm contents are undefined 185 */ 186 static bool ldm_parse_vmdb (const u8 *data, struct vmdb *vm) 187 { 188 BUG_ON (!data || !vm); 189 190 if (MAGIC_VMDB != get_unaligned_be32(data)) { 191 ldm_crit ("Cannot find the VMDB, database may be corrupt."); 192 return false; 193 } 194 195 vm->ver_major = get_unaligned_be16(data + 0x12); 196 vm->ver_minor = get_unaligned_be16(data + 0x14); 197 if ((vm->ver_major != 4) || (vm->ver_minor != 10)) { 198 ldm_error ("Expected VMDB version %d.%d, got %d.%d. " 199 "Aborting.", 4, 10, vm->ver_major, vm->ver_minor); 200 return false; 201 } 202 203 vm->vblk_size = get_unaligned_be32(data + 0x08); 204 if (vm->vblk_size == 0) { 205 ldm_error ("Illegal VBLK size"); 206 return false; 207 } 208 209 vm->vblk_offset = get_unaligned_be32(data + 0x0C); 210 vm->last_vblk_seq = get_unaligned_be32(data + 0x04); 211 212 ldm_debug ("Parsed VMDB successfully."); 213 return true; 214 } 215 216 /** 217 * ldm_compare_privheads - Compare two privhead objects 218 * @ph1: First privhead 219 * @ph2: Second privhead 220 * 221 * This compares the two privhead structures @ph1 and @ph2. 222 * 223 * Return: 'true' Identical 224 * 'false' Different 225 */ 226 static bool ldm_compare_privheads (const struct privhead *ph1, 227 const struct privhead *ph2) 228 { 229 BUG_ON (!ph1 || !ph2); 230 231 return ((ph1->ver_major == ph2->ver_major) && 232 (ph1->ver_minor == ph2->ver_minor) && 233 (ph1->logical_disk_start == ph2->logical_disk_start) && 234 (ph1->logical_disk_size == ph2->logical_disk_size) && 235 (ph1->config_start == ph2->config_start) && 236 (ph1->config_size == ph2->config_size) && 237 uuid_equal(&ph1->disk_id, &ph2->disk_id)); 238 } 239 240 /** 241 * ldm_compare_tocblocks - Compare two tocblock objects 242 * @toc1: First toc 243 * @toc2: Second toc 244 * 245 * This compares the two tocblock structures @toc1 and @toc2. 246 * 247 * Return: 'true' Identical 248 * 'false' Different 249 */ 250 static bool ldm_compare_tocblocks (const struct tocblock *toc1, 251 const struct tocblock *toc2) 252 { 253 BUG_ON (!toc1 || !toc2); 254 255 return ((toc1->bitmap1_start == toc2->bitmap1_start) && 256 (toc1->bitmap1_size == toc2->bitmap1_size) && 257 (toc1->bitmap2_start == toc2->bitmap2_start) && 258 (toc1->bitmap2_size == toc2->bitmap2_size) && 259 !strncmp (toc1->bitmap1_name, toc2->bitmap1_name, 260 sizeof (toc1->bitmap1_name)) && 261 !strncmp (toc1->bitmap2_name, toc2->bitmap2_name, 262 sizeof (toc1->bitmap2_name))); 263 } 264 265 /** 266 * ldm_validate_privheads - Compare the primary privhead with its backups 267 * @state: Partition check state including device holding the LDM Database 268 * @ph1: Memory struct to fill with ph contents 269 * 270 * Read and compare all three privheads from disk. 271 * 272 * The privheads on disk show the size and location of the main disk area and 273 * the configuration area (the database). The values are range-checked against 274 * @hd, which contains the real size of the disk. 275 * 276 * Return: 'true' Success 277 * 'false' Error 278 */ 279 static bool ldm_validate_privheads(struct parsed_partitions *state, 280 struct privhead *ph1) 281 { 282 static const int off[3] = { OFF_PRIV1, OFF_PRIV2, OFF_PRIV3 }; 283 struct privhead *ph[3] = { ph1 }; 284 Sector sect; 285 u8 *data; 286 bool result = false; 287 long num_sects; 288 int i; 289 290 BUG_ON (!state || !ph1); 291 292 ph[1] = kmalloc (sizeof (*ph[1]), GFP_KERNEL); 293 ph[2] = kmalloc (sizeof (*ph[2]), GFP_KERNEL); 294 if (!ph[1] || !ph[2]) { 295 ldm_crit ("Out of memory."); 296 goto out; 297 } 298 299 /* off[1 & 2] are relative to ph[0]->config_start */ 300 ph[0]->config_start = 0; 301 302 /* Read and parse privheads */ 303 for (i = 0; i < 3; i++) { 304 data = read_part_sector(state, ph[0]->config_start + off[i], 305 §); 306 if (!data) { 307 ldm_crit ("Disk read failed."); 308 goto out; 309 } 310 result = ldm_parse_privhead (data, ph[i]); 311 put_dev_sector (sect); 312 if (!result) { 313 ldm_error ("Cannot find PRIVHEAD %d.", i+1); /* Log again */ 314 if (i < 2) 315 goto out; /* Already logged */ 316 else 317 break; /* FIXME ignore for now, 3rd PH can fail on odd-sized disks */ 318 } 319 } 320 321 num_sects = state->bdev->bd_inode->i_size >> 9; 322 323 if ((ph[0]->config_start > num_sects) || 324 ((ph[0]->config_start + ph[0]->config_size) > num_sects)) { 325 ldm_crit ("Database extends beyond the end of the disk."); 326 goto out; 327 } 328 329 if ((ph[0]->logical_disk_start > ph[0]->config_start) || 330 ((ph[0]->logical_disk_start + ph[0]->logical_disk_size) 331 > ph[0]->config_start)) { 332 ldm_crit ("Disk and database overlap."); 333 goto out; 334 } 335 336 if (!ldm_compare_privheads (ph[0], ph[1])) { 337 ldm_crit ("Primary and backup PRIVHEADs don't match."); 338 goto out; 339 } 340 /* FIXME ignore this for now 341 if (!ldm_compare_privheads (ph[0], ph[2])) { 342 ldm_crit ("Primary and backup PRIVHEADs don't match."); 343 goto out; 344 }*/ 345 ldm_debug ("Validated PRIVHEADs successfully."); 346 result = true; 347 out: 348 kfree (ph[1]); 349 kfree (ph[2]); 350 return result; 351 } 352 353 /** 354 * ldm_validate_tocblocks - Validate the table of contents and its backups 355 * @state: Partition check state including device holding the LDM Database 356 * @base: Offset, into @state->bdev, of the database 357 * @ldb: Cache of the database structures 358 * 359 * Find and compare the four tables of contents of the LDM Database stored on 360 * @state->bdev and return the parsed information into @toc1. 361 * 362 * The offsets and sizes of the configs are range-checked against a privhead. 363 * 364 * Return: 'true' @toc1 contains validated TOCBLOCK info 365 * 'false' @toc1 contents are undefined 366 */ 367 static bool ldm_validate_tocblocks(struct parsed_partitions *state, 368 unsigned long base, struct ldmdb *ldb) 369 { 370 static const int off[4] = { OFF_TOCB1, OFF_TOCB2, OFF_TOCB3, OFF_TOCB4}; 371 struct tocblock *tb[4]; 372 struct privhead *ph; 373 Sector sect; 374 u8 *data; 375 int i, nr_tbs; 376 bool result = false; 377 378 BUG_ON(!state || !ldb); 379 ph = &ldb->ph; 380 tb[0] = &ldb->toc; 381 tb[1] = kmalloc_array(3, sizeof(*tb[1]), GFP_KERNEL); 382 if (!tb[1]) { 383 ldm_crit("Out of memory."); 384 goto err; 385 } 386 tb[2] = (struct tocblock*)((u8*)tb[1] + sizeof(*tb[1])); 387 tb[3] = (struct tocblock*)((u8*)tb[2] + sizeof(*tb[2])); 388 /* 389 * Try to read and parse all four TOCBLOCKs. 390 * 391 * Windows Vista LDM v2.12 does not always have all four TOCBLOCKs so 392 * skip any that fail as long as we get at least one valid TOCBLOCK. 393 */ 394 for (nr_tbs = i = 0; i < 4; i++) { 395 data = read_part_sector(state, base + off[i], §); 396 if (!data) { 397 ldm_error("Disk read failed for TOCBLOCK %d.", i); 398 continue; 399 } 400 if (ldm_parse_tocblock(data, tb[nr_tbs])) 401 nr_tbs++; 402 put_dev_sector(sect); 403 } 404 if (!nr_tbs) { 405 ldm_crit("Failed to find a valid TOCBLOCK."); 406 goto err; 407 } 408 /* Range check the TOCBLOCK against a privhead. */ 409 if (((tb[0]->bitmap1_start + tb[0]->bitmap1_size) > ph->config_size) || 410 ((tb[0]->bitmap2_start + tb[0]->bitmap2_size) > 411 ph->config_size)) { 412 ldm_crit("The bitmaps are out of range. Giving up."); 413 goto err; 414 } 415 /* Compare all loaded TOCBLOCKs. */ 416 for (i = 1; i < nr_tbs; i++) { 417 if (!ldm_compare_tocblocks(tb[0], tb[i])) { 418 ldm_crit("TOCBLOCKs 0 and %d do not match.", i); 419 goto err; 420 } 421 } 422 ldm_debug("Validated %d TOCBLOCKs successfully.", nr_tbs); 423 result = true; 424 err: 425 kfree(tb[1]); 426 return result; 427 } 428 429 /** 430 * ldm_validate_vmdb - Read the VMDB and validate it 431 * @state: Partition check state including device holding the LDM Database 432 * @base: Offset, into @bdev, of the database 433 * @ldb: Cache of the database structures 434 * 435 * Find the vmdb of the LDM Database stored on @bdev and return the parsed 436 * information in @ldb. 437 * 438 * Return: 'true' @ldb contains validated VBDB info 439 * 'false' @ldb contents are undefined 440 */ 441 static bool ldm_validate_vmdb(struct parsed_partitions *state, 442 unsigned long base, struct ldmdb *ldb) 443 { 444 Sector sect; 445 u8 *data; 446 bool result = false; 447 struct vmdb *vm; 448 struct tocblock *toc; 449 450 BUG_ON (!state || !ldb); 451 452 vm = &ldb->vm; 453 toc = &ldb->toc; 454 455 data = read_part_sector(state, base + OFF_VMDB, §); 456 if (!data) { 457 ldm_crit ("Disk read failed."); 458 return false; 459 } 460 461 if (!ldm_parse_vmdb (data, vm)) 462 goto out; /* Already logged */ 463 464 /* Are there uncommitted transactions? */ 465 if (get_unaligned_be16(data + 0x10) != 0x01) { 466 ldm_crit ("Database is not in a consistent state. Aborting."); 467 goto out; 468 } 469 470 if (vm->vblk_offset != 512) 471 ldm_info ("VBLKs start at offset 0x%04x.", vm->vblk_offset); 472 473 /* 474 * The last_vblkd_seq can be before the end of the vmdb, just make sure 475 * it is not out of bounds. 476 */ 477 if ((vm->vblk_size * vm->last_vblk_seq) > (toc->bitmap1_size << 9)) { 478 ldm_crit ("VMDB exceeds allowed size specified by TOCBLOCK. " 479 "Database is corrupt. Aborting."); 480 goto out; 481 } 482 483 result = true; 484 out: 485 put_dev_sector (sect); 486 return result; 487 } 488 489 490 /** 491 * ldm_validate_partition_table - Determine whether bdev might be a dynamic disk 492 * @state: Partition check state including device holding the LDM Database 493 * 494 * This function provides a weak test to decide whether the device is a dynamic 495 * disk or not. It looks for an MS-DOS-style partition table containing at 496 * least one partition of type 0x42 (formerly SFS, now used by Windows for 497 * dynamic disks). 498 * 499 * N.B. The only possible error can come from the read_part_sector and that is 500 * only likely to happen if the underlying device is strange. If that IS 501 * the case we should return zero to let someone else try. 502 * 503 * Return: 'true' @state->bdev is a dynamic disk 504 * 'false' @state->bdev is not a dynamic disk, or an error occurred 505 */ 506 static bool ldm_validate_partition_table(struct parsed_partitions *state) 507 { 508 Sector sect; 509 u8 *data; 510 struct partition *p; 511 int i; 512 bool result = false; 513 514 BUG_ON(!state); 515 516 data = read_part_sector(state, 0, §); 517 if (!data) { 518 ldm_info ("Disk read failed."); 519 return false; 520 } 521 522 if (*(__le16*) (data + 0x01FE) != cpu_to_le16 (MSDOS_LABEL_MAGIC)) 523 goto out; 524 525 p = (struct partition*)(data + 0x01BE); 526 for (i = 0; i < 4; i++, p++) 527 if (SYS_IND (p) == LDM_PARTITION) { 528 result = true; 529 break; 530 } 531 532 if (result) 533 ldm_debug ("Found W2K dynamic disk partition type."); 534 535 out: 536 put_dev_sector (sect); 537 return result; 538 } 539 540 /** 541 * ldm_get_disk_objid - Search a linked list of vblk's for a given Disk Id 542 * @ldb: Cache of the database structures 543 * 544 * The LDM Database contains a list of all partitions on all dynamic disks. 545 * The primary PRIVHEAD, at the beginning of the physical disk, tells us 546 * the GUID of this disk. This function searches for the GUID in a linked 547 * list of vblk's. 548 * 549 * Return: Pointer, A matching vblk was found 550 * NULL, No match, or an error 551 */ 552 static struct vblk * ldm_get_disk_objid (const struct ldmdb *ldb) 553 { 554 struct list_head *item; 555 556 BUG_ON (!ldb); 557 558 list_for_each (item, &ldb->v_disk) { 559 struct vblk *v = list_entry (item, struct vblk, list); 560 if (uuid_equal(&v->vblk.disk.disk_id, &ldb->ph.disk_id)) 561 return v; 562 } 563 564 return NULL; 565 } 566 567 /** 568 * ldm_create_data_partitions - Create data partitions for this device 569 * @pp: List of the partitions parsed so far 570 * @ldb: Cache of the database structures 571 * 572 * The database contains ALL the partitions for ALL disk groups, so we need to 573 * filter out this specific disk. Using the disk's object id, we can find all 574 * the partitions in the database that belong to this disk. 575 * 576 * Add each partition in our database, to the parsed_partitions structure. 577 * 578 * N.B. This function creates the partitions in the order it finds partition 579 * objects in the linked list. 580 * 581 * Return: 'true' Partition created 582 * 'false' Error, probably a range checking problem 583 */ 584 static bool ldm_create_data_partitions (struct parsed_partitions *pp, 585 const struct ldmdb *ldb) 586 { 587 struct list_head *item; 588 struct vblk *vb; 589 struct vblk *disk; 590 struct vblk_part *part; 591 int part_num = 1; 592 593 BUG_ON (!pp || !ldb); 594 595 disk = ldm_get_disk_objid (ldb); 596 if (!disk) { 597 ldm_crit ("Can't find the ID of this disk in the database."); 598 return false; 599 } 600 601 strlcat(pp->pp_buf, " [LDM]", PAGE_SIZE); 602 603 /* Create the data partitions */ 604 list_for_each (item, &ldb->v_part) { 605 vb = list_entry (item, struct vblk, list); 606 part = &vb->vblk.part; 607 608 if (part->disk_id != disk->obj_id) 609 continue; 610 611 put_partition (pp, part_num, ldb->ph.logical_disk_start + 612 part->start, part->size); 613 part_num++; 614 } 615 616 strlcat(pp->pp_buf, "\n", PAGE_SIZE); 617 return true; 618 } 619 620 621 /** 622 * ldm_relative - Calculate the next relative offset 623 * @buffer: Block of data being worked on 624 * @buflen: Size of the block of data 625 * @base: Size of the previous fixed width fields 626 * @offset: Cumulative size of the previous variable-width fields 627 * 628 * Because many of the VBLK fields are variable-width, it's necessary 629 * to calculate each offset based on the previous one and the length 630 * of the field it pointed to. 631 * 632 * Return: -1 Error, the calculated offset exceeded the size of the buffer 633 * n OK, a range-checked offset into buffer 634 */ 635 static int ldm_relative(const u8 *buffer, int buflen, int base, int offset) 636 { 637 638 base += offset; 639 if (!buffer || offset < 0 || base > buflen) { 640 if (!buffer) 641 ldm_error("!buffer"); 642 if (offset < 0) 643 ldm_error("offset (%d) < 0", offset); 644 if (base > buflen) 645 ldm_error("base (%d) > buflen (%d)", base, buflen); 646 return -1; 647 } 648 if (base + buffer[base] >= buflen) { 649 ldm_error("base (%d) + buffer[base] (%d) >= buflen (%d)", base, 650 buffer[base], buflen); 651 return -1; 652 } 653 return buffer[base] + offset + 1; 654 } 655 656 /** 657 * ldm_get_vnum - Convert a variable-width, big endian number, into cpu order 658 * @block: Pointer to the variable-width number to convert 659 * 660 * Large numbers in the LDM Database are often stored in a packed format. Each 661 * number is prefixed by a one byte width marker. All numbers in the database 662 * are stored in big-endian byte order. This function reads one of these 663 * numbers and returns the result 664 * 665 * N.B. This function DOES NOT perform any range checking, though the most 666 * it will read is eight bytes. 667 * 668 * Return: n A number 669 * 0 Zero, or an error occurred 670 */ 671 static u64 ldm_get_vnum (const u8 *block) 672 { 673 u64 tmp = 0; 674 u8 length; 675 676 BUG_ON (!block); 677 678 length = *block++; 679 680 if (length && length <= 8) 681 while (length--) 682 tmp = (tmp << 8) | *block++; 683 else 684 ldm_error ("Illegal length %d.", length); 685 686 return tmp; 687 } 688 689 /** 690 * ldm_get_vstr - Read a length-prefixed string into a buffer 691 * @block: Pointer to the length marker 692 * @buffer: Location to copy string to 693 * @buflen: Size of the output buffer 694 * 695 * Many of the strings in the LDM Database are not NULL terminated. Instead 696 * they are prefixed by a one byte length marker. This function copies one of 697 * these strings into a buffer. 698 * 699 * N.B. This function DOES NOT perform any range checking on the input. 700 * If the buffer is too small, the output will be truncated. 701 * 702 * Return: 0, Error and @buffer contents are undefined 703 * n, String length in characters (excluding NULL) 704 * buflen-1, String was truncated. 705 */ 706 static int ldm_get_vstr (const u8 *block, u8 *buffer, int buflen) 707 { 708 int length; 709 710 BUG_ON (!block || !buffer); 711 712 length = block[0]; 713 if (length >= buflen) { 714 ldm_error ("Truncating string %d -> %d.", length, buflen); 715 length = buflen - 1; 716 } 717 memcpy (buffer, block + 1, length); 718 buffer[length] = 0; 719 return length; 720 } 721 722 723 /** 724 * ldm_parse_cmp3 - Read a raw VBLK Component object into a vblk structure 725 * @buffer: Block of data being worked on 726 * @buflen: Size of the block of data 727 * @vb: In-memory vblk in which to return information 728 * 729 * Read a raw VBLK Component object (version 3) into a vblk structure. 730 * 731 * Return: 'true' @vb contains a Component VBLK 732 * 'false' @vb contents are not defined 733 */ 734 static bool ldm_parse_cmp3 (const u8 *buffer, int buflen, struct vblk *vb) 735 { 736 int r_objid, r_name, r_vstate, r_child, r_parent, r_stripe, r_cols, len; 737 struct vblk_comp *comp; 738 739 BUG_ON (!buffer || !vb); 740 741 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 742 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 743 r_vstate = ldm_relative (buffer, buflen, 0x18, r_name); 744 r_child = ldm_relative (buffer, buflen, 0x1D, r_vstate); 745 r_parent = ldm_relative (buffer, buflen, 0x2D, r_child); 746 747 if (buffer[0x12] & VBLK_FLAG_COMP_STRIPE) { 748 r_stripe = ldm_relative (buffer, buflen, 0x2E, r_parent); 749 r_cols = ldm_relative (buffer, buflen, 0x2E, r_stripe); 750 len = r_cols; 751 } else { 752 r_stripe = 0; 753 r_cols = 0; 754 len = r_parent; 755 } 756 if (len < 0) 757 return false; 758 759 len += VBLK_SIZE_CMP3; 760 if (len != get_unaligned_be32(buffer + 0x14)) 761 return false; 762 763 comp = &vb->vblk.comp; 764 ldm_get_vstr (buffer + 0x18 + r_name, comp->state, 765 sizeof (comp->state)); 766 comp->type = buffer[0x18 + r_vstate]; 767 comp->children = ldm_get_vnum (buffer + 0x1D + r_vstate); 768 comp->parent_id = ldm_get_vnum (buffer + 0x2D + r_child); 769 comp->chunksize = r_stripe ? ldm_get_vnum (buffer+r_parent+0x2E) : 0; 770 771 return true; 772 } 773 774 /** 775 * ldm_parse_dgr3 - Read a raw VBLK Disk Group object into a vblk structure 776 * @buffer: Block of data being worked on 777 * @buflen: Size of the block of data 778 * @vb: In-memory vblk in which to return information 779 * 780 * Read a raw VBLK Disk Group object (version 3) into a vblk structure. 781 * 782 * Return: 'true' @vb contains a Disk Group VBLK 783 * 'false' @vb contents are not defined 784 */ 785 static int ldm_parse_dgr3 (const u8 *buffer, int buflen, struct vblk *vb) 786 { 787 int r_objid, r_name, r_diskid, r_id1, r_id2, len; 788 struct vblk_dgrp *dgrp; 789 790 BUG_ON (!buffer || !vb); 791 792 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 793 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 794 r_diskid = ldm_relative (buffer, buflen, 0x18, r_name); 795 796 if (buffer[0x12] & VBLK_FLAG_DGR3_IDS) { 797 r_id1 = ldm_relative (buffer, buflen, 0x24, r_diskid); 798 r_id2 = ldm_relative (buffer, buflen, 0x24, r_id1); 799 len = r_id2; 800 } else { 801 r_id1 = 0; 802 r_id2 = 0; 803 len = r_diskid; 804 } 805 if (len < 0) 806 return false; 807 808 len += VBLK_SIZE_DGR3; 809 if (len != get_unaligned_be32(buffer + 0x14)) 810 return false; 811 812 dgrp = &vb->vblk.dgrp; 813 ldm_get_vstr (buffer + 0x18 + r_name, dgrp->disk_id, 814 sizeof (dgrp->disk_id)); 815 return true; 816 } 817 818 /** 819 * ldm_parse_dgr4 - Read a raw VBLK Disk Group object into a vblk structure 820 * @buffer: Block of data being worked on 821 * @buflen: Size of the block of data 822 * @vb: In-memory vblk in which to return information 823 * 824 * Read a raw VBLK Disk Group object (version 4) into a vblk structure. 825 * 826 * Return: 'true' @vb contains a Disk Group VBLK 827 * 'false' @vb contents are not defined 828 */ 829 static bool ldm_parse_dgr4 (const u8 *buffer, int buflen, struct vblk *vb) 830 { 831 char buf[64]; 832 int r_objid, r_name, r_id1, r_id2, len; 833 struct vblk_dgrp *dgrp; 834 835 BUG_ON (!buffer || !vb); 836 837 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 838 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 839 840 if (buffer[0x12] & VBLK_FLAG_DGR4_IDS) { 841 r_id1 = ldm_relative (buffer, buflen, 0x44, r_name); 842 r_id2 = ldm_relative (buffer, buflen, 0x44, r_id1); 843 len = r_id2; 844 } else { 845 r_id1 = 0; 846 r_id2 = 0; 847 len = r_name; 848 } 849 if (len < 0) 850 return false; 851 852 len += VBLK_SIZE_DGR4; 853 if (len != get_unaligned_be32(buffer + 0x14)) 854 return false; 855 856 dgrp = &vb->vblk.dgrp; 857 858 ldm_get_vstr (buffer + 0x18 + r_objid, buf, sizeof (buf)); 859 return true; 860 } 861 862 /** 863 * ldm_parse_dsk3 - Read a raw VBLK Disk object into a vblk structure 864 * @buffer: Block of data being worked on 865 * @buflen: Size of the block of data 866 * @vb: In-memory vblk in which to return information 867 * 868 * Read a raw VBLK Disk object (version 3) into a vblk structure. 869 * 870 * Return: 'true' @vb contains a Disk VBLK 871 * 'false' @vb contents are not defined 872 */ 873 static bool ldm_parse_dsk3 (const u8 *buffer, int buflen, struct vblk *vb) 874 { 875 int r_objid, r_name, r_diskid, r_altname, len; 876 struct vblk_disk *disk; 877 878 BUG_ON (!buffer || !vb); 879 880 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 881 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 882 r_diskid = ldm_relative (buffer, buflen, 0x18, r_name); 883 r_altname = ldm_relative (buffer, buflen, 0x18, r_diskid); 884 len = r_altname; 885 if (len < 0) 886 return false; 887 888 len += VBLK_SIZE_DSK3; 889 if (len != get_unaligned_be32(buffer + 0x14)) 890 return false; 891 892 disk = &vb->vblk.disk; 893 ldm_get_vstr (buffer + 0x18 + r_diskid, disk->alt_name, 894 sizeof (disk->alt_name)); 895 if (uuid_parse(buffer + 0x19 + r_name, &disk->disk_id)) 896 return false; 897 898 return true; 899 } 900 901 /** 902 * ldm_parse_dsk4 - Read a raw VBLK Disk object into a vblk structure 903 * @buffer: Block of data being worked on 904 * @buflen: Size of the block of data 905 * @vb: In-memory vblk in which to return information 906 * 907 * Read a raw VBLK Disk object (version 4) into a vblk structure. 908 * 909 * Return: 'true' @vb contains a Disk VBLK 910 * 'false' @vb contents are not defined 911 */ 912 static bool ldm_parse_dsk4 (const u8 *buffer, int buflen, struct vblk *vb) 913 { 914 int r_objid, r_name, len; 915 struct vblk_disk *disk; 916 917 BUG_ON (!buffer || !vb); 918 919 r_objid = ldm_relative (buffer, buflen, 0x18, 0); 920 r_name = ldm_relative (buffer, buflen, 0x18, r_objid); 921 len = r_name; 922 if (len < 0) 923 return false; 924 925 len += VBLK_SIZE_DSK4; 926 if (len != get_unaligned_be32(buffer + 0x14)) 927 return false; 928 929 disk = &vb->vblk.disk; 930 uuid_copy(&disk->disk_id, (uuid_t *)(buffer + 0x18 + r_name)); 931 return true; 932 } 933 934 /** 935 * ldm_parse_prt3 - Read a raw VBLK Partition object into a vblk structure 936 * @buffer: Block of data being worked on 937 * @buflen: Size of the block of data 938 * @vb: In-memory vblk in which to return information 939 * 940 * Read a raw VBLK Partition object (version 3) into a vblk structure. 941 * 942 * Return: 'true' @vb contains a Partition VBLK 943 * 'false' @vb contents are not defined 944 */ 945 static bool ldm_parse_prt3(const u8 *buffer, int buflen, struct vblk *vb) 946 { 947 int r_objid, r_name, r_size, r_parent, r_diskid, r_index, len; 948 struct vblk_part *part; 949 950 BUG_ON(!buffer || !vb); 951 r_objid = ldm_relative(buffer, buflen, 0x18, 0); 952 if (r_objid < 0) { 953 ldm_error("r_objid %d < 0", r_objid); 954 return false; 955 } 956 r_name = ldm_relative(buffer, buflen, 0x18, r_objid); 957 if (r_name < 0) { 958 ldm_error("r_name %d < 0", r_name); 959 return false; 960 } 961 r_size = ldm_relative(buffer, buflen, 0x34, r_name); 962 if (r_size < 0) { 963 ldm_error("r_size %d < 0", r_size); 964 return false; 965 } 966 r_parent = ldm_relative(buffer, buflen, 0x34, r_size); 967 if (r_parent < 0) { 968 ldm_error("r_parent %d < 0", r_parent); 969 return false; 970 } 971 r_diskid = ldm_relative(buffer, buflen, 0x34, r_parent); 972 if (r_diskid < 0) { 973 ldm_error("r_diskid %d < 0", r_diskid); 974 return false; 975 } 976 if (buffer[0x12] & VBLK_FLAG_PART_INDEX) { 977 r_index = ldm_relative(buffer, buflen, 0x34, r_diskid); 978 if (r_index < 0) { 979 ldm_error("r_index %d < 0", r_index); 980 return false; 981 } 982 len = r_index; 983 } else { 984 r_index = 0; 985 len = r_diskid; 986 } 987 if (len < 0) { 988 ldm_error("len %d < 0", len); 989 return false; 990 } 991 len += VBLK_SIZE_PRT3; 992 if (len > get_unaligned_be32(buffer + 0x14)) { 993 ldm_error("len %d > BE32(buffer + 0x14) %d", len, 994 get_unaligned_be32(buffer + 0x14)); 995 return false; 996 } 997 part = &vb->vblk.part; 998 part->start = get_unaligned_be64(buffer + 0x24 + r_name); 999 part->volume_offset = get_unaligned_be64(buffer + 0x2C + r_name); 1000 part->size = ldm_get_vnum(buffer + 0x34 + r_name); 1001 part->parent_id = ldm_get_vnum(buffer + 0x34 + r_size); 1002 part->disk_id = ldm_get_vnum(buffer + 0x34 + r_parent); 1003 if (vb->flags & VBLK_FLAG_PART_INDEX) 1004 part->partnum = buffer[0x35 + r_diskid]; 1005 else 1006 part->partnum = 0; 1007 return true; 1008 } 1009 1010 /** 1011 * ldm_parse_vol5 - Read a raw VBLK Volume object into a vblk structure 1012 * @buffer: Block of data being worked on 1013 * @buflen: Size of the block of data 1014 * @vb: In-memory vblk in which to return information 1015 * 1016 * Read a raw VBLK Volume object (version 5) into a vblk structure. 1017 * 1018 * Return: 'true' @vb contains a Volume VBLK 1019 * 'false' @vb contents are not defined 1020 */ 1021 static bool ldm_parse_vol5(const u8 *buffer, int buflen, struct vblk *vb) 1022 { 1023 int r_objid, r_name, r_vtype, r_disable_drive_letter, r_child, r_size; 1024 int r_id1, r_id2, r_size2, r_drive, len; 1025 struct vblk_volu *volu; 1026 1027 BUG_ON(!buffer || !vb); 1028 r_objid = ldm_relative(buffer, buflen, 0x18, 0); 1029 if (r_objid < 0) { 1030 ldm_error("r_objid %d < 0", r_objid); 1031 return false; 1032 } 1033 r_name = ldm_relative(buffer, buflen, 0x18, r_objid); 1034 if (r_name < 0) { 1035 ldm_error("r_name %d < 0", r_name); 1036 return false; 1037 } 1038 r_vtype = ldm_relative(buffer, buflen, 0x18, r_name); 1039 if (r_vtype < 0) { 1040 ldm_error("r_vtype %d < 0", r_vtype); 1041 return false; 1042 } 1043 r_disable_drive_letter = ldm_relative(buffer, buflen, 0x18, r_vtype); 1044 if (r_disable_drive_letter < 0) { 1045 ldm_error("r_disable_drive_letter %d < 0", 1046 r_disable_drive_letter); 1047 return false; 1048 } 1049 r_child = ldm_relative(buffer, buflen, 0x2D, r_disable_drive_letter); 1050 if (r_child < 0) { 1051 ldm_error("r_child %d < 0", r_child); 1052 return false; 1053 } 1054 r_size = ldm_relative(buffer, buflen, 0x3D, r_child); 1055 if (r_size < 0) { 1056 ldm_error("r_size %d < 0", r_size); 1057 return false; 1058 } 1059 if (buffer[0x12] & VBLK_FLAG_VOLU_ID1) { 1060 r_id1 = ldm_relative(buffer, buflen, 0x52, r_size); 1061 if (r_id1 < 0) { 1062 ldm_error("r_id1 %d < 0", r_id1); 1063 return false; 1064 } 1065 } else 1066 r_id1 = r_size; 1067 if (buffer[0x12] & VBLK_FLAG_VOLU_ID2) { 1068 r_id2 = ldm_relative(buffer, buflen, 0x52, r_id1); 1069 if (r_id2 < 0) { 1070 ldm_error("r_id2 %d < 0", r_id2); 1071 return false; 1072 } 1073 } else 1074 r_id2 = r_id1; 1075 if (buffer[0x12] & VBLK_FLAG_VOLU_SIZE) { 1076 r_size2 = ldm_relative(buffer, buflen, 0x52, r_id2); 1077 if (r_size2 < 0) { 1078 ldm_error("r_size2 %d < 0", r_size2); 1079 return false; 1080 } 1081 } else 1082 r_size2 = r_id2; 1083 if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) { 1084 r_drive = ldm_relative(buffer, buflen, 0x52, r_size2); 1085 if (r_drive < 0) { 1086 ldm_error("r_drive %d < 0", r_drive); 1087 return false; 1088 } 1089 } else 1090 r_drive = r_size2; 1091 len = r_drive; 1092 if (len < 0) { 1093 ldm_error("len %d < 0", len); 1094 return false; 1095 } 1096 len += VBLK_SIZE_VOL5; 1097 if (len > get_unaligned_be32(buffer + 0x14)) { 1098 ldm_error("len %d > BE32(buffer + 0x14) %d", len, 1099 get_unaligned_be32(buffer + 0x14)); 1100 return false; 1101 } 1102 volu = &vb->vblk.volu; 1103 ldm_get_vstr(buffer + 0x18 + r_name, volu->volume_type, 1104 sizeof(volu->volume_type)); 1105 memcpy(volu->volume_state, buffer + 0x18 + r_disable_drive_letter, 1106 sizeof(volu->volume_state)); 1107 volu->size = ldm_get_vnum(buffer + 0x3D + r_child); 1108 volu->partition_type = buffer[0x41 + r_size]; 1109 memcpy(volu->guid, buffer + 0x42 + r_size, sizeof(volu->guid)); 1110 if (buffer[0x12] & VBLK_FLAG_VOLU_DRIVE) { 1111 ldm_get_vstr(buffer + 0x52 + r_size, volu->drive_hint, 1112 sizeof(volu->drive_hint)); 1113 } 1114 return true; 1115 } 1116 1117 /** 1118 * ldm_parse_vblk - Read a raw VBLK object into a vblk structure 1119 * @buf: Block of data being worked on 1120 * @len: Size of the block of data 1121 * @vb: In-memory vblk in which to return information 1122 * 1123 * Read a raw VBLK object into a vblk structure. This function just reads the 1124 * information common to all VBLK types, then delegates the rest of the work to 1125 * helper functions: ldm_parse_*. 1126 * 1127 * Return: 'true' @vb contains a VBLK 1128 * 'false' @vb contents are not defined 1129 */ 1130 static bool ldm_parse_vblk (const u8 *buf, int len, struct vblk *vb) 1131 { 1132 bool result = false; 1133 int r_objid; 1134 1135 BUG_ON (!buf || !vb); 1136 1137 r_objid = ldm_relative (buf, len, 0x18, 0); 1138 if (r_objid < 0) { 1139 ldm_error ("VBLK header is corrupt."); 1140 return false; 1141 } 1142 1143 vb->flags = buf[0x12]; 1144 vb->type = buf[0x13]; 1145 vb->obj_id = ldm_get_vnum (buf + 0x18); 1146 ldm_get_vstr (buf+0x18+r_objid, vb->name, sizeof (vb->name)); 1147 1148 switch (vb->type) { 1149 case VBLK_CMP3: result = ldm_parse_cmp3 (buf, len, vb); break; 1150 case VBLK_DSK3: result = ldm_parse_dsk3 (buf, len, vb); break; 1151 case VBLK_DSK4: result = ldm_parse_dsk4 (buf, len, vb); break; 1152 case VBLK_DGR3: result = ldm_parse_dgr3 (buf, len, vb); break; 1153 case VBLK_DGR4: result = ldm_parse_dgr4 (buf, len, vb); break; 1154 case VBLK_PRT3: result = ldm_parse_prt3 (buf, len, vb); break; 1155 case VBLK_VOL5: result = ldm_parse_vol5 (buf, len, vb); break; 1156 } 1157 1158 if (result) 1159 ldm_debug ("Parsed VBLK 0x%llx (type: 0x%02x) ok.", 1160 (unsigned long long) vb->obj_id, vb->type); 1161 else 1162 ldm_error ("Failed to parse VBLK 0x%llx (type: 0x%02x).", 1163 (unsigned long long) vb->obj_id, vb->type); 1164 1165 return result; 1166 } 1167 1168 1169 /** 1170 * ldm_ldmdb_add - Adds a raw VBLK entry to the ldmdb database 1171 * @data: Raw VBLK to add to the database 1172 * @len: Size of the raw VBLK 1173 * @ldb: Cache of the database structures 1174 * 1175 * The VBLKs are sorted into categories. Partitions are also sorted by offset. 1176 * 1177 * N.B. This function does not check the validity of the VBLKs. 1178 * 1179 * Return: 'true' The VBLK was added 1180 * 'false' An error occurred 1181 */ 1182 static bool ldm_ldmdb_add (u8 *data, int len, struct ldmdb *ldb) 1183 { 1184 struct vblk *vb; 1185 struct list_head *item; 1186 1187 BUG_ON (!data || !ldb); 1188 1189 vb = kmalloc (sizeof (*vb), GFP_KERNEL); 1190 if (!vb) { 1191 ldm_crit ("Out of memory."); 1192 return false; 1193 } 1194 1195 if (!ldm_parse_vblk (data, len, vb)) { 1196 kfree(vb); 1197 return false; /* Already logged */ 1198 } 1199 1200 /* Put vblk into the correct list. */ 1201 switch (vb->type) { 1202 case VBLK_DGR3: 1203 case VBLK_DGR4: 1204 list_add (&vb->list, &ldb->v_dgrp); 1205 break; 1206 case VBLK_DSK3: 1207 case VBLK_DSK4: 1208 list_add (&vb->list, &ldb->v_disk); 1209 break; 1210 case VBLK_VOL5: 1211 list_add (&vb->list, &ldb->v_volu); 1212 break; 1213 case VBLK_CMP3: 1214 list_add (&vb->list, &ldb->v_comp); 1215 break; 1216 case VBLK_PRT3: 1217 /* Sort by the partition's start sector. */ 1218 list_for_each (item, &ldb->v_part) { 1219 struct vblk *v = list_entry (item, struct vblk, list); 1220 if ((v->vblk.part.disk_id == vb->vblk.part.disk_id) && 1221 (v->vblk.part.start > vb->vblk.part.start)) { 1222 list_add_tail (&vb->list, &v->list); 1223 return true; 1224 } 1225 } 1226 list_add_tail (&vb->list, &ldb->v_part); 1227 break; 1228 } 1229 return true; 1230 } 1231 1232 /** 1233 * ldm_frag_add - Add a VBLK fragment to a list 1234 * @data: Raw fragment to be added to the list 1235 * @size: Size of the raw fragment 1236 * @frags: Linked list of VBLK fragments 1237 * 1238 * Fragmented VBLKs may not be consecutive in the database, so they are placed 1239 * in a list so they can be pieced together later. 1240 * 1241 * Return: 'true' Success, the VBLK was added to the list 1242 * 'false' Error, a problem occurred 1243 */ 1244 static bool ldm_frag_add (const u8 *data, int size, struct list_head *frags) 1245 { 1246 struct frag *f; 1247 struct list_head *item; 1248 int rec, num, group; 1249 1250 BUG_ON (!data || !frags); 1251 1252 if (size < 2 * VBLK_SIZE_HEAD) { 1253 ldm_error("Value of size is to small."); 1254 return false; 1255 } 1256 1257 group = get_unaligned_be32(data + 0x08); 1258 rec = get_unaligned_be16(data + 0x0C); 1259 num = get_unaligned_be16(data + 0x0E); 1260 if ((num < 1) || (num > 4)) { 1261 ldm_error ("A VBLK claims to have %d parts.", num); 1262 return false; 1263 } 1264 if (rec >= num) { 1265 ldm_error("REC value (%d) exceeds NUM value (%d)", rec, num); 1266 return false; 1267 } 1268 1269 list_for_each (item, frags) { 1270 f = list_entry (item, struct frag, list); 1271 if (f->group == group) 1272 goto found; 1273 } 1274 1275 f = kmalloc (sizeof (*f) + size*num, GFP_KERNEL); 1276 if (!f) { 1277 ldm_crit ("Out of memory."); 1278 return false; 1279 } 1280 1281 f->group = group; 1282 f->num = num; 1283 f->rec = rec; 1284 f->map = 0xFF << num; 1285 1286 list_add_tail (&f->list, frags); 1287 found: 1288 if (rec >= f->num) { 1289 ldm_error("REC value (%d) exceeds NUM value (%d)", rec, f->num); 1290 return false; 1291 } 1292 if (f->map & (1 << rec)) { 1293 ldm_error ("Duplicate VBLK, part %d.", rec); 1294 f->map &= 0x7F; /* Mark the group as broken */ 1295 return false; 1296 } 1297 f->map |= (1 << rec); 1298 if (!rec) 1299 memcpy(f->data, data, VBLK_SIZE_HEAD); 1300 data += VBLK_SIZE_HEAD; 1301 size -= VBLK_SIZE_HEAD; 1302 memcpy(f->data + VBLK_SIZE_HEAD + rec * size, data, size); 1303 return true; 1304 } 1305 1306 /** 1307 * ldm_frag_free - Free a linked list of VBLK fragments 1308 * @list: Linked list of fragments 1309 * 1310 * Free a linked list of VBLK fragments 1311 * 1312 * Return: none 1313 */ 1314 static void ldm_frag_free (struct list_head *list) 1315 { 1316 struct list_head *item, *tmp; 1317 1318 BUG_ON (!list); 1319 1320 list_for_each_safe (item, tmp, list) 1321 kfree (list_entry (item, struct frag, list)); 1322 } 1323 1324 /** 1325 * ldm_frag_commit - Validate fragmented VBLKs and add them to the database 1326 * @frags: Linked list of VBLK fragments 1327 * @ldb: Cache of the database structures 1328 * 1329 * Now that all the fragmented VBLKs have been collected, they must be added to 1330 * the database for later use. 1331 * 1332 * Return: 'true' All the fragments we added successfully 1333 * 'false' One or more of the fragments we invalid 1334 */ 1335 static bool ldm_frag_commit (struct list_head *frags, struct ldmdb *ldb) 1336 { 1337 struct frag *f; 1338 struct list_head *item; 1339 1340 BUG_ON (!frags || !ldb); 1341 1342 list_for_each (item, frags) { 1343 f = list_entry (item, struct frag, list); 1344 1345 if (f->map != 0xFF) { 1346 ldm_error ("VBLK group %d is incomplete (0x%02x).", 1347 f->group, f->map); 1348 return false; 1349 } 1350 1351 if (!ldm_ldmdb_add (f->data, f->num*ldb->vm.vblk_size, ldb)) 1352 return false; /* Already logged */ 1353 } 1354 return true; 1355 } 1356 1357 /** 1358 * ldm_get_vblks - Read the on-disk database of VBLKs into memory 1359 * @state: Partition check state including device holding the LDM Database 1360 * @base: Offset, into @state->bdev, of the database 1361 * @ldb: Cache of the database structures 1362 * 1363 * To use the information from the VBLKs, they need to be read from the disk, 1364 * unpacked and validated. We cache them in @ldb according to their type. 1365 * 1366 * Return: 'true' All the VBLKs were read successfully 1367 * 'false' An error occurred 1368 */ 1369 static bool ldm_get_vblks(struct parsed_partitions *state, unsigned long base, 1370 struct ldmdb *ldb) 1371 { 1372 int size, perbuf, skip, finish, s, v, recs; 1373 u8 *data = NULL; 1374 Sector sect; 1375 bool result = false; 1376 LIST_HEAD (frags); 1377 1378 BUG_ON(!state || !ldb); 1379 1380 size = ldb->vm.vblk_size; 1381 perbuf = 512 / size; 1382 skip = ldb->vm.vblk_offset >> 9; /* Bytes to sectors */ 1383 finish = (size * ldb->vm.last_vblk_seq) >> 9; 1384 1385 for (s = skip; s < finish; s++) { /* For each sector */ 1386 data = read_part_sector(state, base + OFF_VMDB + s, §); 1387 if (!data) { 1388 ldm_crit ("Disk read failed."); 1389 goto out; 1390 } 1391 1392 for (v = 0; v < perbuf; v++, data+=size) { /* For each vblk */ 1393 if (MAGIC_VBLK != get_unaligned_be32(data)) { 1394 ldm_error ("Expected to find a VBLK."); 1395 goto out; 1396 } 1397 1398 recs = get_unaligned_be16(data + 0x0E); /* Number of records */ 1399 if (recs == 1) { 1400 if (!ldm_ldmdb_add (data, size, ldb)) 1401 goto out; /* Already logged */ 1402 } else if (recs > 1) { 1403 if (!ldm_frag_add (data, size, &frags)) 1404 goto out; /* Already logged */ 1405 } 1406 /* else Record is not in use, ignore it. */ 1407 } 1408 put_dev_sector (sect); 1409 data = NULL; 1410 } 1411 1412 result = ldm_frag_commit (&frags, ldb); /* Failures, already logged */ 1413 out: 1414 if (data) 1415 put_dev_sector (sect); 1416 ldm_frag_free (&frags); 1417 1418 return result; 1419 } 1420 1421 /** 1422 * ldm_free_vblks - Free a linked list of vblk's 1423 * @lh: Head of a linked list of struct vblk 1424 * 1425 * Free a list of vblk's and free the memory used to maintain the list. 1426 * 1427 * Return: none 1428 */ 1429 static void ldm_free_vblks (struct list_head *lh) 1430 { 1431 struct list_head *item, *tmp; 1432 1433 BUG_ON (!lh); 1434 1435 list_for_each_safe (item, tmp, lh) 1436 kfree (list_entry (item, struct vblk, list)); 1437 } 1438 1439 1440 /** 1441 * ldm_partition - Find out whether a device is a dynamic disk and handle it 1442 * @state: Partition check state including device holding the LDM Database 1443 * 1444 * This determines whether the device @bdev is a dynamic disk and if so creates 1445 * the partitions necessary in the gendisk structure pointed to by @hd. 1446 * 1447 * We create a dummy device 1, which contains the LDM database, and then create 1448 * each partition described by the LDM database in sequence as devices 2+. For 1449 * example, if the device is hda, we would have: hda1: LDM database, hda2, hda3, 1450 * and so on: the actual data containing partitions. 1451 * 1452 * Return: 1 Success, @state->bdev is a dynamic disk and we handled it 1453 * 0 Success, @state->bdev is not a dynamic disk 1454 * -1 An error occurred before enough information had been read 1455 * Or @state->bdev is a dynamic disk, but it may be corrupted 1456 */ 1457 int ldm_partition(struct parsed_partitions *state) 1458 { 1459 struct ldmdb *ldb; 1460 unsigned long base; 1461 int result = -1; 1462 1463 BUG_ON(!state); 1464 1465 /* Look for signs of a Dynamic Disk */ 1466 if (!ldm_validate_partition_table(state)) 1467 return 0; 1468 1469 ldb = kmalloc (sizeof (*ldb), GFP_KERNEL); 1470 if (!ldb) { 1471 ldm_crit ("Out of memory."); 1472 goto out; 1473 } 1474 1475 /* Parse and check privheads. */ 1476 if (!ldm_validate_privheads(state, &ldb->ph)) 1477 goto out; /* Already logged */ 1478 1479 /* All further references are relative to base (database start). */ 1480 base = ldb->ph.config_start; 1481 1482 /* Parse and check tocs and vmdb. */ 1483 if (!ldm_validate_tocblocks(state, base, ldb) || 1484 !ldm_validate_vmdb(state, base, ldb)) 1485 goto out; /* Already logged */ 1486 1487 /* Initialize vblk lists in ldmdb struct */ 1488 INIT_LIST_HEAD (&ldb->v_dgrp); 1489 INIT_LIST_HEAD (&ldb->v_disk); 1490 INIT_LIST_HEAD (&ldb->v_volu); 1491 INIT_LIST_HEAD (&ldb->v_comp); 1492 INIT_LIST_HEAD (&ldb->v_part); 1493 1494 if (!ldm_get_vblks(state, base, ldb)) { 1495 ldm_crit ("Failed to read the VBLKs from the database."); 1496 goto cleanup; 1497 } 1498 1499 /* Finally, create the data partition devices. */ 1500 if (ldm_create_data_partitions(state, ldb)) { 1501 ldm_debug ("Parsed LDM database successfully."); 1502 result = 1; 1503 } 1504 /* else Already logged */ 1505 1506 cleanup: 1507 ldm_free_vblks (&ldb->v_dgrp); 1508 ldm_free_vblks (&ldb->v_disk); 1509 ldm_free_vblks (&ldb->v_volu); 1510 ldm_free_vblks (&ldb->v_comp); 1511 ldm_free_vblks (&ldb->v_part); 1512 out: 1513 kfree (ldb); 1514 return result; 1515 } 1516